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Abstract

The multiplicative noise removal problem for a corrupted image has recently

been considered under the framework of regularization based approaches, where

the regularizations are typically defined on sparse dictionaries and/or total va-

riation (TV). This framework was demonstrated to be effective. However, the

sparse regularizers used so far are based overwhelmingly on the synthesis model,

and the TV based regularizer may induce the stair-casing effect in the recon-

structed image. In this paper, we propose a new method using a sparse analysis

model. Our formulation contains a data fidelity term derived from the distri-

bution of the noise and two regularizers. One regularizer employs a learned

analysis dictionary, and the other regularizer is an enhanced TV by introducing

a parameter to control the smoothness constraint defined on pixel-wise differ-

ences. To address the resulting optimization problem, we adapt the alternating
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direction method of multipliers (ADMM) framework, and present a new method

where a relaxation technique is developed to update the variables flexibly with

either image patches or the whole image, as required by the learned dictionary

and the enhanced TV regularizers, respectively. Experimental results demon-

strate the improved performance of the proposed method as compared with

several recent baseline methods, especially for relatively high noise levels.

Keywords: Multiplicative noise, analysis sparse model, dictionary learning,

smoothness regularizer

1. Introduction

Multiplicative noise, also known as speckle noise, is often observed in syn-

thetic aperture radar (SAR) and sonar (SAS) images, due to the effect of in-

terference introduced in their acquisition processes [1]. Compared to additive

Gaussian noise often assumed in traditional image denoising, removing speckle5

noise is deemed to be more difficult for two reasons. Firstly, the noise is multi-

plied with (rather than added to) the original image, which usually degrades the

images more severely as compared with additive noise [2]. Secondly, the study

of the statistical properties of speckle noise indicates that Gamma and Rayleigh

distributions are more suitable for modelling such noise [1], [2], [3], [4] instead10

of the widely used Gaussian distribution in conventional image denoising, and

thus the data fidelity term derived from the noise model is not quadratic, raising

difficulties for optimization.

Mathematically, the observed image w ∈ RN (reshaped from a
√
N ×

√
N

image) contaminated by the speckle noise u ∈ RN , can be represented as [4], [5]

w = g ◦ u, (1)

where g ∈ RN denotes the image to be restored. The symbol ◦ denotes the

Hadamard product (i.e. entry-wise product) of two matrices/vectors. The aim

of despeckling is to estimate g from the observed image w. In this paper, we

focus on Gamma distributed multiplicative noise, such that the elements of u are
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assumed to be independent and identically distributed (i.i.d.) with probability

density function given by [2], [4], [5]

fu(u) =
LL

Γ(L)
uL−1e−Lu, (2)

where L is a positive integer defining the noise level and Γ(·) is the classical

Gamma function given by Γ(L) = (L − 1)!. A smaller L indicates stronger15

noise.

1.1. Related Work

Classical methods for removing multiplicative noise are spatial filtering [6],

[7], [8] and wavelet domain filtering [9], [10]. More recently, regularization based

approaches to denoising, where the image reconstruction task is formulated as20

an optimization problem with regularizers, have attracted much attention [4],

[5], [11], [12], [13]. A popular regularizer employed in these approaches is total

variation (TV) which was proposed originally for reducing additive Gaussian

noise [14]. The TV-based methods were then used for multiplicative noise in

the original image domain as in equation (1) or in the log-domain by applying a25

logarithmic transform. Typical examples performed in the original domain are

the first TV-based multiplicative noise removal method proposed in [15] and the

method of Aubert-Aujol (AA) [11]. The method in [15] minimizes the TV of the

image to be recovered with the constraints exploiting the mean and variation

of the noise, but this method is not effective for removing Gamma distributed30

noise as the noise considered in its restoration model is assumed to follow a

Gaussian distribution. The AA method [11] exploits a Bayesian maximum a

posteriori (MAP) estimate, yielding an image restoration model consisting of

a data fidelity term based on the prior distribution of the multiplicative noise

and a TV regularization term. However, the quality of the image restored35

by the AA method may be limited by the local solutions obtained from the

optimization of a non-convex model. Another class of denoising methods based

on the TV regularizer considers the image restoration in the log-domain [4],
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[5], [12], [13], aiming to simplify the multiplicative noise model as an additive

model which is easier to deal with than the original model. In general, the40

reconstruction models employed in these methods commonly consist of a data

fidelity term and regularization terms reflecting prior information related to the

image. However, the formulations of these terms and optimization approaches

may differ substantially. In [12], Shi and Osher (SO) considered both the data

fidelity and TV terms of the AA method [11] in the log-domain to overcome45

the non-convex optimization issue. Multiplicative Image Denoising with the

Augmented Lagrangian (MIDAL) algorithm [4] uses the same model as used by

SO but applies a different optimization framework based on variable splitting

and augmented Lagrangian for better numerical efficiency. Apart from the data

fidelity term and the TV regularization as in the reconstruction model used50

by SO [12] and the MIDAL algorithm [4], the method presented in [13] also

incorporates a quadratic data fitting term to apply the TV term in a more

efficient manner, but it tends to be outperformed by the MIDAL algorithm [4].

Although the TV regularization proves to be effective for reducing multi-

plicative noise, the smoothly varying regions in the original image are usually55

recovered as piecewise constant areas, which is also well known as the stair-

casing effect [2]. An approach to avoid this issue is to introduce priors on the

image to be recovered. Recently, the sparsity prior was shown to be helpful

for the reconstruction of images with multiplicative Gamma noise [2], [5], [16].

Duran, Fadili and Nikolova (DFN) [2] adopted the sparsity prior by consider-60

ing the sparsity of the image in the curvelet transformed domain and restoring

the frame coefficients via a TV regularized formulation in the log-domain. As

dictionaries learned from the related data have the potential to fit the data

better than pre-defined dictionaries, dictionary learning techniques in sparse

representation have also been utilized to model the sparsity prior [5], [16]. The65

methods proposed in [16] and [5] both introduce dictionary learning to the TV

regularized model [12], [4], but with different frameworks. These two methods

are referred to as MNR-DL-TV-1 (multiplicative noise removal via dictionary

learning and total variation) [16] and MNR-DL-TV-2 [5] respectively. In these
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two methods, the dictionary is learned by the K-SVD algorithm [17] which is70

a well-known dictionary learning method based on the sparse synthesis model.

The MNR-DL-TV-1 method performs noise reduction in two stages: the image

is first denoised using the learned dictionary; and then a model based on an

`2 data fidelity term and TV regularization is applied to further improve the

denoising result. In contrast, the MNR-DL-TV-2 method formulates the image75

reconstruction task as an optimization problem containing two regularizers: a

learned dictionary based term and a TV term. However, we have found that

the performance of MNR-DL-TV-2 is limited for relatively high noise-levels, as

shown in our simulations (see Section 5.1 later).

It should be noted that the learned dictionaries employed in the MNR-80

DL-TV-1 [16] and MNR-DL-TV-2 [5] methods are both based on the sparse

synthesis model [17]. In recent years, the sparse analysis model, as a counter-

part of the synthesis model, has attracted much attention [18], [19]. Dictionary

learning based on the sparse analysis model was also shown to be effective in

the reduction of additive Gaussian noise [20], [21], however, few researchers85

have studied its potential for removing multiplicative noise. We have proposed

a speckle noise removal method in [22] which applies the dictionary learned

based on the analysis model to the regularizer of the restoration formulation.

This approach, referred to as Removing Speckle Noise via Analysis Dictionary

Learning (RSN-ADL), has the ability to preserve details while reducing multi-90

plicative noise, however the smooth regions are not well-recovered, as will be

illustrated in Section 5.

1.2. Contributions

In this paper, we propose a new model for reconstructing the image from a

multiplicative noise corrupted image and develop a novel method for optimiz-95

ing this model. The proposed method applies a sparse analysis model based

regularizer and a smoothness regularizer. The joint employment of these two

regularizers, which is different from the existing methods, aims to exploit the

benefits of both priors and partly addresses the limitations of the existing meth-

5



ods mentioned above. Specifically, the sparse analysis model based regularizer100

is constructed with an analysis dictionary learned from image patches via the

Analysis SimCO algorithm [23], [21], and the smoothness regularizer is formed

based on the pixel-wise differences in the horizontal and vertical directions. This

reconstruction model extends our previous work [22] by introducing the smooth-

ness regularization term. Since the dictionaries used in the regularizer of [22]105

are usually well adapted to textures but not for smooth areas [5], the introduc-

tion of the smoothness regularizer in the proposed model has the potential to

overcome this issue. Compared with the methods based on TV regularization,

for example the MIDAL algorithm [4], the proposed model can mitigate the

stair-casing effect appearing in the recovered images due to the application of110

the analysis model based regularization, as will be demonstrated in Section 5.

The proposed model also shows advantages for a relatively high level of noise,

compared with the DFN [2] and MNR-DL-TV-2 [5] algorithms.

The introduction of the two regularizers in our restoration formulation, how-

ever, renders the optimization task non-trivial, especially since the two regular-115

izers are defined from different representations of the image. In particular, the

dictionary is learned with image patches instead of the whole image in order

to reduce the computational complexity. As a result, the sparse analysis model

based regularizer is represented with image patches. The smoothness regular-

izer, on the other hand, is defined with pixel-wise differences calculated across120

the whole image. In order to address the optimization of the presented model,

we propose a new method based on the framework of the alternating direction

method of multipliers (ADMM) [24]. Two auxiliary variables are introduced

to split the variables by reformulating our approach as a constrained optimiza-

tion problem, and then the ADMM framework is applied to decompose the125

optimization as a sequence of sub-problems which are easier to solve. In the

sub-problem related to the smoothness regularizer, there exist two variables in

different forms, and thus an approximation technique is applied to relax the

original sub-problem as a problem with a unified variable.
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1.3. Notations130

Bold capital letters are used to represent matrices. The notation Xi,: is used

to specify the i-th row of the matrix X and X:,j represents its j-th column.

Bold lowercase letters represent vectors. Scalars are either capital or lowercase

letters. The norms ‖ · ‖1, ‖ · ‖2 and ‖ · ‖F denote the `1-norm, `2-norm and the

Frobenius norm respectively. When the operand of ‖ · ‖1 is a matrix, it denotes135

the sum of the absolute values of the elements in the matrix, which is different

from the canonical definition of the `1-norm for matrices. The notation | · |

returns the absolute value of a scalar. The notation 〈·, ·〉 is used to represent

the canonical inner-product of two vectors.

1.4. Organization of the Paper140

As the dictionary used in our image restoration model is learned based on

the analysis model via the Analysis SimCO algorithm, Section 2 reviews the

analysis model and the Analysis SimCO algorithm briefly to make this paper

self-contained.The proposed image restoration model is introduced in Section

3, followed by Section 4 where the optimization method is presented. The145

experimental results with known test images and real SAR images corrupted by

speckle noise are presented in Section 5, and Section 6 concludes the paper.

2. Analysis Model and Analysis SimCO Algorithm

For a signal a ∈ Rm, the sparse analysis model assumes that the product of

Ω ∈ Rp×m and a is sparse, i.e. x = Ωa with ‖x‖0 = p − l, where the `0-norm150

‖ · ‖0 counts the number of non-zero elements of its argument and 0 ≤ l ≤ p

is the co-sparsity of a [18]. The matrix Ω is usually referred to as an analysis

dictionary, with each row of Ω being an atom. The vector x ∈ Rp is the analysis

representation of the signal a with respect to Ω. In this model, the analysis

dictionary Ω plays an important role, and the dictionaries learned from a set of155

training signals show some advantages compared with pre-defined dictionaries

[20].
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Given a set of training data contained in A ∈ Rm×n, the analysis dictionary

learning problem can be formulated as [25]

{Ω?,X?} = arg min
{Ω,X}

‖X−ΩA‖2F

s.t. ‖X:,i‖0 = p− l, ∀i.
(3)

This is a general formulation without any additional constraint on Ω apart

from the co-sparsity constraints ‖X:,i‖0 = p− l, ∀i. However, this formulation

has ambiguities caused by scaling [21]. In order to avoid these ambiguities,

unit `2-norm constraints on the rows of Ω are applied, leading to the following

formulation of the Analysis SimCO algorithm [21], [23],

{Ω?,X?} = arg min
{Ω,X}

‖X−ΩA‖2F

s.t. ‖X:,i‖0 = p− l, ∀i

‖Ωj,:‖2 = 1, ∀j.

(4)

The Analysis SimCO algorithm solves the above problem by an optimization

framework alternating between two stages: analysis sparse coding stage and

dictionary update stage. The procedure of the Analysis SimCO algorithm is160

summarized in Algorithm 1 and more details are presented below.

The purpose of the analysis sparse coding stage is to obtain the sparse rep-

resentation X of the training signals in A based on a given dictionary Ω. The

exact representation X can be calculated directly by simply multiplying A by

the dictionary Ω, that is

X = ΩA. (5)

Since the initial dictionary is an arbitrary one, the representation obtained in

this way may not satisfy the co-sparsity constraints in (4). A hard thresholding

operation is therefore applied to enforce the co-sparsity

X̂ = HTl(X), (6)
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Algorithm 1 Analysis SimCO

Input: A, p, l
Output: Ω?

Initialization:
Initialize the iteration counter k = 1 and the analysis dictionary Ω(k).

Perform the following steps.
Main Iterations:

1. Analysis sparse coding: Compute the representation X(k) with the fixed
dictionary Ω(k) and the training signals in A, based on equations (5)
and (6).

2. Dictionary update:

(a) Compute the negative gradient H, based on equation (8).
(b) Compute the search direction h̄j for j = 1, 2, ..., p, based on equa-

tion (9).
(c) Update the dictionary Ω(k+1) ← Ω(k), based on equation (10).

3. If the stopping criterion is satisfied, Ω? = Ω(k+1), quit the iteration.
Otherwise, increase the iteration counter k = k+ 1 and go back to step
1.

where HTl(X) is the non-linear operator that sets the smallest l elements (in

magnitude) of each column of X to zeros. The representation X̂ obtained via

equation (6) is the best approximation of the exact representation X in terms

of the error in Frobenius norm among all the matrices satisfying the co-sparsity165

constraints.

In the dictionary update stage, Ω is updated assuming known and fixed X.

In other words, this stage aims at optimizing the following problem

arg min
Ω

‖X−ΩA‖2F s.t. ‖Ωj,:‖2 = 1, ∀j. (7)

Since the Stiefel manifold Sm,1 is defined as Sm,1 = {s ∈ Rm : sT s = 1} [26],

the transpose of each row in Ω can be seen as one element in Sm,1. Thus, one

of the “line” search methods on manifolds can be utilized to deal with problem

(7). In Analysis SimCO, the gradient descent method on manifolds is applied.170

Specifically, given that the negative gradient of the objective function in (7)
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with respect to Ω is

H = −∂‖X−ΩA‖2F
∂Ω

= 2XAT − 2ΩAAT , (8)

the search direction of the jth row of Ω, i.e. the projection of each row of H

onto the tangent space of Sm,1, is [26, pp. 49]

h̄j = Hj,:(I−ΩT
j,:Ωj,:). (9)

The j-th row of Ω is updated along the line search path as follows [26, pp.

103]

Ωj,:(α) =


Ωj,: if ‖h̄j‖2 = 0,

Ωj,: cos(α‖h̄j‖2) + (h̄j/‖h̄j‖2) sin(α‖h̄j‖2)

otherwise,

(10)

where α is the step size which is determined by the golden section search method

[27].

3. Proposed Image Restoration Formulation

To simplify the problem, the logarithmic transform is employed here to con-

vert the multiplicative noise model to an additive one, as in [2], [4], [5]. Taking

the (element-wise) logarithms of both sides of (1), we have

log w = log g + log u

z = y + v
(11)

where z, y and v denote the element-wise logarithms of w, g, and u, respectively.

Since the function u = ev is strictly monotonic and the elements of u satisfy the

i.i.d. Gamma distribution (2), the probability density function of the elements
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in v is given by [28, pp. 207]

fv(v) = fu(ev)
d(ev)

dv

= fu(ev) · ev

=
LL

Γ(L)
eL(v−ev).

(12)

Hence, the probability density function of v is given by

fv(v) =
N∏
i=1

LL

Γ(L)
eL(vi−evi ), (13)

where vi denote the elements of the vector v with i = 1, 2, ..., N . As a result,

the log-likelihood function can be written as

log fz|y(z|y) = log fv(z− y)

= N log
LL

Γ(L)
+ L

N∑
i=1

zi − L
N∑
i=1

(yi + ezi−yi).
(14)

The maximum likelihood (ML) estimate for y can be determined by maxi-

mizing equation (14) with respect to y. Furthermore, by omitting the first two

terms which do not depend on y and scaling the last term by the negative con-

stant coefficient −L, the maximization of (14) can be rewritten as the following

minimization problem, i.e.

ŷ = arg min
y

N∑
i=1

(yi + ezi−yi). (15)

It is straightforward to check that the optimal solution to the above problem is

ŷ = z, but it is an invalid solution for the denoising task. This is due to the over-175

fitting problem which can be regarded as a general issue of maximum likelihood

[29, pp. 9]. In order to avoid this problem, the regularization technique is often

employed, which involves adding penalty terms based on the prior information

of y.
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Using the data fidelity term based on the ML estimate (15), the proposed

restoration formulation utilizes two regularizations promoting the sparsity and

the smoothness prior respectively. The first one is based on the assumption

that the image patches are sparse with respect to an analysis dictionary. Since

adaptive analysis dictionaries usually have the potential to fit signals better than

pre-defined dictionaries [20], the analysis dictionary learned via the Analysis

SimCO algorithm is applied in the proposed method. The second regularization

term is the smoothness regularizer based on the discrete derivatives of the image,

the purpose of which is to smooth the noise further. Combining these two

regularizers with the data fidelity term, our new formulation can be written as

Y? = arg min
Y

m∑
i=1

n∑
j=1

(Yi,j + eZi,j−Yi,j ) + λ1‖ΩY‖1 + λ2Gβ{R(Y)}, (16)

where Ω ∈ Rp×m denotes the learned analysis dictionary with Algorithm 1. In180

this formulation, the restored image y is expanded as small patches of size
√
m×

√
m which form the columns of the matrix Y ∈ Rm×n. As such, the dictionary

Ω is learned from image patches instead of the whole image. Similarly, the

matrix Z ∈ Rm×n is obtained from the observed log-image z, where n denotes

the number of image patches.185

The data fidelity term
∑m
i=1

∑n
j=1(Yi,j + eZi,j−Yi,j ) is the image patch ver-

sion of the ML estimate (15). The parameters λ1 and λ2 are the multipliers

to balance the data fidelity term and the regularizers. The first regularization

term ‖ΩY‖1, which is a relaxation of ‖ΩY‖0, reflects the sparse property of

the image patches with respect to the dictionary Ω. The second regularization190

term Gβ{R(Y)} is used to promote the smoothness of the whole image, where

the image patch version Y is reshaped back to the complete image by applying

the operator R(·) and Gβ{·} is the smoothness promotion function.

For a given image denoted by S ∈ Rd×d, Gβ{S} is defined as

Gβ{S} =

d∑
i=1

d∑
j=1

(√
(∇hSi,j)2 + (∇vSi,j)2

)β
, (17)
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where ∇hSi,j and ∇vSi,j denote the horizontal and vertical differences at pixel

Si,j . More specifically, they are given by the first-order differences between pixel

Si,j and its horizontal and vertical neighbouring pixels respectively, i.e.

∇hSi,j =

Si+1,j − Si,j if i < d,

0 if i = d.
(18)

and

∇vSi,j =

Si,j+1 − Si,j if j < d,

0 if j = d.
(19)

The parameter β controls the degree of smoothing. Notice that the smoothness

promotion function Gβ{·} is equivalent to the TV regularizer [14] when β = 1,195

as such the smoothness regularizer Gβ{·} can be viewed as a generalization of

the TV regularizer.

It should be noted that the proposed image restoration formulation (16) can

be regarded as an extension of the model in our previous work [22], which is

given by

Y? = arg min
Y

m∑
i=1

n∑
j=1

(Yi,j + eZi,j−Yi,j ) + λ‖ΩY‖1. (20)

In this model, only the regularizer based on an analysis dictionary is considered.

If the multiplier λ2 in the model (16) is set as zero, model (16) will reduce to

(20). From this point of view, the restoration model (20) can be seen as a200

special case of (16). The sparsity based regularizer ‖ΩY‖1 can be regarded as

a local prior since it is defined with the image patches in Y ∈ Rm×n whereas

the smoothness regularizer in (16) is a global prior which depends on the entire

image R(Y) ∈ R
√
N×
√
N . Thus, the introduction of the smoothness regularizer

not only further reinforces the smoothness of the restored image, but also takes205

the global prior of the image into consideration.

In general, the proposed method consists of two stages: analysis dictio-

nary learning and image recovery. We refer to this method as Multiplicative
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Noise Removal using Analysis Dictionary Learning and a Smoothness Regular-

izer (MNR-ADL-SR). In the dictionary learning stage, an analysis dictionary210

Ω is learned using the Analysis SimCO algorithm [21] which has already been

reviewed in Section 2. The goal of the image recovery stage is to restore the

denoised image from the observed image, which is achieved by addressing the

optimization problem (16). The restored log-image ŷ can be obtained by ap-

plying the operator R(·) to the solution to (16), and thus the denoised image215

ĝ can be obtained by taking the exponential transform of ŷ. The optimization

method to address (16) will be presented in the next section.

4. Optimization Method

In this section, we propose a new method to solve the optimization problem

in (16). Firstly, a variable splitting technique is employed to construct a de-220

composable structure in the objective function across multiple variables, which

results in an equivalent constrained optimization problem. Then the ADMM

framework [24] is applied to deal with the constrained optimization problem.

Using the variable splitting technique, the problem (16) can be converted to

the equivalent constrained optimization task as follows

arg min
{Y,T,M}

m∑
i=1

n∑
j=1

(Yi,j + eZi,j−Yi,j ) + λ1‖T‖1 + λ2Gβ{R(M)}

s.t. T = ΩY, M = Y.

(21)

The variables T = ΩY and M = Y are introduced to eliminate Y in the

regularization terms and therefore make the objective function separable with225

respect to the variables Y,T,M.

ADMM can be viewed as an attempt to combine the decomposable ben-

efit of dual ascent and the superior convergence property of the augmented

Lagrangian methods for constrained optimization [24]. The constrained opti-

mization problem (21) can be handled with ADMM since the objective function

becomes separable across the variables and the decomposed sub-problems are
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easier to address. Using dual parameters B1 ∈ Rp×n and B2 ∈ Rm×n, the aug-

mented Lagrangian can be formed by adding two penalty terms 〈B1,ΩY−T〉,

〈B2,Y −M〉 and two extra quadratic terms related to the constraints, that is

Lγ1,γ2(Y,T,M,B1,B2)

=

m∑
i=1

n∑
j=1

(Yi,j + eZi,j−Yi,j ) + λ1‖T‖1 + λ2Gβ{R(M)}

+ γ1〈B1,ΩY −T〉+
γ1

2
‖ΩY −T‖2F + γ2〈B2,Y −M〉+

γ2

2
‖Y −M‖2F

=
m∑
i=1

n∑
j=1

(Yi,j + eZi,j−Yi,j ) + λ1‖T‖1 + λ2Gβ{R(M)}

+
γ1

2
‖B1 + ΩY −T‖2F −

γ1

2
‖B1‖2F +

γ2

2
‖B2 + Y −M‖2F −

γ2

2
‖B2‖2F ,

(22)

where γ1, γ2 > 0 are the penalty coefficients. ADMM alternatively updates

each of the variables {Y,T,M,B1,B2}, while keeping the others fixed. We

use the scaled form of ADMM [24] as it is more concise to express. In the t-th

iteration, it consists of the following steps

Y(t+1) = arg min
Y

Lγ1,γ2(Y,T(t),M(t),B
(t)
1 ,B

(t)
2 ) (23)

T(t+1) = arg min
T

Lγ1,γ2(Y(t+1),T,B
(t)
1 ) (24)

M(t+1) = arg min
M

Lγ1,γ2(Y(t+1),M,B
(t)
2 ) (25)

B
(t+1)
1 = B

(t)
1 + (ΩY(t+1) −T(t+1)) (26)

B
(t+1)
2 = B

(t)
2 + (Y(t+1) −M(t+1)). (27)

In fact, ADMM can be interpreted as reducing the regularized problem (16) to
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a sequence of sub-problems which are easier to solve. The ADMM iterations

(23)-(27) are performed until the change of Y(t+1) is relatively small compared

with Y(t).230

Now we explain the update of variables in (23)-(25) respectively. Ignoring

the terms unrelated to Y, the minimization problem (23) can be written as

arg min
Y

m∑
i=1

n∑
j=1

(Yi,j + eZi,j−Yi,j )

+
γ1

2
‖B1 + ΩY −T‖2F +

γ2

2
‖B2 + Y −M‖2F .

(28)

As this objective function is differentiable, the gradient-based methods can be

applied. Here we employ the gradient descent method which has a relatively

low computational complexity. The step size can be determined by line search

methods [30], however, a small fixed step size also works well, according to our

experiments. Given a step size µ, the update of Y can be written as

Y = Y − µ∇Y. (29)

The symbol ∇Y denotes the gradient of (28) with respect to Y, which can be

calculated as follows

∇Y = (1− eZ−Y) + γ1Ω
T (B1 + ΩY −T) + γ2(B2 + Y −M), (30)

where 1 ∈ Rm×n is an all-one matrix with the same size as Y and eZ−Y denotes

the element-wise exponential of Z−Y.

For the update of T, the problem (24) can be written as

arg min
T

λ1‖T‖1 +
γ1

2
‖B1 + ΩY −T‖2F . (31)

Notice that this problem has a closed-form solution given by [24]

T = STλ1/γ1(ΩY + B1). (32)
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The symbol STλ1/γ1(·) represents the element-wise soft-thresholding operator

defined by

STλ1/γ1(θ) =


θ − λ1

γ1
· sgn(θ) if |θ| ≥ λ1

γ1

0 otherwise,

(33)

where sgn(θ) returns the sign of θ.

Dropping the unrelated terms, the update of M based on (25) can be ob-

tained by considering the following problem

arg min
M

λ2Gβ(MR) +
γ2

2
‖N−M‖2F

s.t. MR = R(M),

(34)

where N = B2 + Y. In the objective function, there are two variables MR and

M which are linked via the constraint MR = R(M). By applying the operator

R(·) to the matrices N and M respectively, the quadratic term can be rewritten

in terms of MR, i.e.

‖N−M‖2F

= ‖(R(N)−R(M)) ◦Cm‖2F

= ‖(NR −MR) ◦Cm‖2F ,

≈ m‖NR −MR‖2F ,

(35)

where NR = R(N), and Cm is a constant matrix depending on the operator R(·)

and m. Specifically, the squares of the elements in Cm represent the number of235

times that the corresponding elements of NR−MR appear in the matrix N−M.

When the overlap between two neighbouring patches is
√
m− 1, most elements

in Cm, except for the elements on the border, take the same value
√
m. Hence,

the quadratic term ‖N−M‖2F can be approximated as m‖NR −MR‖2F .

The details of the approximation (35) are illustrated in Fig. 1, using a240

specific example. As shown in the figure, the inverse operator of R(·) transforms

the matrix DR to its patch version by extracting overlapping patches of size

17



√
m ×

√
m and reshaping each patch as one column, with m = 4. Note that

“Col” in Fig. 1 is short for “Columns”. Due to the overlap among the patches,

the elements of DR appear in D for various times, and the number of times that245

these elements appear can be represented by the squares of the corresponding

elements of the constant matrix C4 which is presented in the right part of Fig.

1. Therefore, we have ‖D‖2F =
∑
i,j cijd

2
ij = ‖DR ◦ C4‖2F , where cij denotes

the appearance times of the element dij in D. As most elements of C4 are
√
m = 2, ‖DR ◦ C4‖2F can be approximated as m‖DR‖2F . Generalizing this250

specific example, the approximation equation (35) can be obtained.

Figure 1: This figure presents a specific example to illustrate the approximation equation (35).
“Col” is short for“columns”. In this figure, DR denotes the result of applying the opertor
R(·) to the matrix D. Four patches extracted from DR are filled using different colors and
the corresponding columns in D are highlighted in the same colors, respectively.

As a result, the problem (34) can be relaxed as

M?
R = arg min

MR

λ2Gβ(MR) +
γ2

2
‖NR −MR‖2F , (36)

and M can be obtained by applying the inverse operator of R(·) to MR.
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Obviously, the optimization of (36) depends on the value of β. Here, two

cases are considered, i.e. β ∈ {1, 2}. When β = 1, (36) can be written as

arg min
MR

λ2‖MR‖TV +
γ2

2
‖NR −MR‖2F . (37)

This can be viewed as a TV-`2 minimization problem which can be addressed

by Chambolle’s algorithm [31].

When β = 2, the problem (36) is equivalent to

arg min
MR

λ2

∑
i,j

[(∇h(MR)i,j)
2 + (∇v(MR)i,j)

2] +
γ2

2
‖NR −MR‖2F (38)

and it can be addressed by solving the Euler-Lagrange equation numerically

[14], [32]. Specifically, the optimal solution can be approached iteratively by

the gradient descent step [32] as follows (the detailed derivation is given in the

Appendix)

M
(k+1)
R = M

(k)
R + τ

[
2λ2

(
∂

∂x

(∂M
(k)
R

∂x

)
+

∂

∂y

(∂M
(k)
R

∂y

))
− γ2

(
M

(k)
R −NR

)]
,

(39)

where ∂
∂x (∂MR

∂x ) and ∂
∂y (∂MR

∂y ) denote the second-order discrete derivatives in255

the horizontal and vertical directions respectively, τ is the step size and k rep-

resents the iteration number.

To sum up, the optimization for the image reconstruction model (16) can be

summarized as Algorithm 2.

4.1. Computational Complexity260

The proposed reconstruction method involves the update of the variables Y,

T, M, B1 and B2 in each iteration, as summarized in Algorithm 2. To analyze

the time complexity of the proposed method, multiplication is considered as the

basic operation. As the update of M and B2 does not involve multiplications,

the time complexity of these two steps can be omitted. In the step for updating265

Y, the computation of the gradient ∇Y is the dominant part, and it requires
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Algorithm 2 Image Reconstruction

Input: Z, Ω, λ1, λ2, β
Output: Y?

Initialization:
Initialize the iteration counter t = 1 and the initial point Y(t) = Z.

Perform the following steps.
Main Iterations:

1. Update Y(t+1) ← Y(t) by applying the gradient descent method to the
problem (28), i.e. using equations (29) and (30).

2. Update T(t+1) ← T(t) by solving the problem (31) via soft-thresholding
(32), (33).

3. Update M(t+1) ← M(t) by addressing the problem (36) and applying
the inverse operator of R(·) to the optimal solution M?

R. When β = 1,
M?

R can be obtained by applying Chambolle’s algorithm to (37). When
β = 2, M?

R is estimated with the iteration (39).

4. Update B
(t+1)
1 ← B

(t)
1 and B

(t+1)
2 ← B

(t)
2 based on equations (26) and

(27).

5. If the stopping criterion is satisfied, Y? = Y(t+1), quit the iteration.
Otherwise, increase the iteration counter t = t+ 1 and go back to step
1).

O(pmn) operations with pre-computed ΩTΩ and p > m. The complexity of the

steps for updating T and B2 is dominated by the computation of ΩY which

requires O(pmn) operations. As a result, the total time complexity of each

iteration of the proposed method scales as O(pmn).270

5. Experimental Results

In this section, the experiments for synthetic images with multiplicative noise

and real SAR images are presented respectively. The proposed MNR-ADL-SR

algorithm is tested with β = 1 and β = 2, which are referred to as MNR-

ADL-SR1 and MNR-ADL-SR2 respectively 7. Actually, these two cases can275

be regarded as two different denoising models and they have different effects

in smoothing images. In particular, as has been mentioned in Section 4, when

7The codes of the proposed methods are available from {https:// github.com/ jd0710/
MNR-ADL-SR}
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β = 1, the smoothness regularizer is equivalent to the TV regularizer [31], [14]

which preserves edges while removing noise. In contrast, for the case β = 1, the

smoothness regularizer reduces to the isotropic diffusion model [33] which has280

been shown to be effective in restraining noise, but leads to blurred edges. The

reason that β = 1 and β = 2 are tested in the experiments is to investigate the

effect of these two models when they are embedded in the reconstruction model.

These two cases are compared with our previous work RSN-ADL [22] and three

other recent algorithms: DFN [2] (which outperforms the AA [11] and SO [12]285

algorithms), MIDAL [4], and MNR-DL-TV-2 [5] 8. These three algorithms were

selected as baselines because of the involvement of sparsity or TV regularizer in

their formulations and the availability of their code.

Figure 2: Training images used to learn analysis dictionaries.

For the proposed MNR-ADL-SR1, MNR-ADL-SR2 and RSN-ADL [22] al-

gorithms, the images in Fig. 2 were used as the training data to learn analysis290

dictionaries. Specifically, the training samples employed to learn the analysis

dictionary Ω were the logarithmic transforms of 20000 patches that were ex-

tracted randomly from these training images. The size of the training patches

was 8 × 8. The dictionary was initialized as the finite difference operator [18],

[20]. The dictionary size is 128 and the co-sparsity for dictionary learning was295

set as l = 100. The Analysis SimCO algorithm was performed with 2000 itera-

tions. These parameters were set empirically to be consistent with the work in

[21].

8The codes for the DFN and MIDAL algorithms were downloaded from {https:// fadili.
users.greyc.fr/ software.html} and {http://www.lx.it.pt/∼bioucas/ publications.html} respec-
tively. We thank the authors of [5] for sharing their code via email.
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5.1. Experiments with Synthetic Images

5.1.1. Experiment Settings300

Four test images: “Cameraman”, “Nı̂mes”, “Fields” and “Peppers” were

employed, which are illustrated in Fig. 3. These images are commonly used to

evaluate the algorithms for removing multiplicative noise [2], [4], [5]. The size

of the Cameraman and Peppers images is 256× 256 and the size of Nı̂mes and

Fields is 512×512. The grey-scales of all the test images are normalized so that305

they are in the range [1 256]. The synthetic noisy images were generated by

multiplying the pixels of the original images by i.i.d. Gamma random variables

(cf. equations (1) and (2)), with different parameters L ∈ {10, 4, 1}. The

synthetic noisy images are shown in Fig. 4, with the noise level increasing from

top to bottom.

Figure 3: Test images: Cameraman, Nı̂mes, Fields and Peppers.

310

5.1.2. Performance Metrics

The denoising performance is evaluated with three quantities: Peak Signal-

to-Noise Ratio (PSNR), Mean Absolute-deviation Error (MAE), and the Mean

Structural SIMilarity index (MSSIM) [34]. The PSNR and MAE indices have

been widely used for the quality assessment of multiplicative noise removal al-

gorithms [2], [4], [5], due to their simplicity and clear physical meanings. For a

clean image g ∈ RN , the PSNR of its denoised version ĝ ∈ RN is defined as

PSNR = 10 log10

N |max(g)−min(g)|2

‖ĝ − g‖22
(in dB) (40)
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Figure 4: Synthetic noisy images. Top row: L = 10. Middle row: L = 4. Bottom row: L = 1.

where max(·) and min(·) return the maximum value and the minimum value

contained within their operands respectively. The MAE is given by

MAE =
1

N
‖ĝ − g‖1. (41)

As indicated by the definitions above, both PSNR and MAE can be regarded

as the error-based measurements which are determined by the pixel-to-pixel d-

ifferences between the denoised image and the reference image. They are useful

to obtain general performance assessments on the whole image, but they con-315

sider little information about the preservation of specific features so that their

evaluations are not very consistent with the perceptual quality. In contrast, the

MSSIM index stresses the preservation quality of structural information and is

able to reflect the visual perception of humans better [34]. The value of MSSIM

ranges over the interval [0, 1], with 1 indicating perfect structure similarity. The320

same set of parameters as originally suggested in [34] is employed.
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5.1.3. The Selection of the Regularization Parameters

For the proposed algorithm, the selection of the regularization parameters

λ1 and λ2 is critical. These two parameters are the coefficients of the learned

analysis dictionary based regularizer and the smoothness regularizer, respec-325

tively. They are used to balance the data fidelity term and the regularization

terms, and thus the appropriate settings of these two parameters depend on

the relative importance of the three terms in the reconstruction model. In par-

ticular, the importance of the data fidelity term depends on the level of the

noise, and the importance of the regularizers depends on the characteristics of330

the images. Taking the Cameraman image as an example, the PSNR results

obtained by MNR-ADL-SR1 and MNR-ADL-SR2 using different regularization

parameters are demonstrated in Fig. 5. The subfigures from top to bottom

display the results with the noise levels L = 10, 4, 1 respectively. The left col-

umn shows the results of MNR-ADL-SR1 and the right column gives the PSNR335

values obtained by MNR-ADL-SR2. Fig. 5 shows that the performance of the

proposed algorithms varies with the regularization coefficients λ1 and λ2. The

changing patterns of MNR-ADL-SR1 and MNR-ADL-SR2 are similar to each

other in general. In the cases of L = 10 and L = 4, when λ1 is set as a rela-

tively small value, the increase of λ2 leads to an improvement in PSNR to some340

point followed by a reduction in PSNR. When the value of λ1 is relatively large,

the PSNR will decrease with the increase of λ2 and the rate of the decrease of

MNR-ADL-SR2 is slower than that of MNR-ADL-SR1. In the L = 1 case, a

relatively large λ2 does not result in such a degraded PSNR as when L = 10

and L = 4, especially for MNR-ADL-SR2.345

Based on our experiments, some general guidelines could be given to the

settings of λ1 and λ2. The setting of λ1 mainly depends on the level of the

noise. For a higher noise level, λ1 should be set as a larger value. Based on

our experimental tests, the suggested intervals from which λ1 can be chosen

as a function of noise level are summarized Table 3. Appropriate setting of λ2350

mainly depends on the amount of texture areas and smooth areas in the image.
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Figure 5: PSNR results for the Cameraman image with different regularization parameters.
Left column: MNR-ADL-SR1. Right column: MNR-ADL-SR2. Top row: L = 10. Middle
row: L = 4. Bottom row: L = 1.
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Table 1: Parameters used in the algorithms for “Cameraman” and “Nı̂mes”

L Algorithm Cameraman Nı̂mes

10

MNR-ADL-SR1 λ1 = 0.2, λ2 = 0.1 λ1 = 0.2, λ2 = 0.01

MNR-ADL-SR2 λ1 = 0.3, λ2 = 0.1 λ1 = 0.2, λ2 = 0.2

RSN-ADL λ = 0.4 λ = 0.3

MIDAL λ = 6.1 λ = 4

MNR-DL-TV-2 λ = 2.7 λ = 17.5

DFN
T = 2.1

√
Ψ1(L),

λ0 = 1.3, λ1 = 10

T = 2
√

Ψ1(L),

λ0 = 1.3, λ1 = 10

4

MNR-ADL-SR1 λ1 = 0.3, λ2 = 0.2 λ1 = 0.4, λ2 = 0.001

MNR-ADL-SR2 λ1 = 0.6, λ2 = 0.1 λ1 = 0.3, λ2 = 0.4

RSN-ADL λ = 0.7 λ = 0.5

MIDAL λ = 4.5 λ = 2.7

MNR-DL-TV-2 λ = 1.2 λ = 13.5

DFN
T = 2.5

√
Ψ1(L),

λ0 = 1.8, λ1 = 5.7

T = 2
√

Ψ1(L),

λ0 = 1.5, λ1 = 10

1

MNR-ADL-SR1 λ1 = 0.5, λ2 = 0.7 λ1 = 1.2, λ2 = 10−4

MNR-ADL-SR2 λ1 = 1.3, λ2 = 0.2 λ1 = 1.2, λ2 = 10−4

RSN-ADL λ = 1.6 λ = 1.2

MIDAL λ = 2.7 λ = 2

MNR-DL-TV-2 λ = 0.01 λ = 3.2

DFN
T = 2.6

√
Ψ1(L),

λ0 = 1.8, λ1 = 5.7

T = 2
√

Ψ1(L),

λ0 = 1.5, λ1 = 10

Table 2: Parameters used in the algorithms for “Fields” and “Peppers”

L Algorithm Fields Peppers

10

MNR-ADL-SR1 λ1 = 0.4, λ2 = 0.01 λ1 = 0.1, λ2 = 0.2

MNR-ADL-SR2 λ1 = 0.4, λ2 = 0.01 λ1 = 0.4, λ2 = 0.01

RSN-ADL λ = 0.5 λ = 0.4

MIDAL λ = 6.7 λ = 5.9

MNR-DL-TV-2 λ = 3.7 λ = 4.2

DFN
T = 2

√
Ψ1(L),

λ0 = 1.3, λ1 = 10

T = 1.8
√

Ψ1(L),

λ0 = 0.9, λ1 = 5

4

MNR-ADL-SR1 λ1 = 0.7, λ2 = 0.01 λ1 = 0.2, λ2 = 0.3

MNR-ADL-SR2 λ1 = 0.7, λ2 = 0.01 λ1 = 0.6, λ2 = 0.01

RSN-ADL λ = 1 λ = 0.7

MIDAL λ = 4.5 λ = 4.1

MNR-DL-TV-2 λ = 0.7 λ = 2.2

DFN
T = 2

√
Ψ1(L),

λ0 = 1.3, λ1 = 10

T = 1.9
√

Ψ1(L),

λ0 = 1.1, λ1 = 3.5

1

MNR-ADL-SR1 λ1 = 1.8, λ2 = 0.01 λ1 = 1.6, λ2 = 0.001

MNR-ADL-SR2 λ1 = 1.8, λ2 = 0.01 λ1 = 1.6, λ2 = 0.001

RSN-ADL λ = 3.5 λ = 1.6

MIDAL λ = 3.5 λ = 2.4

MNR-DL-TV-2 λ = 0.01 λ = 0.01

DFN
T = 2

√
Ψ1(L),

λ0 = 1.2, λ1 = 10

T = 2
√

Ψ1(L),

λ0 = 1, λ1 = 3.5
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Table 3: General guidelines for the setting of λ1

L Suggested Interval for λ1

10 [0.1, 0.4]

4 [0.2, 0.7]

1 [0.5, 1.8]

Table 4: Performance decrease in PSNR using the tuned parameters for Cameraman

L Algorithm Nı̂mes Fields Peppers

10
MNR-ADL-SR1 0.41 0.15 0.03

MNR-ADL-SR2 0.53 0.51 0.69

4
MNR-ADL-SR1 0.47 0.26 0.04

MNR-ADL-SR2 0.73 0.17 0.45

1
MNR-ADL-SR1 0.84 0.33 0.51

MNR-ADL-SR2 0.80 0.41 0.97

In general, λ2 can be chosen from the interval [10−4, 0.7]. For images containing

more texture areas, such as the test image Nı̂mes, a small λ2 is preferred. For

images containing more smooth areas, such as the test image Cameraman, a

larger λ2 will give better results.355

In our experiments, the regularization coefficients for MNR-ADL-SR1 and

MNR-ADL-SR2 algorithms were selected empirically. Likewise, the parameters

of RSN-ADL [22] and MNR-DL-TV-2 [5] were also determined in this way.

The parameters of the MIDAL [4] and DFN [2] algorithms for the first three

test images were set as in their original papers and for the Peppers image the360

parameters are manually tuned to lead to the best PSNR. The parameters of

the algorithms used in our experiments are summarized in Tables 1 and 2.

To investigate the stability of the performance of the proposed methods

with respect to the choice of the parameters, the parameters tuned for the

Cameraman image (as shown in Table 1 and Table 2) were also employed for365

other test images. The denoising results are compared with those obtained with

the tuned parameters for each individual image, and the decreases in PSNR are

summarized in Table 4. This table shows that there will be some compromise

in performance if the parameters were not tuned to the specific images.
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Figure 6: Denoising results in PSNR, MAE and MSSIM based on 30 noisy realizations for
each case. Top row: L = 10. Middle row: L = 4. Bottom row: L = 1. (Note that legends are
identical for all plots, but omitted in two figures to retain clarity.)

5.1.4. Experimental Results370

The algorithms were tested with 30 noise realizations for each case. The

samples of the denoising results found in one test are shown in Figs. 7-12. The

average results over the 30 random noise realizations measured in PSNR, MAE

and MSSIM are provided in Fig. 6, where the bars illustrate the mean results

and the error bars display the standard deviations. From the top row to the375

bottom row, the noise levels are L = 10, 4, 1 respectively.

Let us just compare the MNR-ADL-SR1 and MNR-ADL-SR2 algorithm-

s with our previous work RSN-ADL. Generally, it can be seen from the de-

noised images that the visual appearance of the results obtained by MNR-ADL-

SR1 and MNR-ADL-SR2 is better than that of RSN-ADL. MNR-ADL-SR1 and380

MNR-ADL-SR2 can preserve image details as well as RSN-ADL, but reconstruc-
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t smooth areas better than RSN-ADL (see the background of the Cameraman

image in Figs. 7-9 as an example). This demonstrates the benefit of the intro-

duction of the smoothness regularizer. For the Nı̂mes image, the proposed algo-

rithms do not show visible advantages as compared with RSN-ADL. This could385

be caused by the fact that Nı̂mes contains many structural details for which the

smoothness regularizers contribute little. The results of MNR-ADL-SR1 and

MNR-ADL-SR2 are very similar in visual quality and the former algorithm can

obtain slightly better results in terms of the performance metrics, as shown in

Fig. 6.390

For the images Cameraman and Peppers with noise levels L = 10 and L = 4,

the results of MNR-DL-TV-2 are the best in terms of the metrics. However, the

proposed algorithms can better preserve fine textures (see the building details

in the background of Cameraman in Figs. 7 and 8). For Nı̂mes and Fields,

the proposed algorithms outperform the baseline algorithms for most cases in395

terms of PSNR and MAE. The DFN algorithm obtains the best MSSIM values

for these two images, but some artifacts are also introduced as can be seen in

Fig. 11. The denoised images obtained by the MIDAL algorithm have the stair-

casing effect, especially when the noise level is high (see Fig. 9). As can be

seen in Fig. 6, when L = 1, the proposed algorithms obtain the best results for400

most cases, which indicates their superiority in removing a relatively high level

of multiplicative noise, as compared with the baseline algorithms.

5.1.5. Comparison with Additive Noise Removal Methods

Since the multiplicative noise is converted to additive noise by applying the

logarithmic transform in the proposed methods (i.e. equation (11)), the pro-405

posed methods are also compared with classical denoising methods dealing with

additive noise. In particular, the TV [31] and K-SVD [17] denoising methods

are employed as baselines. In our experiments, the images were denoised using

these additive noise removal methods in the log-domain, and then the expo-

nential transform was applied to obtain the denoised images. The parameters410

of the additive noise removal methods were selected empirically for obtaining
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(a) (b) (c)

(d) (e) (f)

Figure 7: Results for Cameraman (L = 10). (a) MNR-ADL-SR1 (25.67 dB). (b) MNR-ADL-
SR2 (25.52 dB). (c) RSN-ADL (25.36 dB). (d) MIDAL (25.40 dB). (e) MNR-DL-TV-2 (26.62
dB). (f) DFN (26.04 dB).

(a) (b) (c)

(d) (e) (f)

Figure 8: Results for Cameraman (L = 4). (a) MNR-ADL-SR1 (23.65 dB). (b) MNR-ADL-
SR2 (23.51 dB). (c) RSN-ADL (23.35 dB). (d) MIDAL (23.26 dB). (e) MNR-DL-TV-2 (24.52
dB). (f) DFN (23.02 dB).
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(a) (b) (c)

(d) (e) (f)

Figure 9: Results for Cameraman (L = 1). (a) MNR-ADL-SR1 (20.97 dB). (b) MNR-ADL-
SR2 (20.89 dB). (c) RSN-ADL (20.62 dB). (d) MIDAL (20.86 dB). (e) MNR-DL-TV-2 (19.69
dB). (f) DFN (19.44 dB).

(a) (b) (c)

(d) (e) (f)

Figure 10: Results for Nı̂mes (L = 10). (a) MNR-ADL-SR1 (28.14 dB). (b) MNR-ADL-SR2

(28.21 dB). (c) RSN-ADL (28.22 dB). (d) MIDAL (27.93 dB). (e) MNR-DL-TV-2 (28.42 dB).
(f) DFN (27.73 dB).
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(a) (b) (c)

(d) (e) (f)

Figure 11: Results for Fields (L = 4). (a) MNR-ADL-SR1 (27.33 dB). (b) MNR-ADL-SR2

(27.31 dB). (c) RSN-ADL (27.15 dB). (d) MIDAL (27.06 dB). (e) MNR-DL-TV-2 (26.81 dB).
(f) DFN (26.93 dB).

(a) (b) (c)

(d) (e) (f)

Figure 12: Results for Peppers (L = 1). (a) MNR-ADL-SR1 (21.27 dB). (b) MNR-ADL-SR2

(21.17 dB). (c) RSN-ADL (21.36 dB). (d) MIDAL (20.53 dB). (e) MNR-DL-TV-2 (19.65 dB).
(f) DFN (20.10 dB).
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Table 5: PSNR decrease of denoised images obtained using additive noise removal methods.

L Algorithm Cameraman Nı̂mes Fields Peppers

10
TV 1.86 0.65 2.52 1.73

K-SVD 4.46 2.26 3.08 5.19

4
TV 3.79 1.46 5.92 3.79

K-SVD 5.52 2.72 5.88 5.42

1
TV 8.83 4.80 13.28 8.99

K-SVD 8.81 5.42 13.35 8.88

highest PSNRs. It has been found that these methods do not outperform the

proposed methods, and the decreases in PSNR of these methods as compared

with the proposed methods are summarized in Table 5.

5.2. Experiments with Real SAR Images415

In this subsection, the algorithms are applied to removing speckle noise in

the real SAR images9 shown in Fig. 13. Due to the lack of reference clean

images, the metrics used in the experiments for synthetic data can no longer

be employed to assess the despeckling performance. For the homogeneous areas

where the scene variation is supposed to be negligible, as in the regions marked

with red rectangles in Fig. 13, the Equivalent Number of Looks (ENL) measure

is suitable for evaluating the level of smoothing [35]. For a given homogeneous

region ĝreg, the ENL can be computed as

ENL =
[E(ĝreg)]

2

Var(ĝreg)
, (42)

where E(ĝreg) and Var(ĝreg) denote the mean and the variation of the pixel

values in region ĝreg. This quantity increases as the level of smoothing improves.

For a relatively fair comparison, the same parameters as used for Cameraman

with the noise level L = 4 (see Table 1) were employed for the real SAR images.420

9The test SAR images were downloaded from {https:// github.com/ zhangyiwei79/
Opticks-SAR/ tree/master/SAR%20images}
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Figure 13: Original SAR images.

The denoised images are shown in Figs. 14-17. The ENL values of the four

regions as marked in Fig. 13 are summarized in Table 6.

Table 6: ENL for the homogeneous regions in the denoised SAR images

Algorithm Region 1 Region 2 Region 3 Region 4

Original 22 29 8 4

MNR-ADL-SR1 1538 124100 31460 62

MNR-ADL-SR2 1376 43902 15205 64

RSN-ADL 779 4483 3260 47

MIDAL 2345 15516 115800 215

MNR-DL-TV-2 688 1077 71 8

DFN 144 106 36 12

From Figs. 14-17, we can see that all the algorithms are capable of reducing

the speckle noise in the SAR images. However, there is still some visible speckle

noise in the denoised versions obtained via MNR-DL-TV-2 and DFN (see sub-425

figures (e) and (f) of Figs. 14-17). The homogeneous areas in the results for

the MIDAL algorithm are well-smoothed, which is also confirmed by the large

ENL values in Table 6, but some texture details are over-smoothed as shown

in the subfigures (d) of Figs. 14 and 17. The proposed MNR-ADL-SR1 and

MNR-ADL-SR2 algorithms have the capability of maintaining a good balance430

between removing noise and preserving the original geometric details. Their

reconstructions have clear visual appearance and high ENL, as compared with

the results of RSN-ADL, which demonstrates the advantage of the proposed

smoothness regularizer.
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(a) (b) (c)

(d) (e) (f)

Figure 14: Results for the first SAR image. (a) MNR-ADL-SR1. (b) MNR-ADL-SR2. (c)
RSN-ADL. (d) MIDAL. (e) MNR-DL-TV-2. (f) DFN.

(a) (b) (c)

(d) (e) (f)

Figure 15: Results for the second SAR image. (a) MNR-ADL-SR1. (b) MNR-ADL-SR2. (c)
RSN-ADL. (d) MIDAL. (e) MNR-DL-TV-2. (f) DFN.
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(a) (b) (c)

(d) (e) (f)

Figure 16: Results for the second SAR image. (a) MNR-ADL-SR1. (b) MNR-ADL-SR2. (c)
RSN-ADL. (d) MIDAL. (e) MNR-DL-TV-2. (f) DFN.

(a) (b) (c)

(d) (e) (f)

Figure 17: Results for the second SAR image. (a) MNR-ADL-SR1. (b) MNR-ADL-SR2. (c)
RSN-ADL. (d) MIDAL. (e) MNR-DL-TV-2. (f) DFN.
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6. Conclusion435

We have proposed a new multiplicative noise removal algorithm and an op-

timization method corresponding to this model. The denoising task was con-

sidered in the log-domain and formulated as an objective function consisting of

a data fidelity term and two regularizers. The data fidelity term was derived

from the statistical property of the multiplicative noise, and the regularizers440

were based on a learned analysis dictionary and the pixel-wise differences of

the image, repsectively. In order to address the optimization for recovering the

image, a variable splitting technique was applied and the ADMM framework

was carefully adapted. In the update of the variable related to the smoothness

regularizer, a relaxation approach was employed to convert the variables in d-445

ifferent forms to a unified one. Simulation results with synthetic noisy images

and real SAR images demonstrated the promising performance of the proposed

method, especially for a relatively high noise level.
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Appendix

In this section, the reason that problem (38) can be addressed with the550

gradient descent iteration described as (39) is explained in detail.

Let the function m(x, y) denote the pixel values of the image MR for the

pixel indices x, y ∈ Ω. Similarly, the given matrix NR can be denoted as n(x, y).

Using these new notations, the problem (38) can be written as the functional

minimization problem as follows

arg min
m

∫∫
Ω

{
λ2

((∂m
∂x

)2

+
(∂m
∂y

)2
)

+
γ2

2
(n−m)2

}
dx dy. (43)

Define

F (m(x, y),mx,my)

=λ2

((∂m
∂x

)2

+
(∂m
∂y

)2
)

+
γ2

2
(n−m)2

=λ2(m2
x +m2

y) +
γ2

2
(n−m)2,

(44)

where mx and my represent the partial derivatives ∂m
∂x and ∂m

∂y respectively, and
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the problem (43) can be written as

arg min
m

∫∫
Ω

F (m(x, y),mx,my)dx dy (45)

The Euler-Lagrange equation associated with this problem is given by [32]

∂F

∂m
− ∂

∂x

( ∂F

∂mx

)
− ∂

∂y

( ∂F
∂my

)
= 0. (46)

Since
∂F

∂m
= γ2(m− n), (47)

∂

∂x

( ∂F

∂mx

)
= 2λ2

∂mx

∂x
(48)

and
∂

∂y

( ∂F
∂my

)
= 2λ2

∂my

∂y
, (49)

the Euler-Lagrange equation (46) is equivalent to

γ2(m− n)− 2λ2

(∂mx

∂x
+
∂my

∂y

)
= 0, (50)

which can be addressed numerically [32]. In the k-th iteration, m is updated

according to the following iteration

m(k+1) = m(k) + τ

[
2λ2

(∂m(k)
x

∂x
+
∂m

(k)
y

∂y

)
− γ2(m(k) − n)

]
, (51)

where τ denotes the step size. Alternatively, the iteration equation above can

be written in matrix form given by equation (39) as shown in Section 4.

42


	Introduction
	Related Work
	Contributions
	Notations
	Organization of the Paper

	Analysis Model and Analysis SimCO Algorithm
	Proposed Image Restoration Formulation
	Optimization Method
	Computational Complexity

	Experimental Results
	Experiments with Synthetic Images
	Experiment Settings
	Performance Metrics
	The Selection of the Regularization Parameters
	Experimental Results
	Comparison with Additive Noise Removal Methods

	Experiments with Real SAR Images

	Conclusion

