
Signal Processing 137 (2017) 160–176 

Contents lists available at ScienceDirect 

Signal Processing 

journal homepage: www.elsevier.com/locate/sigpro 

Sparse analysis model based multiplicative noise removal with 

enhanced regularization 

� 

Jing Dong 

a , ∗, Zifa Han 

b , Yuxin Zhao 

c , Wenwu Wang 

d , Ales Prochazka 

e , Jonathon Chambers f 

a College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing, Jiangsu, China. 
b Department of Electronic Engineering, City University of Hong Kong, Hong Kong. 
c College of Automation, Harbin Engineering University, Harbin, Heilongjiang, China. 
d Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford GU2 7XH, U.K. 
e University of Chemistry and Technology, Prague, Czech Republic. 
f School of Electrical and Electronic Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K. 

a r t i c l e i n f o 

Article history: 

Received 17 October 2016 

Revised 2 January 2017 

Accepted 26 January 2017 

Available online 3 February 2017 

Keywords: 

Multiplicative noise 

Analysis sparse model 

Dictionary learning 

Smoothness regularizer 

a b s t r a c t 

The multiplicative noise removal problem for a corrupted image has recently been considered under the 

framework of regularization based approaches, where the regularizations are typically defined on sparse 

dictionaries and/or total variation (TV). This framework was demonstrated to be effective. However, the 

sparse regularizers used so far are based overwhelmingly on the synthesis model, and the TV based reg- 

ularizer may induce the stair-casing effect in the reconstructed image. In this paper, we propose a new 

method using a sparse analysis model. Our formulation contains a data fidelity term derived from the 

distribution of the noise and two regularizers. One regularizer employs a learned analysis dictionary, and 

the other regularizer is an enhanced TV by introducing a parameter to control the smoothness constraint 

defined on pixel-wise differences. To address the resulting optimization problem, we adapt the alternat- 

ing direction method of multipliers (ADMM) framework, and present a new method where a relaxation 

technique is developed to update the variables flexibly with either image patches or the whole image, 

as required by the learned dictionary and the enhanced TV regularizers, respectively. Experimental re- 

sults demonstrate the improved performance of the proposed method as compared with several recent 

baseline methods, especially for relatively high noise levels. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Multiplicative noise, also known as speckle noise, is often ob-

served in synthetic aperture radar (SAR) and sonar (SAS) images,

due to the effect of interference introduced in their acquisition

processes [1] . Compared to additive Gaussian noise often assumed

in traditional image denoising, removing speckle noise is deemed

to be more difficult for two reasons. Firstly, the noise is multiplied

with (rather than added to) the original image, which usually de-

grades the images more severely as compared with additive noise

[2] . Secondly, the study of the statistical properties of speckle noise
� This work was supported by the Engineering and Physical Sciences Research 
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ndicates that Gamma and Rayleigh distributions are more suitable

or modelling such noise [1–4] instead of the widely used Gaussian

istribution in conventional image denoising, and thus the data fi-

elity term derived from the noise model is not quadratic, raising

ifficulties for optimization. 

Mathematically, the observed image w ∈ R 

N (reshaped from a
 

N ×
√ 

N image) contaminated by the speckle noise u ∈ R 

N , can

e represented as [4,5] 

 = g ◦ u , (1)

here g ∈ R 

N denotes the image to be restored. The symbol ◦ de-

otes the Hadamard product (i.e. entry-wise product) of two ma-

rices/vectors. The aim of despeckling is to estimate g from the

bserved image w . In this paper, we focus on Gamma distributed

ultiplicative noise, such that the elements of u are assumed to

e independent and identically distributed (i.i.d.) with probability

ensity function given by [2,4,5] 

f u (u ) = 

L L 

�(L ) 
u 

L −1 e −Lu , (2)
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here L is a positive integer defining the noise level and �( ·) is

he classical Gamma function given by �(L ) = (L − 1)! . A smaller L

ndicates stronger noise. 

.1. Related work 

Classical methods for removing multiplicative noise are spa-

ial filtering [6–8] and wavelet domain filtering [9,10] . More re-

ently, regularization based approaches to denoising, where the

mage reconstruction task is formulated as an optimization prob-

em with regularizers, have attracted much attention [4,5,11–13] . A

opular regularizer employed in these approaches is total variation

TV) which was proposed originally for reducing additive Gaussian

oise [14] . The TV-based methods were then used for multiplica-

ive noise in the original image domain as in Eq. (1) or in the log-

omain by applying a logarithmic transform. Typical examples per-

ormed in the original domain are the first TV-based multiplicative

oise removal method proposed in [15] and the method of Aubert–

ujol (AA) [11] . The method in [15] minimizes the TV of the image

o be recovered with the constraints exploiting the mean and vari-

tion of the noise, but this method is not effective for removing

amma distributed noise as the noise considered in its restora-

ion model is assumed to follow a Gaussian distribution. The AA

ethod [11] exploits a Bayesian maximum a posteriori (MAP) es-

imate, yielding an image restoration model consisting of a data

delity term based on the prior distribution of the multiplicative

oise and a TV regularization term. However, the quality of the

mage restored by the AA method may be limited by the local

olutions obtained from the optimization of a non-convex model.

nother class of denoising methods based on the TV regularizer

onsiders the image restoration in the log-domain [4,5,12,13] , aim-

ng to simplify the multiplicative noise model as an additive model

hich is easier to deal with than the original model. In general, the

econstruction models employed in these methods commonly con-

ist of a data fidelity term and regularization terms reflecting prior

nformation related to the image. However, the formulations of

hese terms and optimization approaches may differ substantially.

n [12] , Shi and Osher (SO) considered both the data fidelity and

V terms of the AA method [11] in the log-domain to overcome

he non-convex optimization issue. Multiplicative Image Denoising

ith the Augmented Lagrangian (MIDAL) algorithm [4] uses the

ame model as used by SO but applies a different optimization

ramework based on variable splitting and augmented Lagrangian

or better numerical efficiency. Apart from the data fidelity term

nd the TV regularization as in the reconstruction model used by

O [12] and the MIDAL algorithm [4] , the method presented in

13] also incorporates a quadratic data fitting term to apply the TV

erm in a more efficient manner, but it tends to be outperformed

y the MIDAL algorithm [4] . 

Although the TV regularization proves to be effective for reduc-

ng multiplicative noise, the smoothly varying regions in the origi-

al image are usually recovered as piecewise constant areas, which

s also well known as the stair-casing effect [2] . An approach to

void this issue is to introduce priors on the image to be recov-

red. Recently, the sparsity prior was shown to be helpful for the

econstruction of images with multiplicative Gamma noise [2,5,16] .

uran, Fadili and Nikolova (DFN) [2] adopted the sparsity prior by

onsidering the sparsity of the image in the curvelet transformed

omain and restoring the frame coefficients via a TV regularized

ormulation in the log-domain. As dictionaries learned from the re-

ated data have the potential to fit the data better than pre-defined

ictionaries, dictionary learning techniques in sparse representa-

ion have also been utilized to model the sparsity prior [5,16] . The

ethods proposed in [16] and [5] both introduce dictionary learn-

ng to the TV regularized model [4,12] , but with different frame-

orks. These two methods are referred to as MNR-DL-TV-1 (Mul-
iplicative Noise Removal via Dictionary Learning and Total Varia-

ion) [16] and MNR-DL-TV-2 [5] respectively. In these two meth-

ds, the dictionary is learned by the K-SVD algorithm [17] which is

 well-known dictionary learning method based on the sparse syn-

hesis model. The MNR-DL-TV-1 method performs noise reduction

n two stages: the image is first denoised using the learned dictio-

ary; and then a model based on an � 2 data fidelity term and TV

egularization is applied to further improve the denoising result.

n contrast, the MNR-DL-TV-2 method formulates the image recon-

truction task as an optimization problem containing two regular-

zers: a learned dictionary based term and a TV term. However,

e have found that the performance of MNR-DL-TV-2 is limited

or relatively high noise-levels, as shown in our simulations (see

ection 5.1 later). 

It should be noted that the learned dictionaries employed in the

NR-DL-TV-1 [16] and MNR-DL-TV-2 [5] methods are both based

n the sparse synthesis model [17] . In recent years, the sparse

nalysis model, as a counterpart of the synthesis model, has at-

racted much attention [18,19] . Dictionary learning based on the

parse analysis model was also shown to be effective in the reduc-

ion of additive Gaussian noise [20] , [21] , however, few researchers

ave studied its potential for removing multiplicative noise. We

ave proposed a speckle noise removal method in [22] which

pplies the dictionary learned based on the analysis model to

he regularizer of the restoration formulation. This approach, re-

erred to as Removing Speckle Noise via Analysis Dictionary Learn-

ng (RSN-ADL), has the ability to preserve details while reducing

ultiplicative noise, however the smooth regions are not well-

ecovered, as will be illustrated in Section 5 . 

.2. Contributions 

In this paper, we propose a new model for reconstructing the

mage from a multiplicative noise corrupted image and develop

 novel method for optimizing this model. The proposed method

pplies a sparse analysis model based regularizer and a smooth-

ess regularizer. The joint employment of these two regularizers,

hich is different from the existing methods, aims to exploit the

enefits of both priors and partly addresses the limitations of the

xisting methods mentioned above. Specifically, the sparse analy-

is model based regularizer is constructed with an analysis dictio-

ary learned from image patches via the Analysis SimCO algorithm

21,23] , and the smoothness regularizer is formed based on the

ixel-wise differences in the horizontal and vertical directions. This

econstruction model extends our previous work [22] by introduc-

ng the smoothness regularization term. Since the dictionaries used

n the regularizer of [22] are usually well adapted to textures but

ot for smooth areas [5] , the introduction of the smoothness reg-

larizer in the proposed model has the potential to overcome this

ssue. Compared with the methods based on TV regularization, for

xample the MIDAL algorithm [4] , the proposed model can miti-

ate the stair-casing effect appearing in the recovered images due

o the application of the analysis model based regularization, as

ill be demonstrated in Section 5 . The proposed model also shows

dvantages for a relatively high level of noise, compared with the

FN [2] and MNR-DL-TV-2 [5] algorithms. 

The introduction of the two regularizers in our restoration for-

ulation, however, renders the optimization task non-trivial, es-

ecially since the two regularizers are defined from different rep-

esentations of the image. In particular, the dictionary is learned

ith image patches instead of the whole image in order to re-

uce the computational complexity. As a result, the sparse anal-

sis model based regularizer is represented with image patches.

he smoothness regularizer, on the other hand, is defined with

ixel-wise differences calculated across the whole image. In order

o address the optimization of the presented model, we propose a
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Algorithm 1 Analysis SimCO. 

Input: A , p, l

Output: �� 

Initialization: 

Initialize the iteration counter k = 1 and the analysis dictio- 

nary �(k ) . Perform the following steps. 

Main Iterations: 

1. Analysis sparse coding: Compute the representation X 

(k ) with 

the fixed dictionary �(k ) and the training signals in A , based 

on equations (5) and (6). 

2. Dictionary update: 

(a) Compute the negative gradient H , based on equation (8). 

(b) Compute the search direction h̄ j for j = 1 , 2 , ..., p , based 

on equation (9). 

(c) Update the dictionary �(k +1) ← �(k ) , based on equation 

(10). 

3. If the stopping criterion is satisfied, �� = �(k +1) , quit the it- 

eration. Otherwise, increase the iteration counter k = k + 1 

and go back to step 1. 
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new method based on the framework of the alternating direction

method of multipliers (ADMM) [24] . Two auxiliary variables are in-

troduced to split the variables by reformulating our approach as a

constrained optimization problem, and then the ADMM framework

is applied to decompose the optimization as a sequence of sub-

problems which are easier to solve. In the sub-problem related to

the smoothness regularizer, there exist two variables in different

forms, and thus an approximation technique is applied to relax the

original sub-problem as a problem with a unified variable. 

1.3. Notations 

Bold capital letters are used to represent matrices. The nota-

tion X i ,: is used to specify the i th row of the matrix X and X :, j

represents its j th column. Bold lowercase letters represent vectors.

Scalars are either capital or lowercase letters. The norms ‖ · ‖ 1 ,
‖ · ‖ 2 and ‖ · ‖ F denote the � 1 -norm, � 2 -norm and the Frobenius

norm respectively. When the operand of ‖ · ‖ 1 is a matrix, it de-

notes the sum of the absolute values of the elements in the matrix,

which is different from the canonical definition of the � 1 -norm for

matrices. The notation | · | returns the absolute value of a scalar.

The notation 〈·, ·〉 is used to represent the canonical inner-product

of two vectors. 

1.4. Organization of the paper 

As the dictionary used in our image restoration model is

learned based on the analysis model via the Analysis SimCO al-

gorithm, Section 2 reviews the analysis model and the Analysis

SimCO algorithm briefly to make this paper self-contained.The pro-

posed image restoration model is introduced in Section 3 , followed

by Section 4 where the optimization method is presented. The ex-

perimental results with known test images and real SAR images

corrupted by speckle noise are presented in Sections 5 , and 6 con-

cludes the paper. 

2. Analysis model and Analysis SimCO algorithm 

For a signal a ∈ R 

m , the sparse analysis model assumes that the

product of � ∈ R 

p×m and a is sparse, i.e. x = �a with ‖ x ‖ 0 = p − l,

where the � 0 -norm ‖ · ‖ 0 counts the number of non-zero elements

of its argument and 0 ≤ l ≤ p is the co-sparsity of a [18] . The ma-

trix � is usually referred to as an analysis dictionary, with each

row of � being an atom. The vector x ∈ R 

p is the analysis rep-

resentation of the signal a with respect to �. In this model, the

analysis dictionary � plays an important role, and the dictionar-

ies learned from a set of training signals show some advantages

compared with pre-defined dictionaries [20] . 

Given a set of training data contained in A ∈ R 

m ×n , the analysis

dictionary learning problem can be formulated as [25] 

{ �� , X 

� } = arg min 

{ �, X } 
‖ X − �A ‖ 

2 
F 

s . t . ‖ X : ,i ‖ 0 = p − l, ∀ i. 

(3)

This is a general formulation without any additional constraint on

� apart from the co-sparsity constraints ‖ X : ,i ‖ 0 = p − l, ∀ i . How-

ever, this formulation has ambiguities caused by scaling [21] . In

order to avoid these ambiguities, unit � 2 -norm constraints on the

rows of � are applied, leading to the following formulation of the

Analysis SimCO algorithm [21,23] , 

{ �� , X 

� } = arg min 

{ �, X } 
‖ X − �A ‖ 

2 
F 

s . t . ‖ X : ,i ‖ 0 = p − l, ∀ i 

‖ � j, : ‖ 2 = 1 , ∀ j. 

(4)
h  
he Analysis SimCO algorithm solves the above problem by an

ptimization framework alternating between two stages: analysis

parse coding stage and dictionary update stage. The procedure of

he Analysis SimCO algorithm is summarized in Algorithm 1 and

ore details are presented below. 

The purpose of the analysis sparse coding stage is to obtain the

parse representation X of the training signals in A based on a

iven dictionary �. The exact representation X can be calculated

irectly by simply multiplying A by the dictionary �, that is 

 = �A . (5)

ince the initial dictionary is an arbitrary one, the representation

btained in this way may not satisfy the co-sparsity constraints in

4) . A hard thresholding operation is therefore applied to enforce

he co-sparsity 

ˆ 
 = HT l (X ) , (6)

here HT l ( X ) is the non-linear operator that sets the smallest l el-

ments (in magnitude) of each column of X to zeros. The represen-

ation 

ˆ X obtained via Eq. (6) is the best approximation of the exact

epresentation X in terms of the error in Frobenius norm among all

he matrices satisfying the co-sparsity constraints. 

In the dictionary update stage, � is updated assuming known

nd fixed X . In other words, this stage aims at optimizing the fol-

owing problem 

rg min 

�

‖ X − �A ‖ 

2 
F s . t . ‖ � j, : ‖ 2 = 1 , ∀ j. (7)

ince the Stiefel manifold S m, 1 is defined as S m, 1 = { s ∈ R 

m :

 

T s = 1 } [26] , the transpose of each row in � can be seen as one

lement in S m, 1 . Thus, one of the “line” search methods on mani-

olds can be utilized to deal with problem (7) . In Analysis SimCO,

he gradient descent method on manifolds is applied. 

Specifically, given that the negative gradient of the objective

unction in (7) with respect to � is 

 = −∂‖ X − �A ‖ 

2 
F 

∂�
= 2 XA 

T − 2 �AA 

T 
, (8)

he search direction of the j th row of �, i.e. the projection of each

ow of H onto the tangent space of S m, 1 , is [26, pp. 49] 

¯
 j = H j, : (I − �T 

j, : � j, : ) . (9)
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The j th row of � is updated along the line search path as fol-

ows [26, pp. 103] 

j, : (α) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

� j, : if ‖ ̄h j ‖ 2 = 0 , 

� j, : cos (α‖ ̄h j ‖ 2 ) + ( ̄h j / ‖ ̄h j ‖ 2 ) sin (α‖ ̄h j ‖ 2 ) 

otherwise , 

(10) 

here α is the step size which is determined by the golden section

earch method [27] . 

. Proposed image restoration formulation 

To simplify the problem, the logarithmic transform is employed

ere to convert the multiplicative noise model to an additive one,

s in [2,4,5] . Taking the (element-wise) logarithms of both sides of

1) , we have 

og w = log g + log u 

z = y + v 
(11) 

here z , y and v denote the element-wise logarithms of w , g ,

nd u , respectively. Since the function u = e v is strictly monotonic

nd the elements of u satisfy the i.i.d. Gamma distribution (2) , the

robability density function of the elements in v is given by [28,

p. 207] 

f v (v ) = f u (e v ) 
d(e v ) 

d v 
= f u (e v ) · e v 

= 

L L 

�(L ) 
e L (v −e v ) . 

(12) 

ence, the probability density function of v is given by 

f v (v ) = 

N ∏ 

i =1 

L L 

�(L ) 
e L (v i −e v i ) , (13)

here v i denote the elements of the vector v with i = 1 , 2 , ..., N . As

 result, the log-likelihood function can be written as 

og f z | y (z | y ) = log f v ( z − y ) 

= N log 
L L 

�(L ) 
+ L 

N ∑ 

i =1 

z i − L 

N ∑ 

i =1 

(y i + e z i −y i ) . 
(14) 

The maximum likelihood (ML) estimate for y can be determined

y maximizing Eq. (14) with respect to y . Furthermore, by omitting

he first two terms which do not depend on y and scaling the last

erm by the negative constant coefficient −L, the maximization of

14) can be rewritten as the following minimization problem, i.e. 

ˆ y = arg min 

y 

N ∑ 

i =1 

(y i + e z i −y i ) . (15) 

t is straightforward to check that the optimal solution to the above

roblem is ˆ y = z , but it is an invalid solution for the denoising

ask. This is due to the over-fitting problem which can be regarded

s a general issue of maximum likelihood [29, pp. 9] . In order to

void this problem, the regularization technique is often employed,

hich involves adding penalty terms based on the prior informa-

ion of y . 

Using the data fidelity term based on the ML estimate (15) ,

he proposed restoration formulation utilizes two regularizations

romoting the sparsity and the smoothness prior respectively. The

rst one is based on the assumption that the image patches

re sparse with respect to an analysis dictionary. Since adap-

ive analysis dictionaries usually have the potential to fit signals

etter than pre-defined dictionaries [20] , the analysis dictionary

earned via the Analysis SimCO algorithm is applied in the pro-

osed method. The second regularization term is the smoothness
egularizer based on the discrete derivatives of the image, the pur-

ose of which is to smooth the noise further. Combining these two

egularizers with the data fidelity term, our new formulation can

e written as 

 

� = arg min 

Y 

m ∑ 

i =1 

n ∑ 

j=1 

(Y i, j + e Z i, j −Y i, j ) + λ1 ‖ �Y ‖ 1 + λ2 G β{ R (Y ) } , 

(16) 

here � ∈ R 

p×m denotes the learned analysis dictionary with

lgorithm 1 . In this formulation, the restored image y is expanded

s small patches of size 
√ 

m × √ 

m which form the columns of the

atrix Y ∈ R 

m ×n . As such, the dictionary � is learned from image

atches instead of the whole image. Similarly, the matrix Z ∈ R 

m ×n 

s obtained from the observed log-image z , where n denotes the

umber of image patches. 

The data fidelity term 

∑ m 

i =1 

∑ n 
j=1 (Y i, j + e Z i, j −Y i, j ) is the image

atch version of the ML estimate (15) . The parameters λ1 and λ2 

re the multipliers to balance the data fidelity term and the reg-

larizers. The first regularization term ‖ �Y ‖ 1 , which is a relax-

tion of ‖ �Y ‖ 0 , reflects the sparse property of the image patches

ith respect to the dictionary �. The second regularization term

 β { R ( Y )} is used to promote the smoothness of the whole image,

here the image patch version Y is reshaped back to the complete

mage by applying the operator R ( ·) and G β { ·} is the smoothness

romotion function. 

For a given image denoted by S ∈ R 

d×d , G β { S } is defined as 

 β{ S } = 

d ∑ 

i =1 

d ∑ 

j=1 

(√ 

(∇ h S i, j ) 2 + (∇ v S i, j ) 2 
)β

, (17)

here ∇ h S i , j and ∇ v S i, j denote the horizontal and vertical differ-

nces at pixel S i , j . More specifically, they are given by the first-

rder differences between pixel S i , j and its horizontal and vertical

eighbouring pixels respectively, i.e. 

 h S i, j = 

{
S i +1 , j − S i, j if i < d, 

0 if i = d. 
(18) 

nd 

 v S i, j = 

{
S i, j+1 − S i, j if j < d, 

0 if j = d. 
(19) 

he parameter β controls the degree of smoothing. Notice that the

moothness promotion function G β { ·} is equivalent to the TV regu-

arizer [14] when β = 1 , as such the smoothness regularizer G β { ·}
an be viewed as a generalization of the TV regularizer. 

It should be noted that the proposed image restoration formu-

ation (16) can be regarded as an extension of the model in our

revious work [22] , which is given by 

 

� = arg min 

Y 

m ∑ 

i =1 

n ∑ 

j=1 

(Y i, j + e Z i, j −Y i, j ) + λ‖ �Y ‖ 1 . (20)

n this model, only the regularizer based on an analysis dictionary

s considered. If the multiplier λ2 in the model (16) is set as zero,

odel (16) will reduce to (20) . From this point of view, the restora-

ion model (20) can be seen as a special case of (16) . The sparsity

ased regularizer ‖ �Y ‖ 1 can be regarded as a local prior since it is

efined with the image patches in Y ∈ R 

m ×n whereas the smooth-

ess regularizer in (16) is a global prior which depends on the en-

ire image R (Y ) ∈ R 

√ 

N ×√ 

N . Thus, the introduction of the smooth-

ess regularizer not only further reinforces the smoothness of the

estored image, but also takes the global prior of the image into

onsideration. 

In general, the proposed method consists of two stages: analysis

ictionary learning and image recovery. We refer to this method
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as Multiplicative Noise Removal using Analysis Dictionary Learn-

ing and a Smoothness Regularizer (MNR-ADL-SR). In the dictio-

nary learning stage, an analysis dictionary � is learned using the

Analysis SimCO algorithm [21] which has already been reviewed

in Section 2 . The goal of the image recovery stage is to restore the

denoised image from the observed image, which is achieved by ad-

dressing the optimization problem (16) . The restored log-image ˆ y

can be obtained by applying the operator R ( ·) to the solution to

(16) , and thus the denoised image ˆ g can be obtained by taking the

exponential transform of ˆ y . The optimization method to address

(16) will be presented in the next section. 

4. Optimization method 

In this section, we propose a new method to solve the op-

timization problem in (16) . Firstly, a variable splitting technique

is employed to construct a decomposable structure in the objec-

tive function across multiple variables, which results in an equiv-

alent constrained optimization problem. Then the ADMM frame-

work [24] is applied to deal with the constrained optimization

problem. 

Using the variable splitting technique, the problem (16) can be

converted to the equivalent constrained optimization task as fol-

lows 

arg min 

{ Y , T , M } 

m ∑ 

i =1 

n ∑ 

j=1 

(Y i, j + e Z i, j −Y i, j ) + λ1 ‖ T ‖ 1 + λ2 G β{ R (M ) } 

s . t . T = �Y , M = Y . 

(21)

The variables T = �Y and M = Y are introduced to eliminate Y in

the regularization terms and therefore make the objective function

separable with respect to the variables Y, T, M . 

ADMM can be viewed as an attempt to combine the decompos-

able benefit of dual ascent and the superior convergence property

of the augmented Lagrangian methods for constrained optimiza-

tion [24] . The constrained optimization problem (21) can be han-

dled with ADMM since the objective function becomes separable

across the variables and the decomposed sub-problems are easier

to address. Using dual parameters B 1 ∈ R 

p×n and B 2 ∈ R 

m ×n , the

augmented Lagrangian can be formed by adding two penalty terms

〈 B 1 , �Y − T 〉 , 〈 B 2 , Y − M 〉 and two extra quadratic terms related to

the constraints, that is 

L γ1 ,γ2 
(Y , T , M , B 1 , B 2 ) 

= 

m ∑ 

i =1 

n ∑ 

j=1 

(Y i, j + e Z i, j −Y i, j ) + λ1 ‖ T ‖ 1 + λ2 G β{ R (M ) } 

+ γ1 〈 B 1 , �Y − T 〉 + 

γ1 

2 

‖ �Y − T ‖ 

2 
F 

+ γ2 〈 B 2 , Y − M 〉 + 

γ2 

2 

‖ Y − M ‖ 

2 
F 

= 

m ∑ 

i =1 

n ∑ 

j=1 

(Y i, j + e Z i, j −Y i, j ) + λ1 ‖ T ‖ 1 + λ2 G β{ R (M ) } 

+ 

γ1 

2 

‖ B 1 + �Y − T ‖ 

2 
F −

γ1 

2 

‖ B 1 ‖ 

2 
F 

+ 

γ2 

2 

‖ B 2 + Y − M ‖ 

2 
F −

γ2 

2 

‖ B 2 ‖ 

2 
F , 

(22)

where γ 1 , γ 2 > 0 are the penalty coefficients. ADMM alternatively

updates each of the variables { Y , T , M , B 1 , B 2 }, while keeping the

others fixed. We use the scaled form of ADMM [24] as it is more

concise to express. In the t th iteration, it consists of the following

steps 

Y 

(t+1) = arg min 

Y 

L γ1 ,γ2 
(Y , T 

(t) , M 

(t) , B 

(t) 
1 

, B 

(t) 
2 

) (23)

T 

(t+1) = arg min 

T 

L γ1 ,γ2 
(Y 

(t+1) , T , B 

(t) 
1 

) (24)
 

(t+1) = arg min 

M 

L γ1 ,γ2 
(Y 

(t+1) , M , B 

(t) 
2 

) (25)

 

(t+1) 
1 

= B 

(t) 
1 

+ (�Y 

(t+1) − T 

(t+1) ) (26)

 

(t+1) 
2 

= B 

(t) 
2 

+ (Y 

(t+1) − M 

(t+1) ) . (27)

n fact, ADMM can be interpreted as reducing the regularized prob-

em (16) to a sequence of sub-problems which are easier to solve.

he ADMM iterations (23) –(27) are performed until the change of

 

(t+1) is relatively small compared with Y 

( t ) . 

Now we explain the update of variables in (23) –(25) respec-

ively. Ignoring the terms unrelated to Y , the minimization prob-

em (23) can be written as 

rg min 

Y 

m ∑ 

i =1 

n ∑ 

j=1 

(Y i, j + e Z i, j −Y i, j ) 

+ 

γ1 

2 

‖ B 1 + �Y − T ‖ 

2 
F + 

γ2 

2 

‖ B 2 + Y − M ‖ 

2 
F . 

(28)

s this objective function is differentiable, the gradient-based

ethods can be applied. Here we employ the gradient descent

ethod which has a relatively low computational complexity. The

tep size can be determined by line search methods [30] , however,

 small fixed step size also works well, according to our experi-

ents. Given a step size μ, the update of Y can be written as 

 = Y − μ∇ Y . (29)

he symbol ∇ Y denotes the gradient of (28) with respect to Y ,

hich can be calculated as follows 

 Y = (1 − e Z −Y ) + γ1 �
T (B 1 + �Y − T ) + γ2 (B 2 + Y − M ) , (30)

here 1 ∈ R 

m ×n is an all-one matrix with the same size as Y and

 

Z −Y denotes the element-wise exponential of Z − Y . 

For the update of T , the problem (24) can be written as 

rg min 

T 

λ1 ‖ T ‖ 1 + 

γ1 

2 

‖ B 1 + �Y − T ‖ 

2 
F . (31)

otice that this problem has a closed-form solution given by [24] 

 = ST λ1 / γ1 
(�Y + B 1 ) . (32)

he symbol ST λ1 / γ1 
(·) represents the element-wise soft-

hresholding operator defined by 

T λ1 / γ1 
(θ ) = 

⎧ ⎨ 

⎩ 

θ − λ1 

γ1 

· sgn (θ ) if | θ | ≥ λ1 

γ1 

0 otherwise , 

(33)

here sgn( θ ) returns the sign of θ . 

Dropping the unrelated terms, the update of M based on

25) can be obtained by considering the following problem 

rg min 

M 

λ2 G β (M R ) + 

γ2 

2 

‖ N − M ‖ 

2 
F 

s . t . M R = R (M ) , 

(34)

here N = B 2 + Y . In the objective function, there are two variables

 R and M which are linked via the constraint M R = R (M ) . By ap-

lying the operator R ( ·) to the matrices N and M respectively, the

uadratic term can be rewritten in terms of M R , i.e. 

‖ N − M ‖ 

2 
F 

 ‖ (R (N ) − R (M )) ◦ C m 

‖ 

2 
F 

 ‖ (N R − M R ) ◦ C m 

‖ 

2 
F , 

m ‖ N R − M R ‖ 

2 
F , 

(35)

here N R = R (N ) , and C m 

is a constant matrix depending on the

perator R ( ·) and m . Specifically, the squares of the elements in
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Fig. 1. This figure presents a specific example to illustrate the approximation Eq. (35) . “Col” is short for “columns”. In this figure, D R denotes the result of applying the opertor 

R ( ·) to the matrix D . Four patches extracted from D R are filled using different colors and the corresponding columns in D are highlighted in the same colors, respectively. 
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 m 

represent the number of times that the corresponding ele-

ents of N R − M R appear in the matrix N − M . When the overlap

etween two neighbouring patches is 
√ 

m − 1 , most elements in

 m 

, except for the elements on the border, take the same value
 

m . Hence, the quadratic term ‖ N − M ‖ 2 
F 

can be approximated as

 ‖ N R − M R ‖ 2 F 
. 

The details of the approximation (35) are illustrated in Fig. 1 ,

sing a specific example. As shown in the figure, the inverse op-

rator of R ( ·) transforms the matrix D R to its patch version by ex-

racting overlapping patches of size 
√ 

m × √ 

m and reshaping each

atch as one column, with m = 4 . Note that “Col” in Fig. 1 is

hort for “Columns”. Due to the overlap among the patches, the

lements of D R appear in D for various times, and the number

f times that these elements appear can be represented by the

quares of the corresponding elements of the constant matrix C 4 

hich is presented in the right part of Fig. 1 . Therefore, we have

 D ‖ 2 F = 

∑ 

i, j c i j d 
2 
i j 

= ‖ D R ◦ C 4 ‖ 2 F , where c ij denotes the appearance

imes of the element d ij in D . As most elements of C 4 are 
√ 

m = 2 ,

 D R ◦ C 4 ‖ 2 F 
can be approximated as m ‖ D R ‖ 2 F 

. Generalizing this spe-

ific example, the approximation Eq. (35) can be obtained. 

As a result, the problem (34) can be relaxed as 

 

� 
R = arg min 

M R 

λ2 G β (M R ) + 

γ2 

2 

‖ N R − M R ‖ 

2 
F , (36)

nd M can be obtained by applying the inverse operator of R ( ·) to
 R . 

Obviously, the optimization of (36) depends on the value of

. Here, two cases are considered, i.e. β ∈ {1, 2}. When β = 1 ,

36) can be written as 

rg min 

M R 

λ2 ‖ M R ‖ T V + 

γ2 

2 

‖ N R − M R ‖ 

2 
F . (37)

his can be viewed as a TV- � 2 minimization problem which can be

ddressed by Chambolle’s algorithm [31] . 

When β = 2 , the problem (36) is equivalent to 

rg min 

M R 

λ2 

∑ 

i, j 

[(∇ h (M R ) i, j ) 
2 + (∇ v (M R ) i, j ) 

2 ] + 

γ2 

2 

‖ N R − M R ‖ 

2 
F 

(38) 
nd it can be addressed by solving the Euler–Lagrange equation

umerically [14,32] . Specifically, the optimal solution can be ap-

roached iteratively by the gradient descent step [32] as follows

the detailed derivation is given in the Appendix) 

 

(k +1) 
R 

= M 

(k ) 
R 

+ τ

[
2 λ2 

(
∂ 

∂x 

(∂ M 

(k ) 
R 

∂x 

)
+ 

∂ 

∂y 

(∂ M 

(k ) 
R 

∂y 

))

−γ2 

(
M 

(k ) 
R 

− N R 

)]
, (39) 

here ∂ 
∂x 

( 
∂ M R 
∂x 

) and 

∂ 
∂y 

( 
∂ M R 
∂y 

) denote the second-order discrete

erivatives in the horizontal and vertical directions respectively, τ
s the step size and k represents the iteration number. 

To sum up, the optimization for the image reconstruction model

16) can be summarized as Algorithm 2 . 

.1. Computational complexity 

The proposed reconstruction method involves the update of the

ariables Y , T , M , B 1 and B 2 in each iteration, as summarized

n Algorithm 2 . To analyze the time complexity of the proposed

ethod, multiplication is considered as the basic operation. As the

pdate of M and B 2 does not involve multiplications, the time

omplexity of these two steps can be omitted. In the step for up-

ating Y , the computation of the gradient ∇ Y is the dominant part,

nd it requires O ( pmn ) operations with pre-computed �T � and p

 m . The complexity of the steps for updating T and B 2 is dom-

nated by the computation of �Y which requires O ( pmn ) opera-

ions. As a result, the total time complexity of each iteration of the

roposed method scales as O ( pmn ). 

. Experimental results 

In this section, the experiments for synthetic images with mul-

iplicative noise and real SAR images are presented respectively.

he proposed MNR-ADL-SR algorithm is tested with β = 1 and

= 2 , which are referred to as MNR-ADL-SR and MNR-ADL-SR 
1 2 
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Fig. 2. Training images used to learn analysis dictionaries. 

Algorithm 2 Image Reconstruction. 

Input: Z , �, λ1 , λ2 , β
Output: Y 

� 

Initialization: 

Initialize the iteration counter t = 1 and the initial point 

Y 

(t) = Z . Perform the following steps. 

Main Iterations: 

1. Update Y 

(t+1) ← Y 

(t) by applying the gradient descent 

method to the problem (28), i.e. using equations (29) and 

(30). 

2. Update T (t+1) ← T (t) by solving the problem (31) via soft- 

thresholding (32), (33). 

3. Update M 

(t+1) ← M 

(t) by addressing the problem (36) and 

applying the inverse operator of R (·) to the optimal solu- 

tion M 

� 
R 

. When β = 1 , M 

� 
R 

can be obtained by applying Cham- 

bolle’s algorithm to (37). When β = 2 , M 

� 
R 

is estimated with 

the iteration (39). 

4. Update B 

(t+1) 
1 

← B 

(t) 
1 

and B 

(t+1) 
2 

← B 

(t) 
2 

based on equations 

(26) and (27). 

5. If the stopping criterion is satisfied, Y 

� = Y 

(t+1) , quit the iter- 

ation. Otherwise, increase the iteration counter t = t + 1 and 

go back to step 1). 
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1  
respectively. 1 Actually, these two cases can be regarded as two dif-

ferent denoising models and they have different effects in smooth-

ing images. In particular, as has been mentioned in Section 4 ,

when β = 1 , the smoothness regularizer is equivalent to the TV

regularizer [14,31] which preserves edges while removing noise. In

contrast, for the case β = 2 , the smoothness regularizer reduces to

the isotropic diffusion model [33] which has been shown to be ef-

fective in restraining noise, but leads to blurred edges. The reason

that β = 1 and β = 2 are tested in the experiments is to investi-

gate the effect of these two models when they are embedded in

the reconstruction model. These two cases are compared with our

previous work RSN-ADL [22] and three other recent algorithms:

DFN [2] (which outperforms the AA [11] and SO [12] algorithms),

MIDAL [4] , and MNR-DL-TV-2 [5] . 2 These three algorithms were se-

lected as baselines because of the involvement of sparsity or TV

regularizer in their formulations and the availability of their code. 

For the proposed MNR-ADL-SR 1 , MNR-ADL-SR 2 and RSN-ADL

[22] algorithms, the images in Fig. 2 were used as the training

data to learn analysis dictionaries. Specifically, the training samples

employed to learn the analysis dictionary � were the logarithmic

transforms of 20 0 0 0 patches that were extracted randomly from

these training images. The size of the training patches was 8 ×
8. The dictionary was initialized as the finite difference operator
1 The codes of the proposed methods are available from { https://github.com/ 

jd0710/MNR- ADL- SR } 
2 The codes for the DFN and MIDAL algorithms were downloaded from { https: 

//fadili.users.greyc.fr/software.html } and { http://www.lx.it.pt/ ∼bioucas/publications. 

html } respectively. We thank the authors of [5] for sharing their code via email. 

p

5

 

p  

e  
18,20] . The dictionary size is 128 and the co-sparsity for dictio-

ary learning was set as l = 100 . The Analysis SimCO algorithm

as performed with 20 0 0 iterations. These parameters were set

mpirically to be consistent with the work in [21] . 

.1. Experiments with synthetic images 

.1.1. Experiment settings 

Four test images: “Cameraman”, “Nîmes”, “Fields” and “Peppers”

ere employed, which are illustrated in Fig. 3 . These images are

ommonly used to evaluate the algorithms for removing multi-

licative noise [2,4,5] . The size of the Cameraman and Peppers

mages is 256 × 256 and the size of Nîmes and Fields is 512 ×
12. The grey-scales of all the test images are normalized so that

hey are in the range [1 256]. The synthetic noisy images were

enerated by multiplying the pixels of the original images by i.i.d.

amma random variables (cf. Eqs. (1 ) and (2) ), with different pa-

ameters L ∈ {10, 4, 1}. The synthetic noisy images are shown in

ig. 4 , with the noise level increasing from top to bottom. 

.1.2. Performance metrics 

The denoising performance is evaluated with three quantities:

eak Signal-to-Noise Ratio (PSNR), Mean Absolute-deviation Error

MAE), and the Mean Structural SIMilarity index (MSSIM) [34] . The

SNR and MAE indices have been widely used for the quality as-

essment of multiplicative noise removal algorithms [2,4,5] , due

o their simplicity and clear physical meanings. For a clean image

 ∈ R 

N , the PSNR of its denoised version 

ˆ g ∈ R 

N is defined as 

SNR = 10 log 10 

N| max (g ) − min (g ) | 2 
‖ ̂

 g − g ‖ 

2 
2 

( in dB ) (40)

here max( ·) and min( ·) return the maximum value and the mini-

um value contained within their operands respectively. The MAE

s given by 

AE = 

1 

N 

‖ ̂

 g − g ‖ 1 . (41)

s indicated by the definitions above, both PSNR and MAE can be

egarded as the error-based measurements which are determined

y the pixel-to-pixel differences between the denoised image and

he reference image. They are useful to obtain general performance

ssessments on the whole image, but they consider little informa-

ion about the preservation of specific features so that their evalu-

tions are not very consistent with the perceptual quality. In con-

rast, the MSSIM index stresses the preservation quality of struc-

ural information and is able to reflect the visual perception of hu-

ans better [34] . The value of MSSIM ranges over the interval [0,

], with 1 indicating perfect structure similarity. The same set of

arameters as originally suggested in [34] is employed. 

.1.3. The selection of the regularization parameters 

For the proposed algorithm, the selection of the regularization

arameters λ1 and λ2 is critical. These two parameters are the co-

fficients of the learned analysis dictionary based regularizer and

https://github.com/jd0710/MNR-ADL-SR
https://fadili.users.greyc.fr/software.html
http://www.lx.it.pt/~bioucas/publications.html
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Fig. 3. Test images: Cameraman, Nîmes, Fields and Peppers. 

Fig. 4. Synthetic noisy images. Top row: L = 10 . Middle row: L = 4 . Bottom row: L = 1 . 
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he smoothness regularizer, respectively. They are used to balance

he data fidelity term and the regularization terms, and thus the

ppropriate settings of these two parameters depend on the rel-

tive importance of the three terms in the reconstruction model.

n particular, the importance of the data fidelity term depends on

he level of the noise, and the importance of the regularizers de-

ends on the characteristics of the images. Taking the Cameraman

mage as an example, the PSNR results obtained by MNR-ADL-SR 1 

nd MNR-ADL-SR 2 using different regularization parameters are

emonstrated in Fig. 5 . The subfigures from top to bottom display

he results with the noise levels L = 10 , 4 , 1 respectively. The left

olumn shows the results of MNR-ADL-SR 1 and the right column

ives the PSNR values obtained by MNR-ADL-SR 2 . Fig. 5 shows that

he performance of the proposed algorithms varies with the regu-

arization coefficients λ1 and λ2 . The changing patterns of MNR-
DL-SR 1 and MNR- ADL-SR 2 are similar to each other in general. In

he cases of L = 10 and L = 4 , when λ1 is set as a relatively small

alue, the increase of λ2 leads to an improvement in PSNR to some

oint followed by a reduction in PSNR. When the value of λ1 is rel-

tively large, the PSNR will decrease with the increase of λ2 and

he rate of the decrease of MNR-ADL-SR 2 is slower than that of

NR-ADL-SR 1 . In the L = 1 case, a relatively large λ2 does not re-

ult in such a degraded PSNR as when L = 10 and L = 4 , especially

or MNR-ADL-SR 2 . 

Based on our experiments, some general guidelines could be

iven to the settings of λ1 and λ2 . The setting of λ1 mainly de-

ends on the level of the noise. For a higher noise level, λ1 should

e set as a larger value. Based on our experimental tests, the

uggested intervals from which λ1 can be chosen as a function

f noise level are summarized Table 3 . Appropriate setting of λ2 
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Fig. 5. PSNR results for the Cameraman image with different regularization parameters. Left column: MNR-ADL-SR 1 . Right column: MNR-ADL-SR 2 . Top row: L = 10 . Middle 

row: L = 4 . Bottom row: L = 1 . 
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mainly depends on the amount of texture areas and smooth ar-

eas in the image. In general, λ2 can be chosen from the interval

[10 −4 , 0 . 7] . For images containing more texture areas, such as the

test image Nîmes, a small λ2 is preferred. For images containing

more smooth areas, such as the test image Cameraman, a larger

λ2 will give better results. 

In our experiments, the regularization coefficients for MNR-

DL-SR 1 and MNR- ADL-SR 2 algorithms were selected empirically.

Likewise, the parameters of RSN-ADL [22] and MNR-DL-TV-2

[5] were also determined in this way. The parameters of the MIDAL

[4] and DFN [2] algorithms for the first three test images were set

as in their original papers and for the Peppers image the param-

eters are manually tuned to lead to the best PSNR. The parame-

ters of the algorithms used in our experiments are summarized in

Tables 1 and 2 . 

To investigate the stability of the performance of the proposed

methods with respect to the choice of the parameters, the param-

eters tuned for the Cameraman image (as shown in Table 1 and

Table 2 ) were also employed for other test images. The denoising

results are compared with those obtained with the tuned parame-
 t  
ers for each individual image, and the decreases in PSNR are sum-

arized in Table 4 . This table shows that there will be some com-

romise in performance if the parameters were not tuned to the

pecific images. 

.1.4. Experimental results 

The algorithms were tested with 30 noise realizations for each

ase. The samples of the denoising results found in one test are

hown in Figs. 7–12 . The average results over the 30 random noise

ealizations measured in PSNR, MAE and MSSIM are provided in

ig. 6 , where the bars illustrate the mean results and the error bars

isplay the standard deviations. From the top row to the bottom

ow, the noise levels are L = 10 , 4 , 1 respectively. 

Let us just compare the MNR-ADL-SR 1 and MNR-ADL-SR 2 algo-

ithms with our previous work RSN-ADL. Generally, it can be seen

rom the denoised images that the visual appearance of the results

btained by MNR-ADL-SR 1 and MNR-ADL-SR 2 is better than that

f RSN-ADL. MNR-ADL-SR 1 and MNR-ADL-SR 2 can preserve image

etails as well as RSN-ADL, but reconstruct smooth areas better

han RSN-ADL (see the background of the Cameraman image in
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Fig. 6. Denoising results in PSNR, MAE and MSSIM based on 30 noisy realizations for each case. Top row: L = 10 . Middle row: L = 4 . Bottom row: L = 1 . (Note that legends 

are identical for all plots, but omitted in two figures to retain clarity.) 

Table 1 

Parameters used in the algorithms for “Cameraman” and “Nîmes”. 

L Algorithm Cameraman Nîmes 

10 MNR-ADL-SR 1 λ1 = 0 . 2 , λ2 = 0 . 1 λ1 = 0 . 2 , λ2 = 0 . 01 

MNR-ADL-SR 2 λ1 = 0 . 3 , λ2 = 0 . 1 λ1 = 0 . 2 , λ2 = 0 . 2 

RSN-ADL λ = 0 . 4 λ = 0 . 3 

MIDAL λ = 6 . 1 λ = 4 

MNR-DL-TV-2 λ = 2 . 7 λ = 17 . 5 

DFN T = 2 . 1 
√ 

�1 (L ) , λ0 = 1 . 3 , λ1 = 10 T = 2 
√ 

�1 (L ) , λ0 = 1 . 3 , λ1 = 10 

4 MNR-ADL-SR 1 λ1 = 0 . 3 , λ2 = 0 . 2 λ1 = 0 . 4 , λ2 = 0 . 001 

MNR-ADL-SR 2 λ1 = 0 . 6 , λ2 = 0 . 1 λ1 = 0 . 3 , λ2 = 0 . 4 

RSN-ADL λ = 0 . 7 λ = 0 . 5 

MIDAL λ = 4 . 5 λ = 2 . 7 

MNR-DL-TV-2 λ = 1 . 2 λ = 13 . 5 

DFN T = 2 . 5 
√ 

�1 (L ) , λ0 = 1 . 8 , λ1 = 5 . 7 T = 2 
√ 

�1 (L ) , λ0 = 1 . 5 , λ1 = 10 

1 MNR-ADL-SR 1 λ1 = 0 . 5 , λ2 = 0 . 7 λ1 = 1 . 2 , λ2 = 10 −4 

MNR-ADL-SR 2 λ1 = 1 . 3 , λ2 = 0 . 2 λ1 = 1 . 2 , λ2 = 10 −4 

RSN-ADL λ = 1 . 6 λ = 1 . 2 

MIDAL λ = 2 . 7 λ = 2 

MNR-DL-TV-2 λ = 0 . 01 λ = 3 . 2 

DFN T = 2 . 6 
√ 

�1 (L ) , λ0 = 1 . 8 , λ1 = 5 . 7 T = 2 
√ 

�1 (L ) , λ0 = 1 . 5 , λ1 = 10 
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Table 2 

Parameters used in the algorithms for “Fields” and “Peppers”. 

L Algorithm Fields Peppers 

10 MNR-ADL-SR 1 λ1 = 0 . 4 , λ2 = 0 . 01 λ1 = 0 . 1 , λ2 = 0 . 2 

MNR-ADL-SR 2 λ1 = 0 . 4 , λ2 = 0 . 01 λ1 = 0 . 4 , λ2 = 0 . 01 

RSN-ADL λ = 0 . 5 λ = 0 . 4 

MIDAL λ = 6 . 7 λ = 5 . 9 

MNR-DL-TV-2 λ = 3 . 7 λ = 4 . 2 

DFN T = 2 
√ 

�1 (L ) , λ0 = 1 . 3 , λ1 = 10 T = 1 . 8 
√ 

�1 (L ) , λ0 = 0 . 9 , λ1 = 5 

4 MNR-ADL-SR 1 λ1 = 0 . 7 , λ2 = 0 . 01 λ1 = 0 . 2 , λ2 = 0 . 3 

MNR-ADL-SR 2 λ1 = 0 . 7 , λ2 = 0 . 01 λ1 = 0 . 6 , λ2 = 0 . 01 

RSN-ADL λ = 1 λ = 0 . 7 

MIDAL λ = 4 . 5 λ = 4 . 1 

MNR-DL-TV-2 λ = 0 . 7 λ = 2 . 2 

DFN T = 2 
√ 

�1 (L ) , λ0 = 1 . 3 , λ1 = 10 T = 1 . 9 
√ 

�1 (L ) , λ0 = 1 . 1 , λ1 = 3 . 5 

1 MNR-ADL-SR 1 λ1 = 1 . 8 , λ2 = 0 . 01 λ1 = 1 . 6 , λ2 = 0 . 001 

MNR-ADL-SR 2 λ1 = 1 . 8 , λ2 = 0 . 01 λ1 = 1 . 6 , λ2 = 0 . 001 

RSN-ADL λ = 3 . 5 λ = 1 . 6 

MIDAL λ = 3 . 5 λ = 2 . 4 

MNR-DL-TV-2 λ = 0 . 01 λ = 0 . 01 

DFN T = 2 
√ 

�1 (L ) , λ0 = 1 . 2 , λ1 = 10 T = 2 
√ 

�1 (L ) , λ0 = 1 , λ1 = 3 . 5 

Fig. 7. Results for Cameraman ( L = 10 ). (a) MNR-ADL-SR 1 (25.67 dB). (b) MNR-ADL-SR 2 (25.52 dB). (c) RSN-ADL (25.36 dB). (d) MIDAL (25.40 dB). (e) MNR-DL-TV-2 (26.62 dB). 

(f) DFN (26.04 dB). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

General guidelines for the setting of λ1 . 

L Suggested interval for λ1 

10 [0 .1, 0.4] 

4 [0 .2, 0.7] 

1 [0 .5, 1.8] 

Table 4 

Performance decrease in PSNR using the tuned parameters for Cameraman. 

L Algorithm Nîmes Fields Peppers 

10 MNR-ADL-SR 1 0 .41 0 .15 0 .03 

MNR-ADL-SR 2 0 .53 0 .51 0 .69 

4 MNR-ADL-SR 1 0 .47 0 .26 0 .04 

MNR-ADL-SR 2 0 .73 0 .17 0 .45 

1 MNR-ADL-SR 1 0 .84 0 .33 0 .51 

MNR-ADL-SR 2 0 .80 0 .41 0 .97 
Figs. 7–9 as an example). This demonstrates the benefit of the in-

troduction of the smoothness regularizer. For the Nîmes image, the

proposed algorithms do not show visible advantages as compared

with RSN-ADL. This could be caused by the fact that Nîmes con-

tains many structural details for which the smoothness regulariz-

ers contribute little. The results of MNR-ADL-SR 1 and MNR-ADL-

SR 2 are very similar in visual quality and the former algorithm can

obtain slightly better results in terms of the performance metrics,

as shown in Fig. 6 . 

For the images Cameraman and Peppers with noise levels L =
10 and L = 4 , the results of MNR-DL-TV-2 are the best in terms of

the metrics. However, the proposed algorithms can better preserve

fine textures (see the building details in the background of Cam-

eraman in Figs. 7 and 8 ). For Nîmes and Fields, the proposed algo-

rithms outperform the baseline algorithms for most cases in terms

of PSNR and MAE. The DFN algorithm obtains the best MSSIM val-
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Fig. 8. Results for Cameraman ( L = 4 ). (a) MNR-ADL-SR 1 (23.65 dB). (b) MNR-ADL-SR 2 (23.51 dB). (c) RSN-ADL (23.35 dB). (d) MIDAL (23.26 dB). (e) MNR-DL-TV-2 (24.52 dB). 

(f) DFN (23.02 dB). 

Fig. 9. Results for Cameraman ( L = 1 ). (a) MNR-ADL-SR 1 (20.97 dB). (b) MNR-ADL-SR 2 (20.89 dB). (c) RSN-ADL (20.62 dB). (d) MIDAL (20.86 dB). (e) MNR-DL-TV-2 (19.69 dB). 

(f) DFN (19.44 dB). 

u  

c  

a  

l  

p  

i  

m

5

 

a  

e  

s  

l  

a  
es for these two images, but some artifacts are also introduced as

an be seen in Fig. 11 . The denoised images obtained by the MIDAL

lgorithm have the stair-casing effect, especially when the noise

evel is high (see Fig. 9 ). As can be seen in Fig. 6 , when L = 1 , the

roposed algorithms obtain the best results for most cases, which

ndicates their superiority in removing a relatively high level of

ultiplicative noise, as compared with the baseline algorithms. 
.1.5. Comparison with additive noise removal methods 

Since the multiplicative noise is converted to additive noise by

pplying the logarithmic transform in the proposed methods (i.e.

quation (11) ), the proposed methods are also compared with clas-

ical denoising methods dealing with additive noise. In particu-

ar, the TV [31] and K-SVD [17] denoising methods are employed

s baselines. In our experiments, the images were denoised using
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Fig. 10. Results for Nîmes ( L = 10 ). (a) MNR-ADL-SR 1 (28.14 dB). (b) MNR-ADL-SR 2 (28.21 dB). (c) RSN-ADL (28.22 dB). (d) MIDAL (27.93 dB). (e) MNR-DL-TV-2 (28.42 dB). 

(f) DFN (27.73 dB). 

Fig. 11. Results for Fields ( L = 4 ). (a) MNR-ADL-SR 1 (27.33 dB). (b) MNR-ADL-SR 2 (27.31 dB). (c) RSN-ADL (27.15 dB). (d) MIDAL (27.06 dB). (e) MNR-DL-TV-2 (26.81 dB). (f) 

DFN (26.93 dB). 

 

 

 

 

 

 

Table 5 

PSNR decrease of denoised images obtained using additive noise removal methods. 

L Algorithm Cameraman Nîmes Fields Peppers 

10 TV 1 .86 0 .65 2 .52 1 .73 

K-SVD 4 .46 2 .26 3 .08 5 .19 

4 TV 3 .79 1 .46 5 .92 3 .79 

K-SVD 5 .52 2 .72 5 .88 5 .42 
these additive noise removal methods in the log-domain, and then

the exponential transform was applied to obtain the denoised im-

ages. The parameters of the additive noise removal methods were

selected empirically for obtaining highest PSNRs. It has been found

that these methods do not outperform the proposed methods, and

the decreases in PSNR of these methods as compared with the pro-

posed methods are summarized in Table 5 . 

1 TV 8 .83 4 .80 13 .28 8 .99 

K-SVD 8 .81 5 .42 13 .35 8 .88 
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Fig. 12. Results for Peppers ( L = 1 ). (a) MNR-ADL-SR 1 (21.27 dB). (b) MNR-ADL-SR 2 (21.17 dB). (c) RSN-ADL (21.36 dB). (d) MIDAL (20.53 dB). (e) MNR-DL-TV-2 (19.65 dB). (f) 

DFN (20.10 dB). 

Fig. 13. Original SAR images. 
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Table 6 

ENL for the homogeneous regions in the denoised SAR images. 

Algorithm Region 1 Region 2 Region 3 Region 4 

Original 22 29 8 4 

MNR-ADL-SR 1 1538 124100 31460 62 

MNR-ADL-SR 2 1376 43902 15205 64 

RSN-ADL 779 4483 3260 47 

MIDAL 2345 15516 115800 215 

MNR-DL-TV-2 688 1077 71 8 

DFN 144 106 36 12 

p  

i  

F

 

p  

t  

o  
.2. Experiments with real SAR images 

In this subsection, the algorithms are applied to removing

peckle noise in the real SAR images 3 shown in Fig. 13 . Due to

he lack of reference clean images, the metrics used in the ex-

eriments for synthetic data can no longer be employed to assess

he despeckling performance. For the homogeneous areas where

he scene variation is supposed to be negligible, as in the regions

arked with red rectangles in Fig. 13 , the Equivalent Number of

ooks (ENL) measure is suitable for evaluating the level of smooth-

ng [35] . For a given homogeneous region 

ˆ g reg , the ENL can be

omputed as 

NL = 

[E( ̂  g reg )] 2 

Var ( ̂  g reg ) 
, (42) 

here E( ̂ g reg ) and Var ( ̂ g reg ) denote the mean and the variation of

he pixel values in region 

ˆ g reg . This quantity increases as the level

f smoothing improves. 

For a relatively fair comparison, the same parameters as used

or Cameraman with the noise level L = 4 (see Table 1 ) were em-
3 The test SAR images were downloaded from { https://github.com/zhangyiwei79/ 

pticks-SAR/tree/master/SAR%20images } 

F  

a  

E  

a  
loyed for the real SAR images. The denoised images are shown

n Figs. 14–17 . The ENL values of the four regions as marked in

ig. 13 are summarized in Table 6 . 

From Figs. 14–17 , we can see that all the algorithms are ca-

able of reducing the speckle noise in the SAR images. However,

here is still some visible speckle noise in the denoised versions

btained via MNR-DL-TV-2 and DFN (see subfigures (e) and (f) of

igs. 14–17 ). The homogeneous areas in the results for the MIDAL

lgorithm are well-smoothed, which is also confirmed by the large

NL values in Table 6 , but some texture details are over-smoothed

s shown in the subfigures (d) of Figs. 14 and 17 . The proposed

https://github.com/zhangyiwei79/Opticks-SAR/tree/master/SAR%20images
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Fig. 14. Results for the first SAR image. (a) MNR-ADL-SR 1 . (b) MNR-ADL-SR 2 . (c) RSN-ADL. (d) MIDAL. (e) MNR-DL-TV-2. (f) DFN. 

Fig. 15. Results for the second SAR image. (a) MNR-ADL-SR 1 . (b) MNR-ADL-SR 2 . (c) RSN-ADL. (d) MIDAL. (e) MNR-DL-TV-2. (f) DFN. 
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MNR-ADL-SR 1 and MNR-ADL-SR 2 algorithms have the capability

of maintaining a good balance between removing noise and pre-

serving the original geometric details. Their reconstructions have

clear visual appearance and high ENL, as compared with the re-

sults of RSN-ADL, which demonstrates the advantage of the pro-

posed smoothness regularizer. 

6. Conclusion 

We have proposed a new multiplicative noise removal algo-

rithm and an optimization method corresponding to this model.
he denoising task was considered in the log-domain and formu-

ated as an objective function consisting of a data fidelity term

nd two regularizers. The data fidelity term was derived from the

tatistical property of the multiplicative noise, and the regulariz-

rs were based on a learned analysis dictionary and the pixel-wise

ifferences of the image, repsectively. In order to address the op-

imization for recovering the image, a variable splitting technique

as applied and the ADMM framework was carefully adapted. In

he update of the variable related to the smoothness regularizer,

 relaxation approach was employed to convert the variables in

ifferent forms to a unified one. Simulation results with synthetic
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Fig. 16. Results for the second SAR image. (a) MNR-ADL-SR 1 . (b) MNR-ADL-SR 2 . (c) RSN-ADL. (d) MIDAL. (e) MNR-DL-TV-2. (f) DFN. 

Fig. 17. Results for the second SAR image. (a) MNR-ADL-SR 1 . (b) MNR-ADL-SR 2 . (c) RSN-ADL. (d) MIDAL. (e) MNR-DL-TV-2. (f) DFN. 
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l  
oisy images and real SAR images demonstrated the promising

erformance of the proposed method, especially for a relatively

igh noise level. 
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ppendix 

In this section, the reason that problem (38) can be addressed

ith the gradient descent iteration described as (39) is explained

n detail. 

Let the function m ( x , y ) denote the pixel values of the image

 R for the pixel indices x , y ∈ 
. Similarly, the given matrix N R 

an be denoted as n ( x , y ). Using these new notations, the prob-

em (38) can be written as the functional minimization problem as
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follows 

arg min 

m 

∫ ∫ 



{
λ2 

((
∂m 

∂x 

)2 

+ 

(
∂m 

∂y 

)2 )
+ 

γ2 

2 

(n − m ) 2 
}

d x d y. 

(43)

Define 

F (m (x, y ) , m x , m y ) 

= λ2 

((
∂m 

∂x 

)2 

+ 

(
∂m 

∂y 

)2 )
+ 

γ2 

2 

(n − m ) 2 

= λ2 (m 

2 
x + m 

2 
y ) + 

γ2 

2 

(n − m ) 2 , 

(44)

where m x and m y represent the partial derivatives ∂m 

∂x 
and 

∂m 

∂y 
re-

spectively, and the problem (43) can be written as 

arg min 

m 

∫ ∫ 



F (m (x, y ) , m x , m y )d x d y (45)

The Euler–Lagrange equation associated with this problem is given

by [32] 

∂F 

∂m 

− ∂ 

∂x 

(
∂F 

∂m x 

)
− ∂ 

∂y 

(
∂F 

∂m y 

)
= 0 . (46)

Since 

∂F 

∂m 

= γ2 (m − n ) , (47)

∂ 

∂x 

(
∂F 

∂m x 

)
= 2 λ2 

∂m x 

∂x 
(48)

and 

∂ 

∂y 

(
∂F 

∂m y 

)
= 2 λ2 

∂m y 

∂y 
, (49)

the Euler–Lagrange Eq. (46) is equivalent to 

γ2 (m − n ) − 2 λ2 

(
∂m x 

∂x 
+ 

∂m y 

∂y 

)
= 0 , (50)

which can be addressed numerically [32] . In the k th iteration, m is

updated according to the following iteration 

m 

(k +1) = m 

(k ) + τ

[
2 λ2 

(
∂ m 

(k ) 
x 

∂x 
+ 

∂m 

(k ) 
y 

∂y 

)
− γ2 (m 

(k ) − n ) 

]
, (51)

where τ denotes the step size. Alternatively, the iteration equation

above can be written in matrix form given by Eq. (39) as shown in

Section 4 . 
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