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Abstract— This paper presents a new method to improve a 

multi-stage non-negative matrix factorization (NMF) based 
algorithm for separating singing voice from accompanying 
music in single channel recordings. In the proposed method, 
local spectral and temporal discontinuity measures are used to 
refine the vocal and music components obtained by the 
baseline NMF algorithm. The effectiveness of the proposed 
algorithm is demonstrated using the MIR-1K data set. 

Keywords—non-negative matrix factorization; single 
channel voice/music separation; harmonic/percussive separation 

I. INTRODUCTION 
Non-negative matrix factorization (NMF) [1], [2], a 

popular technique for learning parts-based representations, 
has been used for monaural source separation of acoustic 
inputs [3], [4]. In particular, it has been used for singing 
voice separation based on the assumption that spectrogram 
of music can be expressed by a limited number of spectral 
templates [5]. 

A number of attempts were made to separate singing 
voice from monaural music using NMF. For example: 
Vembu and Baumann [6] applied NMF to decompose the 
mixture spectrogram into a set of components and used 
unsupervised learning algorithms to cluster their spectral 
bases into vocal and nonvocal ones. Chanrungutai and 
Ratanamahatana [7] performed separation based on the 
rhythmic structure of music components. In the hybrid 
system by Virtanen et al. [8], NMF is utilized to learn the 
accompaniment model once vocals are removed using a 
pitch detection algorithm. Then the learned accompaniments 
are subtracted from the original mixture to yield the 
separated vocals. The system proposed by Durrieu et al. [9] 
represents the leading voice using a source/filter model 
while an unconstrained NMF model is used to represent the 
background music. 

A more recent approach for monaural voice/music 
separation is the use of the harmonic-percussive sound 
separation (HPSS) algorithm developed by Ono et al. in 
[10]. HPSS is designed as an optimization problem to 
minimize the temporal/spectral gradients of the separated 

spectrograms to enhance the horizontal/vertical ridges. 
Tachibana et al. [11] used HPSS in two stages with high and 
low frequency resolution spectrograms to separate the 
pitched and percussive instruments respectively from the 
mixture signal. Jeong and Lee extended this idea in [12] by 
including the vocal signal along with the harmonic and 
percussive instruments in a single optimization framework. 
FitzGerald used a median filtering approach in two stages to 
address the same problem in [13]. 

An interesting algorithm by Zhu et al. [14] replaces the 
HPSS in each stage by NMF. In their algorithm, each NMF 
component in the two stages is classified as either a vocal 
component or a musical one based on the thresholding of a 
discontinuity measure. The algorithm is fast and effective. 
However, we observed that many of the NMF components 
were actually a mixture of both voice and music. In this 
paper, we propose to decompose each one of these 
components into a vocal component and a musical one. The 
decomposition is achieved by measuring discontinuities at 
different parts of the component rather than the overall 
discontinuity of the whole component. 

The rest of the paper is organized as follows: Section II 
briefly summarizes the baseline multi-stage NMF algorithm 
in [14]. Section III presents our method for improving this 
algorithm with the use of local discontinuity measures for 
further refining the NMF components before reconstructing 
sound sources. Section IV shows the results of applying the 
proposed method on the MIR-1K dataset as compared with 
the baseline method. Finally, section V gives the conclusion. 

II. THE BASELINE ALGORITHM 

A. Non-negative matrix factorization for sound source 
separation 
Let 𝐗 be the 𝐾×𝑇 non-negative matrix that represents the 

magnitude spectrogram of the mixture signal 𝒙, where  𝐾 is 
the number of frequency bins and 𝑇 is the number of time 
frames. The approximate non-negative factorization of 𝐗 is 
given by 

𝐗 ≈ 𝐁𝐆                                         (1) 
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where 𝐁  and 𝐆  are the basis and gains matrices of 
dimensions 𝐾×𝐽 and 𝐽×𝑇 respectively, and 𝐽 represents the 
number of components. Each component 𝐗! is defined as the 
product of a spectral basis 𝐛! (the 𝑗!! column in 𝐁) and the 
corresponding temporal gain 𝐠! (the 𝑗!! row in 𝐆) 

𝐗! = 𝐛!𝐠!                                        (2) 

where 𝑗 = 1,… , 𝐽 is the component index. 

The factorization in (1) is often achieved by minimizing 
a cost function defined on 𝐗 and 𝐁𝐆 while applying the non-
negativity contraints. The Kullback-Leibler (K-L) 
divergence is commonly used in source separation and it 
performed better in the current algorithm 

𝐷 𝐗 ∥ 𝐁𝐆 = 𝐗!,! log
𝐗!,!
𝐁𝐆 !,!

!
!!!

!
!!! − 𝐗!,! + 𝐁𝐆 !,!. 

(3) 

This minimization problem was solved as in [2] with the 
following multiplicative update rules. 

𝐁⟵ 𝐁⊗
𝐗
𝐁𝐆𝐆

!

𝟏𝐆!
,         𝐆⟵ 𝐆⊗

𝐁! 𝐗
𝐁𝐆

𝐁!𝟏
               (4) 

where ⊗ and / represent element-wise multiplication and 
division respectively, 𝟏  denotes an all-one matrix of the 
same size as 𝐗, and T is the matrix transpose. 

In many of the existing algorithms [6], [7], each NMF 
component is ideally assumed to be coming from one sound 
source and thus classified as either vocal or instrumental. 
This is also the assumption of the baseline algorithm in [14] 
summarized in the following section. 

B. Classifying each component using spectral and 
temporal discontinuity measures 
The algorithm presented in [14] contains two stages, one 

for separating pitched instruments from the mixture, and the 
other for separating percussion instruments. The separation 
of pitched instruments is based on the observation that in a 
spectrogram with a long FFT window, pitched instruments 
have a stable pitch and thus appear continuous in the 
temporal direction and discontinuous in the spectral 
direction. To filter out these pitched instruments, the 
magnitude spectrogram is decomposed into a set of NMF 
components and those components that are spectrally 
discontinuous are removed.  

Spectral discontinuity of each component is measured by 
summing and normalizing the squared differences between 
adjacent elements in its spectral basis. Specifically, for each 
component 𝐗! , the spectral discontinuity measure 𝑑! 𝐗!  is 
defined as 

𝑑! 𝐗! = 𝐁!,!!𝐁!!!,!
!!

!!!
𝐁!,!
!!

!!!
                    (5) 

and if it is larger than a threshold 𝜃!, the component is 
considered to be originating from a pitched instrument. The 
suitable value for 𝜃!  was found empirically to be 0.4 as 
explained in [14]. 

A new magnitude spectrogram 𝐗!  is formed by 
subtracting all pitched components from the input mixture 
spectrogram 𝐗 

𝐗′ = max 𝟎, 𝐗 − 𝐗𝑗!!!,…,!
𝑑s 𝐗𝑗 >𝜃s

                 (6) 

where 𝟎 is an all-zero matrix of the same size as 𝐗, and 
max 𝐘,𝐙  takes the element-wise maximum of  matrices 𝐘, 
𝐙, which is used to ensure there are no negative elements in 
𝐗′. After that, 𝐗′ is inverted back to time domain using the 
phase information of the original sound mixture, then it is 
used as an input to the second stage of the algorithm. 

In the second stage of the algorithm, percussion 
instruments are separated from the sound mixture based on 
the observation that in a short window spectrogram, they 
appear continuous in the spectral direction and discontinuous 
in the temporal direction. Therefore, NMF components that 
are temporally discontinuous can be considered as 
originating from percussive sounds and thus removed using 
a similar temporal discontinuity thresholding method. 
Specifically, for each component 𝐗! , the temporal 
discontinuity measure 𝑑! 𝐗!   is defined as 

𝑑! 𝐗! = 𝐆!,!!𝐆!,!!!
!!

!!!

𝐆!,!
!!

!!!
                      (7) 

and if it is larger than a threshold 𝜃!, the component is 
considered to be originating from percussion instruments.  

The separated voice spectrogram is obtained by 
subtracting all percussion instruments components from 𝐗′ 
then it is inverted back to time domain using the phase 
information of 𝐗′ to yield the separated singing voice 𝒗. 
Music signal can be obtained by subtracting 𝒗  from the 
mixture signal 𝒙. 

The algorithm summarized above classifies each NMF 
component as a vocal component or a musical one. 
However, it was noticed that many of the components 
contain a mixture of both voice and music, rendering an 
inaccurate classification in practice.  

III. USING LOCAL DISCONTINUITY MEASURES                           
TO REFINE THE NMF COMPONENTS  

To address the problem discussed above, we propose a 
method for improving the separation quality through the use 
of local discontinuity measures of the NMF components. To 
explain the idea, we first consider the long window 
spectrogram factorization stage where 𝑑!   is used to classify 
NMF components into pitched and non-pitched ones. At this 
stage we noticed that many of the components that were 
classified as non-pitched components still contain sounds of 
pitched instruments.  

An example is shown in Fig. 1. Specifically, Fig. 1(a) 
and Fig. 1(b) are the spectrograms of the original pitched 
music and voice respectively, while Fig. 1(c) shows the 
spectrogram of one of the non-pitched components. It can be 
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observed that the non-pitched component still contains traces 
of pitched music. 

 
Fig. 1. Long-window spectrograms of (a) the original music, (b) the 
original voice, and (c) a component classified as non-pitched (vocals + 
percussions) component. The spectral basis of the component is shown in 
(d) where the local spectral discontinuity 𝑃! of each peak is displayed. 

To further refine this component, we first identify the 𝐼 
highest peaks in its spectral basis 𝐛!. Then, the local spectral 
discontinuity 𝑃! around each peak is calculated as follows: 

𝑃! 𝑖, 𝑗 =
𝐁𝑘,𝑗−𝐁𝑘−1,𝑗

2ℎ𝑖(𝑖)
𝑘=𝑙𝑜(𝑖)

𝐁𝑘,𝑗
2ℎ𝑖(𝑖)

𝑘=𝑙𝑜(𝑖)
                       (8)  

where 𝑖 = 1,… , 𝐼 is the peak index, and the lower bound 
𝑙𝑜(𝑖) and the upper bound ℎ𝑖 𝑖  are given by 

𝑙𝑜(𝑖) = max 0, 𝑓! −
!
!

                             (9)  

ℎ𝑖 𝑖 = min 𝑓! +
!
!
,𝐾                           (10)  

where 𝑓! represents the frequency bin (index) of the peak and 
𝑙 is the peak width (in number of frequency bins) which is 
assumed to be constant for all peaks. 

Fig. 1(d) shows the spectral basis 𝐛! as well as the values 
of 𝑃! 𝑖, 𝑗  for each peak. In our experiments, we observed 
that peaks with 𝑃! > 𝜃!  (𝜃! = 0.4) mostly belong to pitched 
instruments (denoted by blue squares); otherwise, they are 
from the voice (denoted by red circles). 

Following this observation, we propose to remove the 
pitched peaks (with 𝑃! > 𝜃! ) from the basis 𝐛!  of this 
component (as well as all non-pitched components) in order 

to obtain a ‘cleaner’ non-pitched component. The removed 
pitched peaks are added together to form a new pitched 
component. Algorithms 1 and 2 depict the new long window 
spectrogram factorization stage in detail. 
 

Algorithm	
  1	
  Separating	
  pitched	
  instruments	
  from	
  
the	
  sound	
  mixture	
  𝒙	
  
Input:	
  Mixture	
  signal	
  𝒙	
  
Output:	
  Pitched-­‐instruments-­‐removed	
  signal	
  𝒙′	
  	
  
Initialization:	
  𝐽	
  
Calculate	
  𝐁,𝐆	
  from	
  (3),	
  (4)	
  	
  
for	
  𝑗 = 1: 𝐽	
  	
  
	
  	
  	
  	
  	
  	
  if	
  (𝑑! 𝐗! > 𝜃!)	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  𝐗!!"#$!!"   ß  𝐗! 	
  
	
  	
  	
  	
  	
  	
  else	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Run	
  Algorithm	
  2	
  to	
  extract	
  𝐗!!"#$!!" 	
  from	
  𝐗! 	
  
	
  	
  	
  	
  	
  	
  end	
  if	
  
end	
  for	
  
𝐗!ß	
  Calculate	
  from	
  (6)	
  using	
  all	
  𝐗!!"#$!!" 	
  above	
  
𝒙′ß	
  Inverse	
  STFT	
  of	
  𝐗!	
  

 

Algorithm	
  2	
  Split	
  a	
  component	
  𝐗! 	
  into	
  a	
  pitched	
  and	
  a	
  
non-­‐pitched	
  one	
  based	
  on	
  𝑃!	
  

Input:	
  Component	
  𝐗! 	
  with	
  𝑑! ≤ 𝜃!	
  	
  	
  	
  	
  (𝐗! = 𝐛!𝐠!)	
  
Output:	
  Extracted	
  pitched	
  component	
  𝐗!!"#$!!" 	
  	
  
Initialization:	
  𝜃!, 𝑙	
  
𝐯! 	
  ß	
  𝐛! 	
  
𝐟	
  ß	
  Locations	
  of	
  the	
  𝐼	
  highest	
  peaks	
  in	
  𝐯! 	
  
for	
  𝑖 = 1: 𝐼	
  
	
  	
  	
  	
  	
  Calculate	
  𝑃! 𝑖, 𝑗 ,	
  𝑙𝑜(𝑖)	
  and	
  ℎ𝑖(𝑖)	
  from	
  (8)-­‐(10)	
  	
  
	
  	
  	
  	
  	
  if	
  (𝑃!(𝑖, j) > 𝜃!)	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  𝑖𝑛𝑑 = 𝑙𝑜 𝑖 : ℎ𝑖 𝑖 	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  𝐯!!"# 	
  ß  𝟎	
  
	
  	
  	
  	
  	
  end	
  if	
  
end	
  for	
  
𝐦!ß𝐛! − 𝐯! 	
  	
  
𝐗!!"#$!!"ß𝐦!𝐠! 	
  	
  

 

Similarly, at the second stage where percussion 
instruments are separated from vocals using short window 
spectrogram factorization, it was noticed that many of the 
NMF components that were classified as originating from 
percussion instruments (𝑑! > 𝜃!), still contain vocal sounds. 
Again, we searched for the 𝐼 highest peaks in the temporal 
gain 𝐠! of each of these components and we calculated the 
local temporal discontinuity 𝑃! around each peak defined as: 

𝑃! 𝑖, 𝑗 =
𝐆𝑗,𝑡−𝐆𝑗,𝑡−1

2ℎ𝑖(𝑖)
𝑡=𝑙𝑜(𝑖)

𝐆𝑗,𝑡
2ℎ𝑖(𝑖)

𝑡=𝑙𝑜(𝑖)
                   (11)   

with 

𝑙𝑜(𝑖) = max 0, 𝑐! −
!
!

                        (12)  

ℎ𝑖 𝑖 = min 𝑐! +
!
!
,𝐾                        (13)  
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where 𝑐! represents the time frame (index) of the 𝑖!! peak 
and 𝑤 is the peak width measured in terms of the number of 
time frames and assumed to be constant for all peaks.  

Peaks are assumed to belong to vocals if 𝑃! ≤ 𝜃! and thus 
removed from the percussion component gain 𝐠! to obtain a 
refined one. The removed peaks are added together to form a 
new vocal gain. In this way, the percussion component is 
split into a new vocal component and a refined percussion 
one. All refined percussion components are used to re-
synthesize the singing voice as explained at the end of 
section II. 

IV. EXPERIMENTAL RESULTS 
The MIR-1K dataset [15] is used to evaluate the 

effectiveness of the proposed algorithm in comparison to the 
baseline algorithm in [14]. The dataset consists of 1000 song 
clips with duration ranging from 4 to 13 seconds, extracted 
from 110 karaoke Chinese pop songs performed mostly by 
amateurs. The sampling rate of each song is 16 kHz, and the 
singing voice and music accompaniment were recorded in 
the right and left channels respectively. The voice and music 
signals were linearly mixed with equal energy to generate 
the mixture signal. 

The separation performance was measured using the 
source-to-distortion ratio (SDR), source-to-interferences 
ratio (SIR), and sources-to-artifacts ratio (SAR) defined in 
[16]. These were calculated using the BSS_Eval toolbox 
[17] where higher values indicate better separation quality. 

The first experiment was run using the original algorithm 
with all its parameters as in [14]. In the first stage, pitched 
instruments were separated using a spectrogram with a long 
FFT window of 4096 samples and an overlap of 50%. The 
spectral discontinuity threshold 𝜃! was set to 0.4. Percussion 
instruments were separated in the second stage where the 
FFT length was set to 256 samples with also 50% window 
overlap, and the temporal discontinuity threshold 𝜃! was set 
to 0.2. The number of components 𝐽 was fixed to 15 in the 
two stages. 

In the second experiment, the long window spectrogram 
factorization stage was implemented using the original 
algorithm as in [14] without any modification while the short 
window stage (i.e. the second stage) was implemented using 
our proposed algorithm of removing the vocal peaks from 
percussion components gains. A fixed width 𝑤 of 250 time 
frames (which corresponds to 2 seconds) was chosen 
empirically, and I was set to 20.  

In the third experiment, we used our proposed algorithm 
only during the long window stage where pitched peaks are 
removed from non-pitched components basis. All peaks 
were assumed to have a width 𝑙 of 6 frequency bins (~24 
Hz). Finally, in the fourth experiment our proposed 
algorithm was used in both stages. 

Fig. 2 shows the results based on the three metrics, 
namely, SDR, SIR and SAR for the separated voice for the 
four experiments. We noticed that the best separation 
performance was achieved when using our proposed 
algorithm during the long window stage only, where the 

median SDR improved by 1 dB, and the median SIR 
improved by 1.2 dB, while the median SAR decreased by 
only 0.2 dB. It was also noted that using the proposed 
algorithm in the two stages leads to similar results. 

 
Fig. 2. Separation performance for singing voice using SDR (left), SIR 
(middle), and SAR (right) metrics. Four boxplots are shown for each 
metric; the leftmost one is for Zhu’s original algorithm in the two stages 
(O), followed by the new modified algorithm during the short window 
stage (S), then during the long window stage (L), and finally combining 
both modifications (L+S). Outliers are not shown. Median values are 
displayed. 

On the other hand, Fig. 3 shows the same three metrics 
for the separated music in all the four experiments. In this 
case, the best separation performance was obtained when 
using our proposed algorithm during the two stages, where 
the median SDR improved by 1.2 dB, and the median SIR 
improved by 1.8 dB, while the median SAR decreased by 2 
dB. The reader can also check sound samples for the four 
experiments in [18]. 

 
Fig. 3. Separation performance for music instruments using the same 
metrics as in Fig. 2. 

V. CONCLUSION 
We have presented a method to improve the performance 

of a multi-stage NMF algorithm for the separation of singing 
voice from monaural music recordings by applying the local 
spectral and temporal discontinuity measures on the peaks of 
basis and gains of the NMF components that were identified 
as containing both voice and music. These components were 
then split into vocal and music components instead of being 
classified as a whole to be either from singing voice or music 
instruments. Experiments indicated that the new algorithm 
improves the separation quality for both voice and music. 

ACKNOWLEDGMENT  
The authors of this paper would like to thank Dr. Wei Li 

and Dr. Bilei Zhu for providing the code of their algorithm. 

2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP)

96



REFERENCES 
[1] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-

negative matrix factorization.,” Nature, vol. 401, no. 6755, pp. 788–
91, Oct. 1999. 

[2] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix 
factorization,” in Proc. Neural Inf. Process. Syst., Denver, CO, 2001, 
pp. 556–562. 

[3] P. Smaragdis, “Discovering auditory objects through non-negativity 
constraints,” in Proc. ISCA Tutorial and Research Workshop 
Statistical Perceptual Audio Process., Jeju Island, Korea, 2004. 

[4] P. Smaragdis, “Non-negative matrix factor deconvolution  ; 
Extracation of multiple sound sources from monophonic Inputs,” in 
Proc. Int. Symp. Independent Component Analysis and Blind Signal 
Separation, Sep. 2004, pp. 494–499. 

[5] J. C. Brown and P. Smaragdis, “Non-negative matrix factorization for 
polyphonic music transcription,” in Proc. IEEE Workshop on Appli- 
cations of Signal Processing to Audio and Acoustics (WASPAA), 
Oct. 2003, pp. 177–180. 

[6] S. Vembu and S. Baumann, “Separation of vocals from polyphonic 
audio recordings,” in Proc. Int. Conf. Music Inf. Retrieval, London, 
U.K., 2005, pp. 337–344. 

[7] A. Chanrungutai and C. A. Ratanamahatana, “Singing voice 
separation for mono-channel music using non-negative matrix 
factorization,” in Proc. IEEE Int. Conf. Advanced Technologies for 
Communications, Bangkok, Thailand, Oct. 2008, pp. 243–246. 

[8] T. Virtanen, A. Mesaros, and M. Ryynänen, “Combining pitch-based 
inference and non-negative spectrogram factorization in separating 
vo- cals from polyphonic music,” in Proc. ISCA Tutorial and 
Research Workshop on Statistical and Perceptual Audition 
(SAPA’08), Brisbane, Australia, Sep. 2008, pp. 17–20. 

[9] J.-L. Durrieu, B. David, and G. Richard, “A musically motivated 
mid-level representation for pitch estimation and musical audio 
source separation,” IEEE J. Sel. Topics Signal Process., vol. 5, no. 6, 
pp. 1180–1191, Oct. 2011. 

[10] N. Ono, K. Miyamoto, J. L. Roux, H. Kameoka, and S. Sagayama, 
“Separation of a monaural audio signal into harmonic/percussive 
com- ponents by complementary diffusion on spectrogram,” in Proc. 
Eur. Signal Processing Conf., Lausanne, Switzerland, Aug. 2008. 

[11] H. Tachibana, T. Ono, N. Ono, and S. Sagayama, “Melody line 
estimation in homophonic music audio signals based on temporal-
variability of melodic source,” in Proc. ICASSP, 2010, pp. 425–428.  

[12] I.-Y. Jeong and K. Lee, “Vocal separation from monaural music 
using temporal/spectral continuity and sparsity constraints,” IEEE 
Signal Processing Lett., vol. 21, no. 10, pp. 1197-1200, 2014.  

[13] D. FitzGerald and M. Gainza, “Single channel vocal separation using 
median filtering and factorisation techniques,” ISAST Trans. 
Electron. Signal Process., vol. 4, no. 1, pp. 62–73, Jan. 2010.  

[14] B. Zhu, W. Li, R. Li, and X. Xue, “Multi-stage non-negative matrix 
factorization for monaural singing voice separation,” IEEE Trans. 
Audio, Speech, Lang. Process., vol. 21, no. 10, pp. 2096–2107, Oct. 
2013. 

[15] C.-L. Hsu and J.-S. R. Jang, “On the improvement of singing voice 
sepa- ration for monaural recordings using the MIR-1K dataset,” 
IEEE Trans. Audio, Speech, Lang. Process., vol. 18, no. 2, pp. 310–
319, Feb. 2010. 

[16] E. Vincent, R. Gribonval, and C. Fevotte, “Performance measurement 
in blind audio source separation,” IEEE Trans. Audio, Speech, Lang. 
Process., vol. 14, no. 4, pp. 1462– 1469, Jul. 2006. 

[17] BSS_Eval toolbox available at http://bass-db.gforge.inria.fr/bss_eval/ 
[18] Sound samples available at: 

https://sites.google.com/site/voicemusicseparation/ 
 

2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP)

97


