
6340 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 12, DECEMBER 2012
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Abstract—We consider the data-driven dictionary learning
problem. The goal is to seek an over-complete dictionary from
which every training signal can be best approximated by a linear
combination of only a few codewords. This task is often achieved
by iteratively executing two operations: sparse coding and dictio-
nary update. The focus of this paper is on the dictionary update
step, where the dictionary is optimized with a given sparsity
pattern. We propose a novel framework where an arbitrary
set of codewords and the corresponding sparse coefficients are
simultaneously updated, hence the term simultaneous codeword
optimization (SimCO). The SimCO formulation not only general-
izes benchmark mechanismsMOD and K-SVD, but also allows the
discovery that singular points, rather than local minima, are the
major bottleneck of dictionary update. To mitigate the problem
caused by the singular points, regularized SimCO is proposed.
First and second order optimization procedures are designed to
solve regularized SimCO. Simulations show that regularization
substantially improves the performance of dictionary learning.

Index Terms—Dictionary learning, Grassmann manifold, opti-
mization, singularity, sparse representation.

I. INTRODUCTION

S PARSE signal representations have recently received ex-
tensive research interest across several communities in-

cluding signal processing, information theory, and optimiza-
tion [1]–[4]. The basic assumption underlying this technique
is that a natural signal can be approximated by the combina-
tion of only a small number of elementary components, called
codewords or atoms, that are chosen from a dictionary (i.e., the
whole collection of all the codewords). Sparse representations
have found successful applications in data interpretation [5], [6],

Manuscript received October 18, 2011; revised April 13, 2012; accepted
August 04, 2012. Date of publication October 25, 2012; date of current version
November 20, 2012. The associate editor coordinating the review of this
manuscript and approving it for publication was Prof. Olgica Milenkovic.
This work was supported by the MOD University Defence Research Centre
in Signal Processing, and in part by the Centre for Vision Speech and Signal
Processing , and in part by the China Scholarship Council, and in part by
the Engineering and Physical Sciences Research Council of the U.K. under
grant numbers EP/H050000/1 and EP/H012842/1. A portion of this paper
was presented at the 49th Annual Allerton Conference on Communication,
Control, and Computing, Monticello, IL, Sep. 28–30, 2011, and at the 37th
IEEE International Conference on Acoustics, Speech and Signal Processing,
Kyoto, Japan, March 25–30, 2012.
W. Dai is with the Department of Electrical and Electronic Engineering, Im-

perial College London, London SW7 2AZ, U.K. (e-mail: wei.dai1@imperial.ac.
uk).
T. Xu and W. Wang are with the Department of Electronic Engineering,

University of Surrey, Guildford GU2 7XH, U.K. (e-mail: t.xu@surrey.ac.uk;
w.wang@surrey.ac.uk).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TSP.2012.2215026

source separation [7]–[9], signal denoising [10], [11], coding
[12]–[14], classification [15]–[17], recognition [18], impainting
[19], [20] and many more (see e.g., [21]).
Two related problems have been studied either separately or

jointly in sparse representations. The first one is sparse coding,
that is, to find the sparse linear decompositions of a signal for a
given dictionary. Efforts dedicated to this problem have resulted
in the creation of a number of algorithms including basis pur-
suit (BP) [22], matching pursuit (MP) [23], orthogonal matching
pursuit (OMP) [24], [25], subspace pursuit (SP) [26], [27], re-
gression shrinkage and selection (LASSO) [28], focal under-de-
termined system solver (FOCUSS) [29], and gradient pursuit
(GP) [30]. Sparse decompositions of a signal, however, rely
greatly on the degree of fitting between the data and the dictio-
nary, which leads to the second problem, i.e., the issue of dic-
tionary design.
An over-complete dictionary, one in which the number of

codewords is greater than the dimension of the signal, can be
obtained by either an analytical or a learning-based approach.
The analytical approach generates the dictionary based on a
predefined mathematical transform, such as discrete Fourier
transform (DFT), discrete cosine transform (DCT), wavelets
[31], curvelets [32], contourlets [33], and bandelets [34]. Such
dictionaries are relatively easy to obtain and more suitable for
generic signals. In learning-based approaches, however, the
dictionaries are adapted from a set of training data [5], [10],
[35]–[42]. Although this may involve higher computational
complexity, learned dictionaries have the potential to offer im-
proved performance as compared with predefined dictionaries,
since the atoms are derived to capture the salient information
directly from the signals.
Dictionary learning algorithms are often established on an op-

timization process involving the iteration between two stages:
sparse approximation and dictionary update. First an initial dic-
tionary is given and a signal is decomposed as a linear combi-
nation of only a few atoms from this initial dictionary. Then the
atoms of the dictionary are trained with fixed or sometimes un-
fixed weighting coefficients. After that, the trained dictionary is
used to compute the new weighting coefficients. The process is
iterated until the most suitable dictionary is eventually obtained.
One of the early algorithms that adopted such a two-step

structure was proposed by Olshausen and Field [5], [35], where
a maximum likelihood (ML) learning method was used to
sparsely code natural images upon a redundant dictionary.
The sparse approximation step in the ML algorithm [5] which
involves probabilistic inference is computationally expensive.
In a similar probabilistic framework, Kreutz-Delgado et al.
[37] proposed a maximum a posteriori (MAP) dictionary
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learning algorithm, where the maximization of the likelihood
function as used in [5] is replaced by the maximization of the
posterior probability that a given signal can be synthesized by
a dictionary and the sparse coefficients. Based on the same ML
objective function as in [5], Engan et al. [36] developed a more
efficient algorithm, called the method of optimal directions
(MOD), in which a closed-form solution for the dictionary
update has been proposed. This method is one of the earliest
methods that implements the concept of sparification process
[43]. Several variants of this algorithm, such as the iterative
least squares (ILS) method, have also been developed which
were summarized in [44]. A recursive least squares (RLS) dic-
tionary learning algorithm was recently presented in [45] where
the dictionary is continuously updated as each training vector
is being processed, which is different from the ILS dictionary
learning method. Aharon, Elad and Bruckstein developed
the K-SVD algorithm in [10] by generalizing the K-means
algorithm for dictionary learning. This algorithm uses a similar
block-relaxation approach to MOD, but updates the dictionary
on an atom-by-atom basis, without having to compute matrix
inversion as required in the original MOD algorithm. The ma-
jorization method was proposed by [46] in which the original
objective function is substituted by a surrogate function in each
step of the optimization process.
In contrast to the generic dictionaries described above,

learning structure-oriented parametric dictionaries has also
attracted attention. For example, a Gammatone generating func-
tion has been used by Yaghoobi et al. [47] to learn dictionaries
from audio data. In [48], a pyramidal wavelet-like transform
was proposed to learn a multiscale structure in the dictionary.
Other constraints have also been considered in the learning
process to favor the desired structures of the dictionaries, such
as the translation-invariant or shift-invariant characteristics of
the atoms imposed in [49]–[53] and the orthogonality between
subspaces enforced in [54], and the de-correlation between the
atoms promoted in [55]. An advantage of a parametric dictionary
lies in its potential for reducing the number of free parameters,
thereby leading to a more efficient implementation and better
convergence of dictionary learning algorithms [43]. Other recent
efforts in dictionary learning include the search for robust and
computationally efficient algorithms, such as [56], [57], and
[11], and learning dictionaries from multimodal data [58], [59].
Comprehensive reviews of dictionary learning algorithms can
be found in recent survey papers e.g., [43] and [60].
In thispaper, similar toMODandK-SVDmethods,wefocuson

thedictionaryupdate step forgenericdictionary learning.Anovel
optimization framework is proposed, where an arbitrary subset
of the codewords are allowed to be updated simultaneously,
hence the term simultaneous codeword optimization (SimCO).
The proposed framework has the following characteristics.
• SimCO generalizes MOD and K-SVD. We show that the
MOD algorithm is in fact an inexact Newton method under
the proposed framework while K-SVD can be viewed as
a special case of SimCO where only one codeword is se-
lected for update at each iteration. The SimCO framework
is general and flexible. This paper presents two possible
algorithmic implementations: one is based on gradient de-
scent and the other uses a Newton method.

• The proposed optimization framework allows the dis-
covery of the bottleneck of dictionary update. As opposed
to traditional formulations, in the SimCO framework,
the objective function involves only the dictionary by
treating sparse coefficients as a function of the dictionary.
In this way, the gradient can be easily computed and ana-
lyzed. Surprisingly, against the traditional belief that local
minima are the major problem, we empirically discover
that singular points are the bottleneck.

• Regularized SimCO is introduced to mitigate the singu-
larity problem. To avoid the singularity problem, an ad-
ditive regularization term is introduced. The resulting ob-
jective function is differentiable. Significant improvement
in empirical performance is observed. This, from another
angle, verifies that singularity is the bottleneck.

The remainder of the paper is organized as follows. Section II
introduces the SimCO optimization framework, with particular
emphasis on the motivations for regularized SimCO. Section III
discusses the relation of SimCO to MOD and K-SVD, and the
possibility of extending MOD and K-SVD to the regularized
versions. Section IV provides necessary preliminaries on man-
ifolds and shows that dictionary update can be cast as an opti-
mization problem on manifolds. The algorithmic details on how
to apply the first and second order methods to solve the SimCO
optimization problem are presented in Section V. In Section VI,
we rigorously prove the deep connection between SimCO and
K-SVD. Numerical results of SimCO algorithms are presented
in Section VII. Finally, the paper is concluded in Section VIII.

II. THE OPTIMIZATION FRAMEWORK OF SIMCO

Dictionary learning is a procedure to find an over-complete
dictionary that best represents the training signals. More pre-
cisely, let be the training data, where each column
of corresponds to one training sample. For a given dictionary
size , the optimal dictionary is the one that
corresponds to

(1)

where is the Frobenius norm. Here, the column of
is often referred to as the codeword in the dictionary. In
practice, it is typical that , i.e., an over-complete
dictionary is considered and the number of training samples
is larger than the number of codewords. Generally speaking,
the optimization problem is ill-posed unless extra constraints
are imposed on the dictionary and the coefficient matrix .
The most common constraint on is that is sparse, i.e., the
number of nonzero entries in , comparedwith the total number
of entries, is small.
Most dictionary learning algorithms consist of two stages:

sparse coding and dictionary update. See Algorithm 1 for
the diagram of a typical dictionary learning procedure. In the
sparse coding stage, the goal is to find a sparse to minimize

for a given dictionary . In practice, the sparse
coding problem is often approximately solved by using either
-minimization [61] or greedy algorithms, for example, OMP

[25] and SP [26] algorithms.
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Algorithm 1: A Typical Dictionary Learning Algorithm

Task: find the best dictionary to represent the data sample
matrix .
Initialization: Set the initial dictionary . Set .
Repeat until convergence (use stop rule):
• Sparse coding stage: Fix the dictionary and update

using some sparse coding technique.
• Dictionary update stage: Update , and as
appropriate.

• .

The focus of this paper is on the dictionary update stage. In-
stead of directly solving the joint optimization problem in (1),
we view the sparse coefficients as a function of the dictionary so
that the optimization is only over the dictionary. Furthermore,
our framework allows one to simultaneously update an arbitrary
subset of codewords and the corresponding coefficients. This
characteristic gives rise to the term simultaneous codeword op-
timization (SimCO).
In our formulation, we assume that the dictionary matrix

contains unit -norm columns and the sparsity pattern of
remains unchanged. Define

(2)

where is the -norm and the set . This is
the set of all feasible dictionaries. Represent the sparsity pattern
of by the index set which contains the indices of
all the non-zero entries in : that is, for all
and for all . Define

(3)

This is the set of all feasible given sparsity pattern . The
dictionary update problem is formulated as

(4)

To evaluate for a given , one needs to solve the least
squares problem . Denote the optimal
by , which can be viewed as a function of . An update

in results in an update of . In other words, both and
are simultaneously updated.
One may notice that the optimal that solves the least

squares problem may not be unique.
Non-unique solutions happen only when is singular, for-
mally defined as follows. For a given sparsity patten , let

. Let be the sub-matrix of
containing the columns indexed by . A dictionary

is singular under the sparsity pattern if there exists
such that the columns of are linearly dependent, i.e.,

does not have full column rank. At a singular point,
is not uniquely defined. This can be solved by arbitrarily

choosing one of the multiple solutions as the choice of
does not affect the value of .
The singularity problem brings several algorithmic problems.
1) Severe performance deterioration in dictionary update. Our
empirical experiments (detailed in Section VII-A) show

that, when the dictionary update procedure fails in finding
a globally optimal solution, most likely it converges to a
singular point, i.e., an ill-conditioned dictionary.

2) Slow convergence in dictionary update. Let
be the minimum singular value of

the matrix . When it is close to zero, the curvature
(Hessian) of is large and the gradient changes
significantly in the neighborhood of a singular point.
Optimization algorithms typically suffer from a very slow
convergence rate.

3) Instability in the subsequent sparse coding stage. When
is close to zero, the solution to the least

squares problem

becomes unstable: small changes in often result in
very different least squares solutions . It is well
known that the stability of sparse coding relies on the so
called restricted isometry condition (RIP) [61], which re-
quires that the singular values of submatrices of center
around 1. An ill-conditioned violates RIP and hence
results in sparse coefficients that are sensitive to noise.

To mitigate the singularity problem, we propose to add a reg-
ularization term into the objective function:

(5)

where is a properly chosen constant. Hereafter, we refer
to (4) and (5) as primitive SimCO and regularized SimCO re-
spectively. Note that when , regularized SimCO reduces
to primitive SimCO. In practice, one may consider first using
regularized SimCO to obtain a reasonably good dic-
tionary and then reduce the regularization constant to zero to
refine the dictionary further. This two-step procedure often re-
sults in a well-conditioned dictionary that fits the training data.
See the simulation part (Section VII) for examples.
The effect of the regularization term is to remove the singular

point. Let be the column of . Let be the
sub-vector of formed by the entries indexed by . Let

be the number of non-zeros in the column
of . Define

(6)

where is the zero vector of length , and is the
identity matrix. Then

(7)

When , the matrix in the atomic function

has full column rank. The objective function
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is always continuous and contains no singular points. The algo-
rithmic details for solving the regularized SimCO are presented
in Section V.
So far, we have considered only the case where all the code-

words and the corresponding nonzero coefficients are simulta-
neously updated. It is worth noting that SimCO accommodates
the case of simultaneously updating an arbitrary subset of code-
words and the corresponding nonzero coefficients. More pre-
cisely, let be the index set of the codewords to be up-
dated. That is, only codewords ’s, , are to be updated
while all other codewords ’s, , remain constant. Let

denote the sub-matrix of formed by the columns of
indexed by . Let denote the sub-matrix of consisting
of the rows of indexed by . Define

where is a set complementary to . Then
. Replacing the , and in (4) and (5) by ,

and respectively, the optimization framework devel-
oped for the full set , i.e., (4) and (5), can be readily applied
to the case . For this reason, the discussions hereafter
will center around the full set case (the subscript will be
dropped).
Finally, we would like to comment on the column-norm con-

straint imposed on the dictionary in (2). This constraint appears
in K-SVD but not in MOD. Theoretically, the performance of a
given dictionary is invariant to the column norms: a scaling in
columns of can be compensated by an inverse scaling in the
corresponding rows of . On the other hand, the constraint on
the column norms has certain advantages:
1) A normalized dictionary is required in regularized
SimCO. The regularization term is useful only
when the column norms of are fixed. Otherwise, the
regularized objective function (5) can be reduced simply
by scaling up the columns of .

2) A normalized dictionary plays an important role in
identifying singular points. As detailed in Section VII-A,
the gradient of the objective function is used to
distinguish between singular points and local minimizers.
Since scaling the columns of the dictionary results in
scaling in the gradient (see (10) for more details), a nor-
malization is necessary.

3) A normalized dictionary is preferred in the sparse
coding stage. Sparse coding algorithms rely heavily on the
magnitudes of the coefficients ’s, ,
which are affected by the column norms of . It is a stan-
dard practice to normalize the columns of before ap-
plying sparse coding algorithms.

III. RELATION TO THE STATE OF THE ART

In this section, we discuss how primitive SimCO is related
to two benchmark algorithms MOD and K-SVD. Further-
more, as regularization substantially improves the performance
(motivated in Section II and empirically demonstrated in
Section VII), we regularize MOD and K-SVD as well. Here,
we would like to emphasize that the regularization technique is
designed to handle the singularity problem, which is observed
via the SimCO framework. The authors are not aware of regu-
larized versions of MOD and K-SVD in the literature.
In MOD, the dictionary update involves iteratively

performing two steps: first fix and solve for

; then fix and solve for
. Both steps involve only solving a

least squares problem. Denote the dictionaries before and after
an iteration by and respectively. Then the updated sparse
coefficients are and the updated dictionary is given by

.
MOD can be viewed as an inexact Newton method to

solve the primitive SimCO problem without the column
norm constraint. To see it, after dropping the column-norm
constraint, the optimization problem in SimCO becomes

where .
Consider the Newton iteration for dictionary update, where
the gradient and the Hessian are given by

and

respectively (see Section V-B for more details on how to
compute Hessian). Note that the computation of is
complicated. To reduce the computational complexity, one may
approximate by omitting the terms involving ,
i.e., approximate by . Following
from this approximation, the objective function at the neigh-
borhood of a given dictionary can be approximated by

. The optimal dictionary with
respect to the approximated objective function is then given
by , which coincides
with the update rule in MOD.
Using a similar approximation for the corresponding Hes-

sian matrix, MOD can be adapted to solve the regularized
SimCO problem. We refer to it as regularized MOD. It again
iteratively performs two steps: first fix and solve for

; then fix and solve
for . Substantial improvement in

empirical performance can be observed in Section VII.
The relation between SimCO and K-SVD is straightforward.

Consider the SimCO where only one codeword and the cor-
responding sparse coefficients are updated. The resulting ob-
jective function is the same as that of K-SVD. More specifi-
cally, suppose that only the codeword and the corresponding
sparse coefficients are updated. Let .
Then both SimCO and K-SVD aim at solving

In K-SVD, singular value decomposition (SVD) is used to solve
the above optimization problem.
Nevertheless, it is not clear how to extend K-SVD to the reg-

ularized case. Let . With the regularization term,
the optimization problem becomes
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where is the zero matrix, is an all-one
vector, and we have simplified the notations and
to and respectively. If we apply SVD to , the
solution is exactly identical to that in the original K-SVD. If
we apply SVD to , the left singular vectors are not of the
form : the last entries of the left singular vectors are always
zero. In either case, in contrast to the original K-SVD, SVD
cannot solve the joint optimization problem. In the numerical
comparison part of this paper, we use regularized SimCO with

to solve this optimization problem, and refer
to the resulting algorithm as regularized “K-SVD” although it
involves no SVD.

IV. PRELIMINARIES ON MANIFOLDS

Our approach for solving the optimization problem (4) and
(5) relies on the notion of Stiefel and Grassmann manifolds.
In particular, the Stiefel manifold is defined as

The Grassmann manifold is de-
fined as Here, the notations

and follow from the convention in [62], [63]. Note
that each element in is a unit-norm vector while each el-
ement in is a one-dimensional subspace in . For any
given , it can generate a one-dimensional subspace
U . Meanwhile, any given U can be generated
from different : ifU , thenU
as well.
With these definitions, the dictionary can be interpreted

as the Cartesian product of many Stiefel manifolds .
Each codeword (column) in is one element in . It looks
straightforward that optimization over is an optimization over
the product of Stiefel manifolds.
What is not so obvious is that the optimization is actually

over the product of Grassmann manifolds. For any given pair
, if the signs of and change simultaneously, the

value of the objective function stays the same.
Let and

. Then it is straight-
forward to verify that . In other words, it
does not matter what is; what matters is the generated sub-
space . As shall become explicit later, this phenom-
enon has a significant impact on algorithm design and analysis.
It is worth noting that the performance of a given dictionary is

invariant to the permutations of the codewords. However, how
to effectively address this permutation invariance analytically
and algorithmically remains an open problem.

V. IMPLEMENTATION DETAILS FOR SIMCO

This section presents the algorithmic details on how to
solve the optimization problems (4) and (5). As the primitive
SimCO is a special case of regularized SimCO where ,
the descriptions below center around regularized SimCO. One
of the key properties of SimCO is that the objective function

only involves the dictionary. To minimize this objective
function, derivatives of this function need to be evaluated. First
and second order optimization procedures can be implemented.
Note that first order methods are often conceptually easier
to understand but slower in convergence rate, while second
order methods are typically faster in convergence rate but
more complicated in the computation of the search direction.
In this section, we first outline the proposed algorithms, then

give details on the computations of the first and second order
derivatives, and finally discuss the line search path that satisfies
the column norm constraint.

A. Outline of Algorithms

Algorithm 2: One Iteration in a Gradient Descent Line Search
Algorithm.

Input: , ,
Output: and .
Parameters: : initial step size. : the threshold
below which a gradient can be viewed as zero.

Initialization: Let .
1) Let . Compute and . If

, then , , and quit.
2) Set line search direction . Let and

.
Part A: the goal is to find s.t.

, where is defined via (15).
Iterate the following steps.
1) If , then , and

.
2) Else if , then ,
and .

3) Else if , then ,
and .

4) Otherwise, quit the iteration.
Part B: the goal is to shrink the interval length while
keeping . Iterate the
following steps until is sufficiently small.
1) If , then ,

and .
2) Else , and .
Output: Let . Set and

compute according to (9).

A natural choice of first order optimization procedures is the
gradient descent line search method. Algorithm 2 summarizes
one iteration of the proposed procedure. The computational de-
tails of the gradient and line search path are presented
in Sections V-B and V-C respectively, where 1 is a step size. For
proof-of-concept, we use the method of golden section search
(see [65] for a detailed description). The idea is to use the golden
ratio to successively narrow the search range of inside which
a local minimum exists. To implement this idea, we design a
two-step procedure in Algorithm 2: in the first step (Part A), we
increase/decrease the range of , i.e., , so that it contains
a local minimum and the objective function looks unimodal in
this range; in the second step (Part B), we use the golden ratio
to narrow the range so that we can accurately locate the mini-
mizer. Note that the proposed algorithm is by no means optimal.
Other ways to do a gradient descent efficiently can be found in
[64, Chapter 3].

1Algorithm 2 looks more complicated than popular gradient descent methods
in standard textbooks, e.g., [64]. We choose this implementation because it
mimics the ideal gradient descent with infinitesimal steps more authentically
than other optimization methods of which the step size may be so large that
local minimizers or singular point may not be seen. In the simulation part, we
use Algorithm 2 to catch the singular points.
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For second order optimization methods, we choose line
search Newton-CG (LSNCG) method [64, Ch. 7]. (It turns out
that the trust region method [64], another popular second order
optimization method, is not quite numerically stable under
certain conditions.) It is worth noting that LSNCG typically
exhibits a faster convergence rate than MOD as it can produce
a more accurate Hessian approximation.
Before discussing the details, let us first understand the

ideas behind LSNCG. Let and be the dictionaries
before and after a line search step. In Newton methods,

. However, note that the Hes-
sian is an matrix with entries

. Computing it explicitly and taking the inverse

are computationally expensive. The main idea of LSNCG
method is to use the conjugate gradient method [64, Ch. 5]
to avoid explicit computation of the Hessian and its inverse.
The steps of LSNCG are based on the concept of directional
derivative. Let be a matrix of the same dimension
of . The directional derivative of along direction is
defined as

Instead of computing the Hessian, LSNCG only involves direc-
tional derivative of the gradient, i.e.,

Note that both and are matrices2 and admit
closed forms (computation details are given in Section V-B).
The computational complexity is greatly reduced.

Algorithm 3: One Iteration in the LSNCG Algorithm

Input: , ,
Output: and .
Initialization: Set , ,

, and . Define tolerance
. Define shrink constant

.
Part A: the goal is to find the Newton direction using
conjugate gradient method. Perform the following iterations.
1) If , set and quite the
iterations.

2) Set ,

, and

3) If , set and quit the iterations.

4) Set ,

, and then .
Part B: Line search along .
1) Start with and repeat setting until

. Set , and
compute according to (9).

2The entries of are and those of are

.

Algorithm 3 summarizes one iteration of the LSNCG procedure
for dictionary update, where represents the inner product
of matrices and

B. Computation of the First and Second Order Derivatives

We now compute and . From the decomposition
derived in (7), it is clear that

(8)

For any given , define . It can be
verified that

As a result, it suffices to compute and for each
atomic function.
The atomic function for regularized SimCO, defined in

(7), is of the form where

(9)

Again, let . Then . Note that,
can be regarded as a function of either or . We first

compute , i.e., the gradient of

with respect to , and then obtain , i.e.,

the gradient of with respect to from . The

gradient with respect to is given by3

Note that is orthogonal to the

columns of . One has . As a result,

(10)

From the definition of in (6), is a sub-matrix of , and
therefore is also a sub-matrix of , i.e.,

.

A similar procedure is used to compute the second order
derivative . For a given ,

3Note that the term is a product of a vector and a tensor

defined as , where is the element of

the vector .
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define , where
is the zero matrix. By the definition

of and directional derivative, it can be verified that

. We compute

as follows. For any ,

(11)

It is clear that . To compute the other term

, note that is a function of involving matrix
inversion. To proceed, we use the fact that for any invertible
matrix , it holds (derived by
differentiating both sides of ). As a result, one has

where is given by

Define . Then,

(12)

Substitute (12) into (11). One is able to compute
, and hence , and .

C. Line Search Path

The line search mechanism used in this paper is significantly
different from the standard one due to the column norm con-
straint in (2). In a standard line search algorithm, the itera-
tion outputs an updated dictionary via

(13)

where is a properly chosen step size and is
the line search direction. Common choices for the search direc-
tion include for the gradient descent method and

for the Newton method. However, a di-
rect application of (13) generally results in a dictionary .
The line search path in this paper is restricted to the product

of Grassmann manifolds. This is because, as has been discussed
in Section IV, the objective function is indeed a function de-
fined on the product of Grassmann manifolds. On the Grass-
mann manifold , the geodesic path plays the same role as

the straight line in the Euclidean space: given any two distinct
points on , the shortest path that connects these two points
is geodesic [62]. Specifically, let U be a one-dimen-
sional subspace and be the corresponding generator
matrix (not unique).4 Consider a search direction with

and . Then the geodesic path starting from
along the direction is given by [62]

Note that and hence
. In practice, one can restrict the search path

within the interval .
For the dictionary update problem at hand, the line search

path is defined as follows. Let be the search direc-
tion. ( for the gradient descent method and

for the Newton method.) Let be the
column of . Define

(14)

so that and are orthogonal. The line search path for dic-
tionary update, say , , is given by [62]

if

if .
(15)

VI. CONVERGENCE OF PRIMITIVE SIMCO

The focus of this section is on the convergence performance
of primitive SimCO when the index set contains only one
index. The analysis shows deep connections between primitive
SimCO and K-SVD. It is clear that the optimization formula-
tions of primitive SimCO andK-SVD are exactly the samewhen

. However, the methods used to solve the optimiza-
tion problem are quite different: primitive SimCO uses stan-
dard optimization methods while K-SVD employs SVD. The
question is whether these two different approaches will give the
same solution eventually. Theorem 1 of this section shows that
a gradient descent finds a global optimum with probability one.
Hence, when , primitive SimCO and K-SVD are the
same in terms of ultimate learning performance. Note that, even
though the general case where is more interesting, it re-
mains open which point SimCO will converge to in this case.
When , the rank-one matrix approximation problem

arises in both primitive SimCO and K-SVD. Formally, let
be a matrix, where and are arbitrary

positive integers. Without loss of generality, assume that
. Suppose that the sorted singular values satisfy

. Define

(16)

The rank-one matrix approximation problem can be written as
the following optimization problem

(17)

4The generator matrix is a vector in this case.
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Fig. 1. Starting with the same point, the convergence behaviors of MOD, K-SVD, primitive SimCO and regularized SimCO are different. In this particular
example, only regularized SimCO avoids converging to a singular point.

The performance of gradient descent is analyzed in Theorem
1 for the rank-one matrix approximation problem. To avoid nu-
merical problems that may arise in practical implementations,
we consider an ideal gradient descent procedure with infinites-
imal step sizes. (Note that true gradient descent requires infini-
tesimal steps.)
Theorem 1: Consider a matrix and its singular

value decomposition. Employ the gradient descent procedure
with infinitesimal steps to solve (16). Suppose the starting point,
denoted by , is randomly generated from the uniform distribu-
tion on . Then the gradient descent procedure finds a global
minimizer with probability one.
The proof is detailed in Appendix A.
Remark 2: The notion of Grassmann manifold is essential in

the proof. The reason is that the global minimizer is unique up
to the subspace spanned by : if is a global minimizer,
then so is for all such that .
Remark 3: According to the authors’ knowledge, this is the

first result showing that a gradient search on Grassmann mani-
fold solves the rank-one matrix approximation problem. In the
literature, it has been shown that there are multiple stationary
points for the rank-one matrix approximation problem [66,
Proposition 4.6.2]. Our results show that a gradient descent
method will not converge to any other stationary points than
global minimizers. More recently, the rank-one decomposition
problem where was studied in [63].
Our proof technique is significantly different as the effects
of the eigen-spaces corresponding to need to be
considered for the rank-one approximation problem.

VII. EMPIRICAL TESTS

In this section, we numerically test the proposed primitive
and regularized SimCO. In the test of SimCO, all codewords
are updated simultaneously, i.e., . In Section VII-A, we
show that MOD5, K-SVD, and primitive SimCO may result in
an ill-conditioned dictionary while regularization can mitigate
this problem. Learning performance of synthetic and real data
is presented in Sections VII-B and VII-C respectively. A run-
ning time comparison of different algorithms is conducted in
Section VII-D.

5In the tested MOD, the columns in are normalized after each dictionary
update. This extra step is performed because many sparse coding algorithms
require a normalized dictionary. Furthermore, our preliminary simulations (not
shown in this paper) show that the performance of dictionary update could se-
riously deteriorate if the columns are not normalized.

It is worth noting that Algorithm 2 (gradient descent) is used
for the analysis of singular points in Section VII-A because of
the reasons explained in Footnote 1. Algorithm 3 (LSNCG) is
employed for synthetic and real data tests in Sections VII-B
and VII-C due to its fast convergence rate. Both regularized
“K-SVD” and regularized MOD are based on second order op-
timization methods to ensure a fair comparison.

A. Ill-Conditioned Dictionaries

In this subsection, we handpick a particular example to show
that MOD, K-SVD and primitive SimCO may converge to an
ill-conditioned dictionary. In the example, the training samples

are computed via , where
, , and each column of contains ex-

actly 4 nonzero components. We assume that the sparse coding
stage is perfect, i.e., the true sparsity pattern is avail-
able. We start with a particular choice of the initial dictionary

. The regularization constant is set to 0 and 0.01 for
primitive and regularized SimCOs respectively. Define the con-
dition number of a dictionary as

where . The numerical results are presented in

Fig. 1, where , , and are compared from

the left to the right. Note that in this example, .

The results in Fig. 1 show that
1) When the number of iterations exceeds 50, MOD, K-SVD
and primitive SimCO stop improving the training perfor-
mance. Surprisingly, the gradient in these methods
does not converge to zero. This implies that these methods
do not converge to a local minimizer. A more careful
study reveals that these algorithms converge to singular
points where becomes large ( for MOD,
K-SVD, and primitive SimCO).

2) By adding a regularization term and choosing the regular-
ization constant properly, regularized SimCO avoids the
convergence to an ill-conditioned dictionary, hence im-
proves the performance.

It is worth noting that the SimCO formulation is crucial for
distinguishing between singular points and local minimizers. In
the SimCO formulation, the objective function only involves
the dictionary, and the gradient of the objective function can be
easily computed via (8) and (10). If the search process converges
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Fig. 2. Performance comparison of dictionary update (no sparse coding step) (a) Noiseless case (b) Noisy case: SNR of training samples is 20 dB. Note that there
always exists a floor in the reconstruction error which is proportional to noise.

to a local minimizer, the gradient should converge to zero.When
the gradient does not vanish and changes rapidly in a neighbor-
hood, the convergence point must be a singular point.
We also observe that the singular points, rather than the local

minima, are the bottleneck. Towards this end, we randomly
pick converged dictionaries in MOD, K-SVD, and primitive
SimCO (from the case where there is no noise and is
priorly known). Surprisingly, we found that these algorithms
either converge to a global minimizer or a singular point.
Among the randomly picked converged dictionaries, no local
minimizer has been found yet. Furthermore, as we will show
in the next subsection, by adding the regularization term and
forcing the search path away from singular points, substantial
performance improvement can be achieved. All these suggest
that singular points tend to be the major obstacle preventing
these algorithms from converging to a global minimizer.

B. Experiments on Synthetic Data

The setting for synthetic data tests is summarized as follows.
The training samples are generated via .
Here, the columns of are randomly generated from
the uniform distribution on the Stiefel manifold . Each
column of contains exactly many non-zeros: the
position of the non-zeros are uniformly distributed on the set

; and the values of
the non-zeros are standard Gaussian distributed. In the tests, we
fix , , and , and change , i.e., the number
of training samples. Generally speaking, the fewer training
samples there are, the more challenging the dictionary update
is. In our experiments, we intentionally choose the challenging
case with small .
We first focus on the performance of dictionary update by

assuming that the true sparsity pattern is available. In reg-
ularized methods, the regularization constant is sequentially
reduced to zero: the total number of iterations is set to 400; we
change from to , , and , for every
100 iterations. Experiments for both noiseless and noisy cases
are performed. Note that in the noiseless case, the sparse repre-

sentation distortion can approach zero. It is more
indicative to use success rate rather than distortion: a success

is claimed when and a failure is claimed
otherwise. For the noisy case, there always exists a floor in the
representation distortion that is proportional to noise. The nor-

Fig. 3. Performance comparison of dictionary learning using OMP for sparse
coding.

malized distortion serves as a good performance
measure. The simulation results are presented in Fig. 2. It is ev-
ident that regularization significantly improves the performance
and that among all the regularized methods, regularized SimCO
is consistently better than others.
Then we evaluate the overall dictionary learning performance

by combining the dictionary update and sparse coding stages.
For sparse coding, we adopt the OMP algorithm [25] as it has
been used for testing the K-SVD method in [10], [67]. The
overall dictionary learning procedure is given in Algorithm 1.
We refer to the iterations between sparse coding and dictio-
nary learning stages as outer-iterations, and the iterations within
the dictionary update stage as inner-iterations. In our tests, the
number of outer-iterations is set to 50, and the number of inner-
iterations of is set to 1. Furthermore, in regularized SimCO, the
regularized constant is set to during the first 30
outer-iterations, and during the rest 20 outer-iterations.

The normalized learning performance is depicted
in Fig. 3. Again, the average performance of regularized SimCO
is consistently better than that of other methods.

C. Numerical Results for Image Denoising

As we mentioned in the introduction, dictionary learning
methods have many applications. In this subsection, we look
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Fig. 4. Example of the image denoising using dictionary learning. PSNR values in dB are given in sub-figure titles.

TABLE I
COMPARISON OF RUNNING TIME (IN SECONDS) FOR DICTIONARY LEARNING. NOTE THAT SPARSE CODING STEP WAS INCLUDED IN PRODUCING FIGS. 3 AND 4.

at one particular application, i.e., image denoising. Here, an
image corrupted by noise was used to train the dictionary: we
take 1,000 (significantly less than 65,000 used in [67]) blocks
(of size 8 8) of the corrupted image as training samples. The
number of codewords in the training dictionary is . For
dictionary learning, we iterate the sparse coding and dictionary
update stages 10 times. The sparse coding stage is based on
the OMP algorithm implemented in [67]. In the dictionary
update stage, different algorithms are tested and the number of
iterations in dictionary update is set to 50. The regularization
constant is set to . After the whole process of dic-
tionary learning, we use the learned dictionary to reconstruct
the image. The reconstruction results are presented in Fig. 4.
While all dictionary learning methods significantly improves
the image SNRs, the largest gain was obtained from regularized
SimCO.

D. Comments on the Running Time

This subsection compares the computational complexity of
MOD, K-SVD, and SimCO. As detailed in Sections III and V,
MOD uses an approximation to the Hessian while Algorithm
3 is based on the exact Hessian (without explicitly computed).
As a result, the complexity of MOD and SimCO is on the same

level: the computational cost for eachMOD iteration is less than
that for each SimCO iteration, but the number of iterations re-
quired for convergence in MOD is larger than that in SimCO.
As opposed to MOD and SimCO where all codewords are si-
multaneously updated, K-SVD updates codewords individually.
Despite the fact that a closed form solution can be obtained for
each update via SVD, the speed of K-SVD is often slower than
MOD and SimCO because of the individual update. The actual
running time in practice is compared for different algorithms in
Table I. The numerical comparison is consistent with the quali-
tative analysis above.

VIII. CONCLUSION

We have presented a new framework for dictionary update.
It allows not only a simultaneous update of all codewords and
the corresponding coefficients but also the observation that sin-
gular points rather than local minima are the bottleneck for the
dictionary update. To mitigate the effects of singularity, regu-
larized SimCO has been proposed. First and second order op-
timization procedures have been implemented. Numerical ex-
periments verify that regularization substantially improves the
performance.
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APPENDIX

Proof of Theorem 1: The following notations are repeat-
edly used in the proofs. Consider the singular value decompo-
sition , where
are the singular values, and and are the left and right
singular vectors corresponding to respectively. It is clear that
the objective function has two
global minimizers . For a given , the angle be-
tween and the closest global minimizer is defined as

The crux of the proof is that along the gradient descent
path, the angle is monotonically decreasing. Suppose that the
starting angle is less than . Then the only stationary points are
when the angle is zero. Hence, the gradient descent search
converges to a global minimizer. The probability one part
comes from that the starting angle equals to with probability
zero.
To formalize the idea, it is assumed that the starting point

is randomly generated from the uniform distribution
on the Stiefel manifold. Define a set to describe the
set of “bad” starting points. It is defined by

which contains all unit vectors that are orthogonal to . Ac-
cording to [68], under the uniform measure on , the mea-
sure of the set is zero. As a result, the starting point
with probability one. The reason that we refer to as the set of
“bad” starting points is explained by the following lemma.

Lemma 4: Starting from any , a gradient descent
path stays in the set .

Proof: This lemma can be proved by computing the gra-
dient of at a . Let be the optimal solution of
the least squares problem in . It
can be verified that and .
It is clear that

When , it holds that and
. Since both and the gradient descent

direction are orthogonal to , the gradient descent path
starting from stays in .
Now consider a starting points . We shall show that

the angle is monotonically decreasing along the gradient de-
scent path. Towards this end, the notions of directional deriva-
tive play an important role. View as a function of .
The directional derivative of at along a direction
vector , denoted by , is defined as

Note the relationship between the directional derivative and the
gradient given by . With this definition, the fol-
lowing lemma plays the central role in establishing Theorem 1.

Fig. 5. Illustration of , , and .

Lemma 5: Consider a such that
. Let be the gra-

dient of the objective function at . Then it holds .
The proof of this lemma is detailed in Appendix B.
The implications of this lemma are twofold. First, it implies

that for all such that .
Hence, the only possible stationary points in are
and . Second, starting from , the angle decreases
along the gradient descent path. As a result, a gradient descent
path will not enter . It will converge to or . The-
orem 1 is therefore proved.

Proof of Lemma 5: This appendix is devoted to prove
Lemma 5, i.e., . Note that

. It suffices to show that .
Towards this end, the following definitions are useful. De-

fine . Then the vector is one of the
two global minimizers that is the closest to . It can be also
verified that . Furthermore, suppose that

. Define

Clearly, vectors and are well-defined when .
The relationship among , , and is illustrated in
Fig. 5. Intuitively, the vector is the tangent vector that pushes
towards the global minimizer .
In the following, we show that if we restrict

. By the definition of the directional derivative, one
has6

Note that

Since , one has

Substitute it back to . One has In other
words, if , then

6The denominator comes from the restriction that .
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To compute , note that

Now define

Then clearly . To proceed, we also de-
compose as follows. Recall the SVD of given by

. Let contain
the left singular vectors corresponding to , i.e.,

. Similarly define . Then,

where for , and
. It is straightforward to verify that

.
The function can be decomposed into two parts. Note

that

where the last equality follows from that and
hence

To further simplify , note that . Further-
more, it is straightforward to verify that the projection of
on is given by . Define

. Then, and

Hence,

We are now ready to decide the sign of . It is straight-
forward to verify that

and similarly Therefore,

and . Hence, one has

Note that

It can be concluded that when , and
. Lemma 5 is therefore proved.
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