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Abstract—We consider the data-driven dictionary learning
problem. The goal is to seek an over-complete dictionary from
which every training signal can be best approximated by a
linear combination of only a few codewords. This task is often
achieved by iteratively executing two operations: sparse coding
and dictionary update. In the literature, there are two benchmark
mechanisms to update a dictionary. The first approach, for
example the MOD algorithm, is characterized by searching for
the optimal codewords while fixing the sparse coefficients. In
the second approach, represented by the K-SVD method, one
codeword and the related sparse coefficients are simultaneously
updated while all other codewords and coefficients remain
unchanged. We propose a novel framework that generalizes
the aforementioned two methods. The unique feature of our
approach is that one can update an arbitrary set of codewords
and the corresponding sparse coefficients simultaneously: when
sparse coefficients are fixed, the underlying optimization problem
is the same as that in the MOD algorithm; when only one
codeword is selected for update, it can be proved that the
proposed algorithm is equivalent to the K-SVD method; and more
importantly, our method allows to update all codewords and all
sparse coefficients simultaneously, hence the term simultaneously
codeword optimization (SimCO). Under the proposed framework,
we design two algorithms, namely the primitive and regularized
SimCO. Simulations demonstrate that our approach excels the
benchmark K-SVD in terms of both learning performance and
running speed.

I. INTRODUCTION

Sparse signal representations have recently received exten-

sive research interests across several communities including

signal processing, information theory, and optimization [1],

[2], [3], [4]. The basic assumption underlying this technique

is that a natural signal can be approximated by the combination

of only a small number of elementary components, called

codewords or atoms, that are chosen from a dictionary (i.e., the

whole collection of all the codewords). Sparse representations

have found successful applications in data interpretation [5],

[6], source separation [7], [8], [9], signal denoising [10],

[11], coding [12], [13], [14], classification [15], [16], [17],

recognition [18], impainting [19], [20] and many more (see

e.g. [21]).

Two related problems have been studied either separately or

jointly in sparse representations. The first one is sparse coding,

that is, to find the sparse linear decompositions of a signal

for a given dictionary. Efforts dedicated to this problem have

resulted in the creation of a number of algorithms including ba-

sis pursuit (BP) [22], matching pursuit (MP) [23], orthogonal

matching pursuit (OMP) [24], [25], subspace pursuit (SP) [26],

[27], regression shrinkage and selection (LASSO) [28], focal

under-determined system solver (FOCUSS) [29], and gradient

pursuit (GP) [30]. Sparse decompositions of a signal, however,

highly rely on the degree of fits between the data and the

dictionary, which leads to the second problem, i.e. the issue

of dictionary design.

An over-complete dictionary, of which the number of code-

words is greater than the dimension of the signal, can be

obtained by either an analytical or a learning-based approach.

The analytical approach generates the dictionary based on a

predefined mathematical transform, such as discrete Fourier

transform (DFT), discrete cosine transform (DCT), wavelets

[31], curvelets [32], contourlets [33], and bandelets [34]. Such

dictionaries are relatively easier to obtain and more suitable

for generic signals. In learning-based approaches, however, the

dictionaries are adapted from a set of training data [5], [35],

[36], [37], [38], [10], [39], [40], [41], [42]. Although this may

involve higher computational complexity, learned dictionaries

have the potential to offer improved performance as compared

with predefined dictionaries, since the atoms are derived to

capture the salient information directly from the signals.

Dictionary learning algorithms are often established on

an optimization process involving the iteration between two

stages: sparse approximation and dictionary update. First an

initial dictionary is given and a signal is decomposed as

a linear combination of only a few atoms from the initial

dictionary. Then the atoms of the dictionary are trained with

fixed or sometimes unfixed weighting coefficients. After that,

the trained dictionary is used to compute the new weighting

coefficients. The process is iterated until the most suitable

dictionary is obtained eventually.

One of the early algorithms that adopted such a two-step

structure was proposed by Olshausen and Field [5], [35],

where a maximum likelihood (ML) learning method was

used to sparsely code the natural images upon a redundant

dictionary. Based on the same ML objective function as in

[5], Engan [36] developed a more efficient algorithm, called

the method of optimal directions (MOD), in which a closed-

form solution for the dictionary update has been proposed.

Several variants of this algorithm, such as the iterative least

squares (ILS) method, have also been developed which were

summarized in [43]. In 2006, Aharon, Elad and Bruckstein

developed the K-SVD algorithm in [10] by generalizing the K-

means algorithm for dictionary learning. This algorithm uses
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a similar block-relaxation approach to MOD, but updates the

dictionary on atom-by-atom basis, without having to compute

matrix inversion as required in the original MOD algorithm.

The majorization method was proposed by [44] in which

the original objective function is substituted by a surrogate

function in each step of the optimization process.

In this paper, similar to MOD and K-SVD methods, we

focus on the dictionary update step. Our major contributions

include

• We propose a novel framework where the dictionary

update problem is formulated as an optimization prob-

lem on manifolds. This framework allows to update an

arbitrary subset of the codewords simultaneously, hence

the term simultaneously codeword optimization (SimCO).

Our framework can be viewed as a generalization of the

MOD and K-SVD methods: when sparse coefficients are

fixed, the underlying optimization problem is the same as

that in the MOD algorithm; when only one codeword is

selected for update, the optimization problems that arise

in both SimCO and K-SVD are identical.

• We observe that both K-SVD and the primitive SimCO

have the same problem: they may converge to an ill-

conditioned dictionary rather than a local minimizer. This

phenomenon turns out to be the major reason to prevent

a better learning performance. To address this issue, we

propose a regularized SimCO, which overcomes the ill-

condition problem.

• Our empirical tests show that the regularized SimCO

that updates all codewords simultaneously enjoys better

learning performance and faster running speed than the

long-time benchmark K-SVD method.

In terms of theoretical analysis, for the first time, we prove

that a gradient search on the Grassmann manifold solves the

rank-one matrix approximation problem with probability one.

Therefore, when only one codeword is updated in each step,

SimCO and K-SVD share the same learning performance with

probability one. Due to the space limitations, the results and

the proofs are omitted in this paper. Interested readers may

refer to the journal version of this paper [45].

The remainder of the paper is organized as follows. Section

II formulates the problems of dictionary learning and update.

Section III provides necessary preliminaries on manifolds and

shows that dictionary update can be cast as an optimization

problem on manifolds. The primitive SimCO algorithm is

detailed in Section IV while the regularized SimCO algorithm

is described in Section V. Numerical performance evaluations

are represented in Section VI.

II. DICTIONARY LEARNING AND UPDATE

The dictionary learning problem can be formulated as fol-

lows: let Y ∈ R
m×n be the training data, where each column

of Y corresponds to one training sample; one is looking for

the solution to the following optimization problem

min
D∈Rm×d, X∈Rd×n

‖Y −DX‖2F ,

subject to ‖D:,i‖2 = 1, ∀1 ≤ i ≤ d. (1)

Algorithm 1 A typical dictionary learning algorithm

Task: find the best dictionary to represent the data sample

matrix Y .

Initialization: Set the initial dictionary D(1). Set J = 1.

Repeat until convergence (use stop rule):

• Sparse coding stage: Fix the dictionary D(J) and update

X(J) using some sparse coding technique.

• Dictionary update stage: Update D(J), and X(J) as

appropriate.

• J = J + 1.

where ‖·‖F and ‖·‖2 are the Frobenius and l2 norms re-

spectively. The matrices D and X are often referred to as

a dictionary and the corresponding coefficients respectively,

and D:,i denotes the ith column (i.e., the ith codeword) of

the dictionary D. In practice, it is typical that m < d < n,

i.e., an over-complete dictionary is considered and the number

of training samples is larger than the number of codewords.

Generally speaking, the optimization problem (1) is ill-posed

unless extra constraints are imposed on X . The most common

constraint on X is that X is sparse, i.e., the number of nonzero

entries in X , compared with the total number of entries, is

small.

Most dictionary learning algorithms consists of two stages:

sparse coding and dictionary update. See Algorithm 1 for

the diagram of a typical dictionary learning procedure. In the

sparse coding stage, the goal is to find a sparse X to minimize

‖Y −DX‖2F for a given dictionary D. In practice, the sparse

coding problem is often approximately solved by using either

ℓ1-minimization [46] or greedy algorithms, for example, OMP

[25] and SP [26] algorithms.

The focus of this paper is on the dictionary update stage.

There are different formulations for this stage, leading to

substantially different algorithms. In the MOD [36] method,

one fixes the sparse coding matrix X and searches for the

optimal dictionary D, and hence essentially solves a least

square problem.1 By contrast, in the approach represented

by the K-SVD method, one updates both the dictionary D

and the nonzero coefficients in X . In particular, in each step

of the dictionary update stage of the K-SVD algorithm, one

updates one codeword of the dictionary D and the nonzero

coefficients in the corresponding row of the matrix X . After

sequentially updating all the codewords and their correspond-

ing coefficients, the only fixed is the sparsity pattern, that is,

the locations of the non-zeros in X . As has been demonstrated

empirically in [10], the K-SVD algorithm often enjoys faster

convergence and produces more accurate dictionary when

compared with the MOD method.

The key characteristic of our approach is to update all

codewords and the corresponding non-zero coefficients simul-

taneously. Similar to K-SVD, the sparsity pattern remains

1When there are no constraints on the norm of the columns of D,
minimizing ‖Y −DX‖2

F
for given Y and X is a standard least square

problem and admits a closed-form solution. When extra constraints on the
column norm are imposed, as we shall show shortly, the optimization problem
is a least square problem on a product of manifolds. No closed-form solution
has been found.
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unchanged. More specifically, let Ω ⊂ [d] × [n] contain the

indices of non-zero entries in X , i.e., Xi,j 6= 0 for all

(i, j) ∈ Ω and Xi,j = 0 for all (i, j) /∈ Ω. We refer to this set

as the sparsity pattern. In the dictionary learning algorithm,

the sparsity pattern is often obtained via the sparse coding

stage. Given the training data Y and a sparsity pattern Ω, the

optimization under consideration is

min
D, X

‖Y −DX‖2F , s.t. ‖D:,i‖2 = 1, ∀i ∈ [d] ,

and Xi,j = 0, ∀ (i, j) /∈ Ω. (2)

With slight modification in (2), the connection between

our approach and K-SVD becomes clear. Let I ⊂ [d] be an

index set. Suppose that one is only interested in updating the

codewords indexed by I, i.e., D:,i’s with i ∈ I. Suppose

that the coefficients corresponding to other codewords D:,j’s,

j /∈ I, remain constant. Let D:,I denote the sub-matrix of D

formed by the columns of D indexed by I. Let XI,: denote

the sub-matrix of X consisting of the rows of X indexed by

I. Then the optimization problem that only updates D:,I and

XI,: is given by

min
D:,I , XI,:

‖Y −DX‖2F , s.t. ‖D:,i‖2 = 1, ∀i ∈ I,

and Xi,j = 0, ∀ (i, j) /∈ Ω. (3)

When the index set I contains only one entry, the optimization

problem (3) is the one that each step of K-SVD dictionary

update is designed to solve. When I = [d], the optimization

problems (2) and (3) are identical.

For compositional convenience, we introduce the following

notations. Suppose that we are updating the codewords indexed

by I, i.e., D:,I , and the corresponding coefficients, i.e., XI,:.

Define

Yr = Y −D:,IcXIc,:.

where Ic is a set complementary to I. Clearly,

Y −DX = Yr −D:,IXI,:.

Define the following function

fI (D) = min
XI,:: Xi,j=0, ∀(i,j)/∈Ω

‖Y −DX‖2F .

It is clear that

fI (D) = min
XI,:: Xi,j=0, ∀(i,j)/∈Ω

‖Yr −D:,IXI,:‖2F . (4)

Hence, the optimization problem (3) can be written as

min
D:,I

fI (D) subject to ‖D:,i‖2 = 1, ∀i ∈ I. (5)

The algorithmic details on how to solve (5) is presented in

Section IV.

III. PRELIMINARIES ON MANIFOLDS

To design an algorithm to solve the optimization problem

(5) properly, we introduce some preliminary knowledge about

Stiefel and Grassmann manifolds. In particular, the Stiefel

manifold Um,1 is defined as

Um,1 =
{
u ∈ R

m : uTu = 1
}
.

The Grassmann manifold Gm,1 is defined as

Gm,1 = {span (u) : u ∈ Um,1} .
Here, the notations Um,1 and Gm,1 follow from the convention

in [47], [48]. Note that each element in Um,1 is a unit-

norm vector while each element in Gm,1 is a one-dimensional

subspace in R
m. For any given u ∈ Um,1, it can generate a

one-dimensional subspace U ∈ Gm,1. Meanwhile, any given

U ∈ Gm,1 can be generated from different u ∈ Um,1: if

U = span (u), then U = span (−u) as well.

With these definitions, the dictionary D can be interpreted

as the Cartesian product of d many Stiefel manifolds Um,1.

Each codeword (column) in D is one element in Um,1. It looks

straightforward that optimization over D is an optimization

over the product of Stiefel manifolds.

What is not so obvious is that the optimization is actually

over the product of Grassmann manifolds. For any given pair

(D,X), if the signs of D:,i and Xi,: change simultaneously,

the value of the objective function ‖Y −DX‖2F stays the

same. Let D = [D:,1, · · · ,D:,i−1,D:,i,D:,i+1, · · · ,D:,d]
and D′ = [D:,1, · · · ,D:,i−1,−D:,i,D:,i+1, · · · ,D:,d]. Then

it is straightforward to verify that f[d] (D) = f[d] (D
′). In

other words, it does not matter what D:,i is; what matters is

the generated subspace span (D:,i). As shall become explicit

later, this phenomenon has significant impacts on the algorithm

design and performance analysis.

IV. BASIC ALGORITHM FOR SIMCO DICTIONARY UPDATE

This section is devoted to solve the optimization problem

(5). For simplicity and a proof-of-concept, we use a gra-

dient descent method. The gradient computation is detailed

in Subsection IV-A. How to search on the manifold product

space is specified in Subsection IV-B. The overall diagram of

dictionary update is described in Algorithm 2.

A. Gradient computation.

In this subsection, we give the closed form formulas for

computing fI (D) and ∇fI (D). Due to the space limit, we

omit the derivation details, which can be found in the journal

version of this paper [45].

Recall the definition of fI (D) in (4). For a given D,

computing fI (D) is essentially solving the correspond-

ing least square problem. For a given j ∈ [N ], let

Ω (:, j) = {i : (i, j) ∈ Ω}. Similarly, we define Ω (i, :) =
{j : (i, j) ∈ Ω}. It can be verified that

fI (D) =

n∑

j=1

min
XI∩Ω(:,j),j

∥∥∥(Yr):,j −D:,I∩Ω(:,j)XI∩Ω(:,j),j

∥∥∥
2

2︸ ︷︷ ︸
fI,j(D)

.

(6)

Note that every atomic function fI,j (D) corresponds

to a quadratic optimization problem of the form

minx ‖y −Ax‖2F . The optimal X∗ admits the following

closed-from

X∗
i,j = 0, ∀ (i, j) /∈ Ω, X∗

Ic,: = XIc,:

X∗
I∩Ω(:,j),j = D

†
:,I∩Ω(:,j) (Yr):,j , ∀j ∈ [n] , (7)
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where the superscript † denotes the pseudo-inverse of a matrix.

Note that the complexity of computing pseudo-inverse could

be large. There are multiple ways to compute X∗
I∩Ω(:,j),j

without computing the pseudo-inverse explicitly, for example,

the conjugate gradient method [49]. The gradient of fI (D),
with respect to D:,i, i ∈ I, can be computed via

∇D:,ifI (D) = −2 (Y −DX∗):,Ω(i,:) X
∗T
i,Ω(i,:)

= −2 (Y −DX∗)X∗T
i,: . (8)

Here, Ω (i, :) gives the columns of Y whose sparse represen-

tation involves the codeword D:,i. For convenience, we use

the symbol gi to denote ∇D:,i
fI (D).

When I = [d], i.e., all the codewords and the corresponding

non-zero coefficients are simultaneously updated, the closed

form formulas for both X∗ and ∇Df have the following

simplified form,

X∗
i,j = 0, ∀ (i, j) /∈ Ω,

X∗
Ω(:,j),j = D

†
:,Ω(:,j)Y:,j , ∀j ∈ [N ] ,

and

∇Df[d] (D) = −2 (Y −DX∗)X∗T .

B. Line search along the gradient descent direction

The line search mechanism used in this paper is significant

different from the standard one for the Euclidean space.

Specifically, we employ a line search procedure over the

product space of Grassmann manifolds. As has been discussed

in Section III, the objective function fI is indeed a function on

the product of Grassmann manifolds. The search path should

lie on the same space as well. For this purpose, we use the

geodesic path on Gm,1. A geodesic path on Gm,1 is similar

to the straight line in the Euclidean space: for any given two

distinct points on Gm,1, the geodesic path is the shortest length

path that connects these two points [47]. In particular, let

U ∈ Gm,1 and u ∈ Um,1 be the corresponding generator

matrix (not unique). Consider a search direction h ∈ R
m with

‖h‖2 = 1 and hTu = 0. Then the geodesic path starting from

u along the direction h is given by [47]

u (t) = u · cos t+ h · sin t, t ∈ R.

For the dictionary update problem at hand, the line search

path is defined as follows. Let gi = ∇D:,ifI (D) be the

gradient vector defined in (8). We define

ḡi = gi −D:,iD
T
:,igi, ∀i ∈ I. (9)

According to [47], ḡi is in fact the gradient of f with respect

to D:,i on the Grassmann manifold. The line search path for

dictionary update, say D (t), t ≥ 0, is defined as



D:,i (t) = D:,i if i /∈ I or ‖ḡi‖2 = 0,
D:,i (t) = D:,i cos (‖ḡi‖2 t)− (ḡi/ ‖ḡi‖2) sin (‖ḡi‖2 t)

if i ∈ I and ‖ḡi‖2 6= 0.
(10)

where gi = ∇D:,ifI (D) can be computed via (8).

Algorithm 2 summarizes one iteration of the proposed line

search algorithm. Note that the proposed algorithm is by

no means optimized. There are multiple ways to reduce the

number of function evaluations [49, Chapter 3]. We use the

current design in Algorithm 2 for implementation convenience.

Algorithm 2 One iteration of the line search algorithm for

dictionary update.

Task: Use line search mechanism to update the dictionary D.

Input: Y , D, X

Output: D′ and X ′.

Parameters: t4 > 0: initial step size. gmin > 0: the threshold

below which a gradient can be viewed as zero.

Initialization: Let c =
(√

5− 1
)
/2.

1) Let t1 = 0. Compute f (D) and the corresponding

gradient on the Grassmann manifold (9). If ‖ḡi‖2 ≤
gmin ‖Y ‖2F for all i ∈ I, then D′ = D, X ′ = X , and

quit.

2) Let t3 = ct4 and t2 = (1− c) t4.

Part A: the goal is to find t4 > 0 s.t. f (D (t1)) >
f (D (t2)) > f (D (t3)) ≤ f (D (t4)). Iterate the following

steps.

3) If f (D (t1)) ≤ f (D (t2)), then t4 = t2, t3 = ct4 and

t2 = (1− c) t4.

4) Else if f (D (t2)) ≤ f (D (t3)), then t4 = t3, t3 = t2
and t2 = (1− c) t4.

5) Else if f (D (t3)) > f (D (t4)), then t2 = t3, t3 = t4
and t4 = t3/c.

6) Otherwise, quit the iteration.

Part B: the goal is to shrink the interval length t4 − t1
while trying to keep the relation f (D (t1)) > f (D (t2)) >
f (D (t3)). Iterate the following steps until t4 − t1 is suffi-

ciently small.

1) 7)If f (D (t1)) > f (D (t2)) > f (D (t3)), then t1 =
t2, t2 = t3 and t3 = t1 + c (t4 − t1).

8) Else t4 = t3, t3 = t2 and t2 = t1 + (1− c) (t4 − t1).

Output: Let t∗ = arg min
t∈{t1,t2,t3,t4}

f (D (t)) and D′ = D (t∗).

Compute X ′ according to (7).

V. REGULARIZED SIMCO

As will be detailed in Section VI-A, both K-SVD and the

primitive SimCO may result in ill-conditioned dictionaries.

This section is devoted to design a mechanism, referred to

as regularized SimCO, to address this problem.

Regarding the dictionary update stage of the K-SVD and

SimCO methods, the ill-condition of the dictionary is de-

scribed as follows. Fix the sparsity pattern Ω. The matrix

D:,Ω(:,j) contains the codewords that are involved in repre-

senting the training sample Y:,j . We say the dictionary D is

ill-conditioned with respect to the sparsity pattern Ω if

0 ≈ λmin

(
D:,Ω(:,j)

)
≪ λmax

(
D:,Ω(:,j)

)

for some j ∈ [n]. Here, λmin (·) and λmax (·) give the smallest

and largest singular values of a matrix, respectively.

The ill-condition of D brings two problems:

1) Slow convergence in the dictionary update stage. When

λmin

(
D:,Ω(:,j)

)
is close to zero, the curvature (Hessian

matrix) of fI (D) is large. That means, in a neighbor-

hood of D, the gradient changes very fast. As a result, a

gradient descent algorithm typically suffers from a very

slow convergence rate.
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2) Instability in the subsequent sparse coding stage. When

λmin

(
D:,Ω(:,j)

)
is close to zero, the solution of the least

square problem min
XΩ(:,j),j

∥∥Y:,j −D:,Ω(:,j)XΩ(:,j),j

∥∥2
F

becomes unstable: small changes in Y:,j often result in

very different least square solutions X∗
Ω(:,j),j . It is well

known that the stability of sparse coding relies on the so

called restricted isometry condition (RIP) [46]. RIP says

that for a given positive integer K < n, the conditional

numbers of all sub-matrices of D of the form D:,J ,

where J ⊂ [n] and |J | ≤ K, are uniformly upper

bounded. An ill-conditioned D clearly does not satisfy

RIP. Hence, the sparse coefficients produced by sparse

coding will be sensitive to noise.

It is also worth mentioning an important difference between

a local minimizer and an ill-conditioned dictionary. When

the trained dictionary is close to a local minimizer or when

the trained dictionary is ill-conditioned, it is typical that the

objective function stops decreasing as the number of iterations

increases. Hence it is usually difficult to distinguish these two

cases by studying the objective function only. However, the

difference becomes apparent if one looks at the gradient of

the objective function (with respect to the dictionary): the

gradient of the objective function is close to zero in the

neighborhood of a local minimizer while it remains relatively

large in the neighborhood of an ill-conditioned dictionary. The

same phenomenon is not isolated as it was also observed

in the manifold learning approach for the low-rank matrix

completion problem [48].

To mitigate the problem of the ill-conditioned D, we

propose to optimize a regularized objective function

f̃I (D) =
n∑

j=1

min
XI∩Ω(:,j),j

(∥∥∥(Yr):,j −D:,I∩Ω(:,j)XI∩Ω(:,j),j

∥∥∥
2

2

+µ
∥∥XI∩Ω(:,j),j

∥∥2
2

)

︸ ︷︷ ︸
f̃I,j(D)

.

(11)

where µ > 0 is a constant. The motivation is as follows: when

λmin

(
D:,I∩Ω(:,j)

)
≈ 0 for some j, the corresponding optimal

X̃∗
I∩Ω(:,j),j to solve fI,j (D) is large; after the regularized

term µ
∥∥XI∩Ω(:,j),j

∥∥2
2

is introduced, the optimal X̃∗
I∩Ω(:,j),j

to solve f̃I,j (D) is uniformly bounded. As a result, with the

regularized term, the optimization of f̃I (D) over D tends to

provide a well-conditioned solution D with small ‖XI,:‖2F .

With the new objective function (11), the steps described in

Algorithm 2 can be directly applied. The only difference lies

in the computation of the new function f̃I (D) and the corre-

sponding gradient ∇D f̃I (D). In order to compute f̃I (D),
one needs to solve the least square problem in (11). Let

mj = |I ∩ Ω (:, j)|. It is clear that D:,XI∩Ω(:,j),j
∈ R

m×mj

and XI∩Ω(:,j),j ∈ R
mj . Define

Ỹr,j =

[
(Yr):,j
0mj

]
, and D̃j =

[
D:,I∩Ω(:,j)√

µ · Imj

]
,

where 0mj
is the zero vector of length mj , and Imj

is the

mj×mj identity matrix. The optimal X̃∗
I∩Ω(:,j),j to solve the

least square problem in (11) is given by

X̃∗
I∩Ω(:,j),j = D̃

†
j Ỹr,j . (12)

Hence, the new objective function f̃I (D) is computed via

f̃I (D) =
∥∥∥Yr −DX̃∗

∥∥∥
2

F
+ µ ·

∥∥∥X̃∗
I,:

∥∥∥
2

F
, (13)

and the gradient of f̃I regarding to D:,I is given by

∇D:,I
f̃I (D) = −2

(
Y −DX̃∗

)
X̃∗T

I,: . (14)

(Computation details are omitted due to the space limitations.

See the journal version of this paper [45] for details.) Replace

the X∗
I,:, fI (D) and ∇D:,I

fI (D) in Algorithm 2 with the

X̃∗
I,:, f̃I (D), and ∇D:,I

f̃I (D) computed above. We obtain

the regularized SimCO for dictionary update.

In practice, one may consider to first use the regularized

SimCO to obtain a reasonably good dictionary and then

employ the primitive SimCO to refine the dictionary further.

This two step procedure often results in a well-conditioned

dictionary that fits the training data. Please see the simulation

part (Section VI) for an example.

VI. EMPIRICAL TESTS

In this section, we numerically test the proposed algorithms,

i.e., the primitive and the regularized SimCO, using synthetic

and real data, and compare them with the benchmark K-SVD

method. To simplify the comparison, for both the primitive

and the regularized SimCO, the set of updating codewords

I is always set to I = [d]. In Section VI-A, we show that

both the K-SVD and the primitive SimCO may result in an

ill-conditioned dictionary while adding a regularized term can

avoid this problem. Empirical experiments on synthetic and

real data are detailed in Sections VI-B and VI-C respectively.

The results demonstrate the excellent learning performance of

the regularized SimCO. Finally, we compare the running time

of the regularized SimCO and K-SVD in Section VI-D. It is

interesting to observe that though regularized SimCO is built

on a simple gradient descent mechanism, it runs much faster

than the benchmark K-SVD dictionary update.

A. Ill-conditioned Dictionaries

In this subsection, we handpick a particular example to show

that both the K-SVD and the primitive SimCO may converge

to an ill-conditioned dictionary. In the example, the training

samples Y ∈ R
16×78 are computed via Y = DtrueXtrue,

where Dtrue ∈ R
16×32 is a dictionary, Xtrue ∈ R

32×78 is the

corresponding sparse coefficient matrix, and each column of

X contains exactly 4 nonzero components. To test the training

performance of different algorithms, we randomly generate

the initial dictionary D0 and the initial coefficient matrix X0:

every column of D0 is uniformly generated from the uniform

distribution on the Stiefel manifold U16,1; and X0 and X have

the exactly same sparsity pattern but the nonzero entries of X0

is randomly drawn from the standard Gaussian distribution. All

tested algorithms start with the same input Y , D0 and X0.
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Figure 1: Starting with the same point, the behaviors of K-SVD, primitive SimCO and regularized SimCO are different.

For regularized SimCO, the regularization constant µ is set to

µ = 0.01.

The numerical results are presented in Figure 1. In the left

sub-figure, though both the K-SVD and the primitive SimCO

minimize f (D) = minX ‖Y −DX‖2F while the regularized

SimCO minimizes f̃ (D) = minX ‖Y −DX‖2F + µ ‖X‖2F ,

we compare only the quantities ‖Y −DX‖2F . In the middle

sub-figure, we depict ∇Df (D) for K-SVD and the primitive

SimCO, and ∇D f̃ (D) for the regularized SimCO as the

search direction depends on the gradient. In the right sub-

figure, we show the condition number of the dictionary defined

as

κ (D) = max
1≤j≤d

λmax

(
D:,Ω(:,j)

)
/λmin

(
D:,Ω(:,j)

)
.

Here, note that κ (Dtrue) = 3.39.

Figure 1 shows that

1) When the number of iterations exceeds 50, both the

K-SVD and the primitive SimCO stops improving the

training performance: the value of f decreases very

slowly with further iterations. However, the gradients in

these two methods surprisingly increase slightly (in the

Frobenius norm) with further iterations. This implies that

these two methods do not converge to local minimizers.

2) The above phenomenon can be well explained by check-

ing the ill-condition of the dictionary. After 100 itera-

tions, κ (D) > 10 for K-SVD , κ (D) > 50 for primitive

SimCO, and they keep increasing with further iterations.

This is very similar to what was observed in [48]: the

training variable seems to converge to a singular point.

3) By adding a regularized term, the regularized SimCO

avoids the convergence to an ill-conditioned dictionary.

Though f̃ 6= f , regularized SimCO can finds a good

dictionary in terms of f when the regularization constant

µ > 0 is chosen small enough.

The necessity of regularized SimCO is therefore clear.

B. Experiments on Synthetic Data

In the synthetic data tests, we assume that Y =
DtrueXtrue where the columns of Dtrue are randomly gen-

erated from the Stiefel manifold Um,1, each column of

Xtrue contains exactly S many non-zeros: the position of

the non-zeros are uniformly distributed on the set
(
[d]
S

)
=

{{i1, · · · , iS} : 1 ≤ ik 6= iℓ ≤ d}; and the values of the non-

zeros are standard Gaussian distributed. In our simulations,

we fix m = 16, d = 32, and S = 4. We change the number

of training samples n. For each n value, we run 100 random

tests. In each random test, we also randomly generate an initial

dictionary D0 and an initial coefficient matrix X0.

We first test the performance of dictionary update without

taking the effect of sparse coding into consideration. In par-

ticular, we assume the true sparsity is known by setting the

sparsity pattern of X0 the same as that of Xtrue. Note that

the regularized SimCO is equivalent to the primitive SimCO

only when the regularization constant µ = 0. The ideal way

to test regularized SimCO is to sequentially decrease µ to

zero and let the regularized SimCO converge for each value

of µ. In practice, we choose the following simple strategy: the

total number of iterations is set to 400; we set µ to 1e − 1,

1e − 2, 1e − 3, and 1e − 4, for iterations 1-100, 101-200,

201-300, and 301-400, respectively. For fair comparison, we

also set the number of iterations in K-SVD dictionary update

to 400. The numerical results of ‖Y −DX‖2F /n versus n
are presented in Figure 2. The average performance of the

regularized SimCO is consistently better than that of the K-

SVD.

Then we evaluate the overall dictionary learning perfor-

mance by combining the dictionary update and sparse coding

stages. For sparse coding, we adopt the OMP algorithm [25]

as it has been intensively used for testing the K-SVD method

in [10], [50]. The whole dictionary learning process follows

Algorithm 1. We refer to the iterations between sparse coding

and dictionary learning stages as outer-iterations, and the

iterations within the dictionary update stage as inner-iterations.

In our test, the numbers of outer-iterations are set to 50 for

both the K-SVD and the regularized SimCO, and in each outer

iteration, the numbers of inner-iterations of both algorithms

are set to 1. Furthermore, in the regularized SimCO, the

regularized constant is set to µ = 1e − 1 during the first

30 outer-iterations, and µ = 0 during the rest 20 outer-

iterations. The simulation results of ‖Y −DX‖2F /n versus

n are depicted in Figure 2. Again, the average performance of

regularized SimCO is consistently better than that of K-SVD.

C. Numerical Results for Image Denoising

In this subsection, we apply the regularized SimCO to

the application of image denoising. A corrupted image with
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Figure 2: Performance comparison of K-SVD and regularized SimCO dictionary update.

noise (the middle image of Fig. 3) was used to train the

dictionary. For dictionary learning, we iterate the sparse coding

and dictionary update stages for 10 times. The sparse coding

stage is based on the OMP algorithm implemented in [50].

The regularized SimCO method is used in dictionary update

stage: In the first 5 iterations, the regularization constant µ
is set to 0.1; In the rest 5 iterations, it is set to zero. During

each dictionary update stage, the line search procedure is only

performed once. After the dictionary is trained, it is used for

reconstructing the image. The right image in Fig. 3 shows the

reconstructed one. The SNR is significantly improved from

20.16 dB to 31.08dB.

D. Comments on the Running Time

It is empirically observed that the regularized SimCO runs

much faster than the K-SVD algorithm. In our tests, both

algorithms are implemented in Matlab only codes. For Figure

2(a), it takes 4.10 hours by the regularized SimCO and 20.93

hours by K-SVD. For Figure 2(b), it takes 5.98 hours by the

regularized SimCO and 6.45 hours by K-SVD.2 For the image

denoising in Figure 3, it takes 221 seconds by the regularized

SimCO and 2515 seconds by K-SVD. The faster running

speed of regularized SimCO is mainly due to the complexity

reduction from singular value decomposition (required in K-

SVD) for solving the least square problem.
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