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Abstract

Existing speech source separation approaches overwhelmingly rely on acoustic pressure information acquired by using a microphone
array. Little attention has been devoted to the usage of B-format microphones, by which both acoustic pressure and pressure gradient
can be obtained, and therefore the direction of arrival (DOA) cues can be estimated from the received signal. In this paper, such DOA
cues, together with the frequency bin-wise mixing vector (MV) cues, are used to evaluate the contribution of a specific source at each
time–frequency (T–F) point of the mixtures in order to separate the source from the mixture. Based on the von Mises mixture model
and the complex Gaussian mixture model respectively, a source separation algorithm is developed, where the model parameters are esti-
mated via an expectation–maximization (EM) algorithm. A T–F mask is then derived from the model parameters for recovering the
sources. Moreover, we further improve the separation performance by choosing only the reliable DOA estimates at the T–F units based
on thresholding. The performance of the proposed method is evaluated in both simulated room environments and a real reverberant
studio in terms of signal-to-distortion ratio (SDR) and the perceptual evaluation of speech quality (PESQ). The experimental results
show its advantage over four baseline algorithms including three T–F mask based approaches and one convolutive independent compo-
nent analysis (ICA) based method.
� 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Blind speech separation (BSS) aims to estimate the
desired speech signals in the presence of other speech sig-
nals or interfering sounds, without the prior knowledge
(or with very little information) about the sources and
the mixing process (Pedersen et al., 2007). It offers great
potentials in many applications such as automatic speech
recognition, teleconferencing and hearing aids.

In the past, independent component analysis (ICA)
(Lee, 1998; Stone, 2004; Hyvärinen and Oja, 2000;
http://dx.doi.org/10.1016/j.specom.2015.01.002

0167-6393/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
Comon, 1994; Hyvärinen et al., 2009; Comon and Jutten,
2010) has been widely employed and shown to be promis-
ing in BSS problems. Significant contributions have been
made in anechoic (i.e. without room reflections) and
over-determined/even-determined (i.e. the number of
microphones is greater than or equal to the number of
sources) situations. However, the performance of ICA is
degraded in the reverberant environments (i.e. with room
reflections), especially for under-determined (i.e. the num-
ber of microphones is smaller than the number of sources)
case, since the unmixing process becomes increasingly
ambiguous due to the overlap of the reflected sound with
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the direct sound, and/or the lack of information in the
under-determined case.

To separate sources under reverberant environments,
two types of methods are often used, namely time-domain
(Aichner et al., 2002; Thomas et al., 2006; Nishikawa et al.,
2003) and frequency-domain (Sawada et al., 2004, 2005;
Araki et al., 2001; Saruwatari et al., 2001) approaches,
respectively. The time-domain methods are often based
on the extension of the instantaneous ICA to the convolu-
tive case, and the computational complexity associated
with the estimation of the filter coefficients can be high,
especially when dealing with the mixtures in a heavily
reverberant environment, i.e. large T 60 (Amari et al.,
1997; Buchner et al., 2004).

For approaches in frequency domain (Araki et al., 2003;
Parra and Spence, 2000; Wang et al., 2005), the convolutive
mixtures are transformed to the complex-valued instanta-
neous source separation problems by e.g. the short-time
Fourier transform (STFT), and then the separated source
components in each frequency bin are aligned to remove
the permutation ambiguities before being used to recon-
struct the sources in the time-domain using inverse short-
time Fourier transform (ISTFT). Due to the use of STFT,
the frequency-domain approaches are, in general, compu-
tationally more efficient as compared with time-domain
methods.

Recently, various methods have been developed to sep-
arate the speech mixtures in the underdetermined scenar-
ios. By exploiting the sparseness property of the speech
signals in the time–frequency (T–F) domain, different
approaches such as T–F masking method (Yilmaz and
Rickard, 2004; Sawada et al., 2006; Wang et al., 2009)
and maximum a posterior (MAP) estimation (D O’Grady
and Pearlmutter, 2008) have been proposed. The former
method is more attractive due to its lower computational
complexity than the latter one (Sawada et al., 2006;
Wang et al., 2009). In this paper, we focus on the T–F
masking approach.

The T–F masking approach can be divided into two cat-
egories. One is based on the binary mask, where the mask
value is set as either one or zero to retain or to reject the
mixture energy at each T–F unit. For example, in Araki
et al. (2003), a binary mask based source separation
method is introduced by clustering the feature of the level
ratio and the weighted phase difference with the K-means
algorithm. The other category is based on the probabilistic
(soft) mask, where the mask value is the probability of each
source being active at each T–F point of the mixtures,
hence ranging from zero to one. Examples in this category
include the model-based method in Mandel et al. (2010)
where binaural cues such as the interaural phase difference
(IPD) and interaural level difference (ILD) are estimated
from the mixtures to generate the mask, and the method
(Sawada et al., 2007, 2011) where the mixing vector (MV)
cue is used for estimating the T–F mask. The probabilistic
mask can be estimated iteratively using the Expectation–
Maximization (EM) algorithm.
Most of the methods discussed above are performed by
using a microphone array together with the estimation
techniques developed based on acoustic pressure informa-
tion. Different from these traditional microphone arrays
which measure only the acoustic pressure, the soundfield
microphone system (Farrar, 1979; Malham and Myatt,
1995), also known as B-format microphone, consists of
four closely co-located microphones and is able to measure
the full soundfield information, i.e., the pressure gradient at
forward, leftward and upward as well as the acoustic pres-
sure information. Another system which is named acoustic
vector sensor (AVS) (Nehorai and Paldi, 1994; Hawkes and
Nehorai, 2000), can also be used to collect the particle
velocity information in three dimensional space as well as
the acoustic pressure information. Both the B-format
microphone and the AVS have promising advantages over
the conventional microphones due to the three bidirec-
tional pick-ups (pressure gradient or the velocity), and
show good performance on several applications, such as
sound localization (Hawkes and Nehorai, 1998; Zhong
and Premkumar, 2012) and speech enhancement (Shujau
et al., 2010).

Nevertheless, only few works have been conducted in
the literature in dealing with the BSS problem with speech
mixtures acquired by the B-format microphone/AVS. Two
typical examples are (Gunel et al., 2008; Shujau et al.,
2011), where the direction-of-arrival (DOA) information
obtained from the B-format microphone/AVS are used to
separate the speech sources based on the T–F masking
approach.

In Gunel et al. (2008), the DOA at each T–F unit is esti-
mated based on the intensity vector (Nehorai and Paldi,
1994), by exploiting the T–F representation of the outputs
of the B-format microphone. The soft T–F masking
approach is employed for the B-format mixtures under
reverberant environment, the contribution of a specific
source at each T–F point is obtained by fitting the DOA
histogram with the von Mises distribution. The von Mises
distribution can be characterized by the mean direction (l)
and the concentration parameter (j). In Gunel et al. (2008),
the mean direction (l) for each source is estimated by pick-
ing the peaks of the DOA histogram. However, the concen-
tration parameter (j) is searched experimentally over a
range of all possible solutions, which is computationally
expensive. In Shujau et al. (2011), a binary T–F masking
approach is employed for the mixtures recorded by a single
AVS. The peaks of the DOA histogram (which is obtained
by the estimation of the intensity vector, the same as in
Gunel et al. (2008)) are estimated and regarded as the
directions of the source signals. The binary T–F mask is
obtained by comparing the DOAs at each T–F point with
the direction of the target speech, with 1 assigned to the
T–F unit where the DOA is closer to the target signal than
the interferences, and 0 otherwise.

There are two main drawbacks with the methods
described above. Firstly, the separation performance of
these two methods is strongly dependent on the accuracy



Fig. 1. An illustration of the microphone array setup in the B-format
microphone.
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of the DOA information, however, as demonstrated in
Levin et al. (2010), the intensity based DOA estimation,
which is used in these two methods, produces biased results
under reverberant environment, and the angular error
becomes larger with the increase of the reverberation level.
Secondly, the separation performance of the two algo-
rithms is dependent on the accuracy of the estimation of
mean directions, which are identified by the histogram
peaks. The performance deteriorates when the sources are
located close to each other, since it is difficult to distinguish
the mean directions from the histogram under such a
situation.

Several approaches are proposed in this paper to
address these problems. Firstly, the T–F bin-wise MV cue
is incorporated with the DOA cue to improve the accuracy
of each T–F point of the mixture being assigned to a spe-
cific source under the reverberant environment. Secondly,
different from the above two methods, in which the masks
are constructed by the mean directions directly, the mean
directions are adopted as the initialization value of the
DOA cue in the EM algorithm, and the parameters of
the MV and DOA cues are updated iteratively at each fre-
quency bin until convergence. Lastly, the DOA cue is eval-
uated at each T–F unit and a thresholding method is used
to select the reliable DOA estimates and thus further
improve the separation performance.

The frequency-dependent model parameters for both the
DOA and MV cues are evaluated and refined iteratively by
the EM algorithm. In the E-step, the von Mises and the
complex Gaussian probability distributions are applied
respectively to calculate the probability that each source
is dominant in each T–F point of the mixture. In the M-
step, the parameters of each source model are re-estimated
according to the T–F regions of the mixtures that are most
likely to be dominated by that source. It is noticed from
Mandel et al. (2010) that the EM algorithm is sensitive to
the initialization value because of the non-convex charac-
teristics of the total log likelihood, so the more accurate
mean direction used in the initialization has the potential
to improve the separation performance. Moreover, due to
the exploitation of the DOA information, the permutation
problem is solved in the first iteration of the EM algorithm.

Preliminary studies of this work have been presented in
Chen et al. (2013) and Zhong et al. (2013). Different from
Chen et al. (2013) and Zhong et al. (2013), however, we
have made the following improvements in this paper.
Firstly, we use the von Mises distribution to model the cir-
cular statistics for the DOA cue, as opposed to the use of
the Gaussian distribution in Chen et al. (2013) and
Zhong et al., 2013. This provides a better fit to the statistics
of the DOA cue and more accurate estimate for the source
occupation probability at each T–F point in the EM algo-
rithm, especially for the circular case, when the mean DOA
is close to the estimated DOA, e.g. the mean DOA at
around 0� and the estimated DOA at around 360�. In
our previous work (Chen et al., 2013; Zhong et al., 2013),
only the semi-circular case, i.e. DOAs from 0� to 180�,
was considered. Secondly, we propose a simple but efficient
method to improve the separation performance under
reverberant environment by selecting only the reliable
DOA estimates obtained based on the intensity informa-
tion and discarding the un-reliable DOAs caused by rever-
berations. Lastly, the separation performance of the
proposed method was evaluated under the over-, even-
and under-determined case respectively, as well as under
various reverberation times and configurations.

For performance comparison, we choose four baseline
methods, namely, the two DOA based T–F masking
approaches (Gunel et al., 2008; Shujau et al., 2011) as
already discussed earlier, the MV cue based T–F clustering
method (Sawada et al., 2011), and a conventional second-
order statistics based convolutive ICA algorithm (Wang
et al., 2005).

The remainder of this paper is organized as follows. In
Section 2 the B-format microphone based source separa-
tion model and the two DOA-based T–F masking methods
are introduced. In Section 3, the T–F masking based source
separation approach is presented firstly, then the proposed
separation method, which combines the reliability-based
DOA classification and the bin-wise classification based
on the EM algorithm, is introduced in detail. The experi-
mental setup and the results of the proposed method as
compared with the baseline methods are presented in Sec-
tion 4, and finally Section 5 gives the conclusions.
2. Background

This section first introduces the T–F masking based
source separation model in which the mixtures are
obtained from the B-format microphone system, and then
gives an overview of two previous methods for speech sep-
aration based on the B-format/AVS recordings that will be
used as baselines in our numerical evaluations.
2.1. B-format microphone based source separation model

The geometry of the B-format microphone array is
made up of four compact microphones which are placed
at the four non-adjacent corners of a cube, forming a reg-



44 X. Chen et al. / Speech Communication 68 (2015) 41–54
ular tetrahedron, as shown in Fig. 1. The x-, y- and z-coor-
dinates indicate the forward, leftward and upward direc-
tion, respectively. The four capsules, which show the
information at left-front LF , left-back LB, right-front RF

and right-back RB respectively, are mounted as closely as
possible to eliminate the phase aliasing (Farrar, 1979).
The B-format outputs (Farrar, 1979), which include the
pressure (or omnidirectional) component (p0) and the pres-
sure gradient values corresponding to the x-, y- and z-coor-
dinate (gx; gy and gz), can be obtained from the four raw

tetrahedral capsule outputs as

p0ðnÞ
gxðnÞ
gyðnÞ
gzðnÞ

2
6664

3
7775 ¼

LF ðnÞ þ LBðnÞ þ RF ðnÞ þ RBðnÞ
LF ðnÞ � LBðnÞ þ RF ðnÞ � RBðnÞ
LF ðnÞ þ LBðnÞ � RF ðnÞ � RBðnÞ
LF ðnÞ � LBðnÞ � RF ðnÞ þ RBðnÞ

2
6664

3
7775 ð1Þ

where n is the discrete time index.
In this work, we assume that the sources are strictly

located at a 2-D (x–y) plane, i.e., the elevation angle of
the sources are zero. Under this assumption, only the
p0ðnÞ; gxðnÞ and gyðnÞ are considered as the outputs of the

B-format microphone.
Assume I different speech signals siðnÞ (i ¼ 1; . . . ; I) are

presented in a noise-free acoustic room environment, the
received mixtures from the B-format microphone array
can be written as

xðnÞ ¼
p0ðnÞ
gxðnÞ
gyðnÞ

2
64

3
75 ¼XI

i¼1

hi
0ðnÞ

hi
xðnÞ

hi
yðnÞ

2
64

3
75� siðnÞ ð2Þ

where I is the number of sources, � denotes convolution,

hi
0ðnÞ; hi

xðnÞ and hi
yðnÞ represent the corresponding room

impulse response (RIR) from the ith source to
p0ðnÞ; gxðnÞ and gyðnÞ respectively, cascading the direct path

as well as the multipath responses. It should be noted that
the RIR here is used for both the acoustic pressure and
pressure gradient, representing an expanded version of
the traditional RIR, which is normally related to the acous-
tic pressure only.

To realize the frequency-domain separation, the mixture
observations xðnÞ from the B-format microphone are first
converted into frequency-domain time-series signals
Xðx; tÞ by the STFT. It is known that if the frame size in
the STFT approach is long enough to cover the main part
of the impulse response, the time-domain convolutive mix-
ture model xðnÞ can be approximated as an instantaneous
mixture model in the frequency domain (Smaragdis, 1998)

Xðx; tÞ ¼
XI

i¼1

HiðxÞSiðx; tÞ ð3Þ

where x and t are the frequency bin and time frame indices,

respectively. Xðx; tÞ¼ ½P 0ðx; tÞ;Gxðx; tÞ;Gyðx; tÞ�T , in which
P 0ðx; tÞ;Gxðx; tÞ and Gyðx; tÞ are the STFT of p0ðnÞ; gxðnÞ
and gyðnÞ, respectively. HiðxÞ ¼ ½hi

0ðxÞ; hi
xðxÞ; hi

yðxÞ�
T

is
the frequency domain representation of the RIR from the
ith source to the three components of the B-format micro-
phone respectively. Siðx; tÞ is the STFT of the ith source.

The separated signals in the frequency domain Y iðx; tÞ
can be obtained by the T–F masking as

Y iðx; tÞ ¼ Miðx; tÞP 0ðx; tÞ ð4Þ

where 0 6 Miðx; tÞ 6 1 is the mask for the ith separated
signal.

After the T–F masking approach, the source signals in
the time-domain yiðnÞ can then be reconstructed by the
inverse STFT.

The goal of blind source separation with the B-format
microphone system is to obtain the separated signals
yiðnÞ; i ¼ 1; . . . ; I , which corresponds to the source signals
siðnÞ; i ¼ 1; . . . ; I . The separation approach is performed
only with the mixtures xðnÞ, without knowing RIRs,

hi
0ðnÞ; hi

xðnÞ and hi
yðnÞ. To achieve this, the DOA based soft

and binary T–F masking techniques are adopted (Gunel
et al., 2008; Shujau et al., 2011), and a brief introduction
of these two approaches is given next.
2.2. DOA based T–F masking approaches

The estimation of DOA, which is employed as a cue to
estimate the T–F mask in Gunel et al. (2008) and Shujau
et al. (2011), is introduced first based on the T–F domain
intensity vector estimation. In Nehorai and Paldi (1994),
it is assumed that the signal behaves as a plane wave at
the sensor. With this assumption, the acoustic particle
velocity can be expressed as

vðnÞ ¼ � 1

q0c
gðnÞ �~u ð5Þ

where vðnÞ ¼ ½vxðnÞ; vyðnÞ�T is the velocity components
along x- and y- direction, and � denotes the element-wise
product, and q0 is the ambient density of the air, and c is
the velocity of sound wave in the air, and

gðnÞ ¼ ½gxðnÞ; gyðnÞ�
T is the pressure gradient value corre-

sponding to the x- and y-coordinates, and~u is an unit vec-
tor denotes the direction in x- and y-coordinates, which
points from the sensor towards the source, i.e.,

~u ¼ ½~ux;~uy �T .
The instantaneous intensity vector can then be denoted

as the product of the acoustic pressure and the particle
velocity, as follows,

iðnÞ ¼ p0ðnÞ � vðnÞ ð6Þ

By taking the STFT, the T–F representation of the

intensity vector I ¼ ½Ixðx; tÞ; Iyðx; tÞ�T can be given as

Ixðx; tÞ ¼ �
1

q0c
RfP �0ðx; tÞGxðx; tÞg~ux

� �
ð7Þ

Iyðx; tÞ ¼ �
1

q0c
RfP �0ðx; tÞGyðx; tÞg~uy

� �
ð8Þ



X. Chen et al. / Speech Communication 68 (2015) 41–54 45
where the superscript � denotes conjugation, Rf�g means
taking the real part of its argument. The direction of the
intensity can thus be obtained by

hðx; tÞ ¼ arctan
RfP �0ðx; tÞGyðx; tÞg
RfP �0ðx; tÞGxðx; tÞg

� �
ð9Þ

Based on the estimation of hðx; tÞ over an entire spectro-
gram, the algorithm in Gunel et al. (2008), which we refer
to as Gunel, creates a histogram of all the direction value
hðx; tÞ first. Then, the von Mises density function is utilized
to fit the direction histogram and to evaluate the contribu-
tion of a specific source at each T–F point of the mixtures,
the probability density function of the von Mises distribu-
tion is given as

f ðhjl; jÞ ¼ expðj cosðh� lÞÞ
2pI0ðjÞ

ð10Þ

where 0 6 l < 2p is the mean direction, j > 0 is the con-
centration parameter, and I0ðjÞ is the modified Bessel func-
tion of order zero. The probability that each T–F point of
the mixtures corresponds to the ith source is obtained as

p g
i ðx; tÞ ¼ ri

expðjiðtÞ cosðhðx; tÞ � liÞÞ
2pI0ðjiðtÞÞ

ð11Þ

where ri ¼ 1=ðI þ 1Þ is the component weight correspond-
ing to source i, the superscript g is used to identify the
probability estimated in Gunel’s method. The mean value
li is identified as the direction corresponding to the ith
largest peak of the DOA histogram. The concentration

parameter ji is estimated by the 6-dB beamwidth hBW
i as

ji ¼
1

1� cosðhBW
i =2Þ

ð12Þ

For each source, hBW
i is spanned linearly from 10� to 180�

with 10� intervals and the related ji is calculated by Eq.
(12). The ji which best fits the direction histogram is finally
chosen as the concentration parameter. The final mask
value of the Gunel’s method M g

i is obtained by normalizing
p g

i across the sources as

M g
i ðx; tÞ ¼

p g
i ðx; tÞP
lp

g
l ðx; tÞ

; ðl ¼ 1; . . . ; IÞ ð13Þ

In the algorithm of Shujau et al. (2011), which we refer
to as Shujau, I largest peaks of the histogram of hðx; tÞ are
found and identified as the DOAs corresponding to the I

sources. Let di, for i ¼ 1; . . . ; I denote the estimated DOAs.
The angular difference Dhi is calculated by the DOA at
each T–F point hðx; tÞ with the direction of each source
di as

Dhiðx; tÞ ¼
jhðx; tÞ � dij � 180�; jhðx; tÞ � dij> 180�

jhðx; tÞ � dij; otherwise

�
ði¼ 1; . . . ; IÞ

ð14Þ

A binary T–F mask is then obtained to separate the
sources as
Ms
i ðx; tÞ ¼

1; Dhiðx; tÞ < Dhjðx; tÞ
0; otherwise

�
ðj ¼ 1; . . . ; I ; j – iÞ

ð15Þ

where Ms
i is the mask used to recover the source i and

superscript s denotes the mask obtained by Shujau’s
method.
3. Proposed method

Using only the DOA cue based source separation such
as the method in Gunel et al. (2008) and Shujau et al.
(2011), the performance deteriorates when the sources are
located close to each other, since the peaks of the DOA his-
togram considered as the direction of the sources are
blurred, as shown in Fig. 2. The DOA values in Fig. 2 were
calculated by Eq. (9) with three speech sources mixed
together in the same studio as described in Section 4. It
has been observed recently in Alinaghi et al. (2011) that
adding the mixing vector (MV) cue can improve the accu-
racy of the T–F assignment. In this paper, to address the
above limitation, the MV cue is incorporated with the
DOA cue to improve the estimation of the source occupa-
tion likelihood at each T–F point based on a maximum
likelihood framework. The proposed system is shown in
Fig. 3. The T–F masking approach is proposed by combin-
ing the DOA classification with the bin-wise classification
based on the EM algorithm, in which the DOA values
are estimated from the intensity information. The DOA
based classification process has already been described in
Section 2.2 and therefore is not elaborated any more. In
this section, we present a thresholding approach to reduce
the errors of the intensity-based DOA estimation caused by
reverberation, and to further improve the reliability of the
DOA cues and hence the separation performance. The
details of the reliability based DOA classification are given
later in Section 3.4. Next, we first present the bin-wise
based classification, followed by the EM algorithm and
its initialization.
3.1. Bin-wise classification

In frequency bin-wise classification, only the x- and y-
gradient components of the B-format outputs are used to
model the mixing vectors, since it was found experimentally
that the performance will degrade when p0 is employed, the
similar phenomenon also found in Shujau et al. (2010).
Assuming that only one source is dominant at each T–F
unit, according to Eq. (3), the STFT of the observations
of the gradient components at the tth frame can be repre-
sented as

X̂ðx; tÞ ¼
XI

i¼1

ĤiðxÞSiðx; tÞ 	 ĤiðxÞSiðx; tÞ; 8i 2 ½1; . . . ; I �

ð16Þ



Fig. 2. The direction histogram of three speech sources which are located at (a) 40�; 70� and 100� (b) 40�; 100� and 160� respectively under 0.6 s
reverberation.

Fig. 3. Processing flow for the proposed BSS algorithm with T–F masking.
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where X̂ðx; tÞ ¼ ½Gxðx; tÞ;Gyðx; tÞ�T ; ĤiðxÞ ¼ ½Hi
xðxÞ; H i

y

ðxÞ�T . Each observation vector is then normalized to
remove the effect of the source amplitude. The mixing filter

coefficients, Ĥi, are modeled, similar to Sawada et al.
(2007), by a complex Gaussian density (CGD) function,
given as

pm
i ðX̂ðx; tÞjaiðxÞ; c2

i ðxÞÞ ¼
1

pc2
i ðxÞð Þ2


 exp � jjX̂ðx; tÞ � ða
H
i ðxÞX̂ðx; tÞÞaiðxÞjj2

c2
i ðxÞ

 ! ð17Þ

where aiðxÞ is the centroid with a unit Frobenius norm

jjaiðxÞjj2 ¼ 1, and c2
i ðxÞ is the variance corresponding to

the ith source. The CGD function is evaluated for each
observed T–F unit. The orthogonal projection of each

observation X̂ðx; tÞ onto the subspace spanned by aiðxÞ
can be estimated by ðaH

i ðxÞX̂ðx; tÞÞaiðxÞ, where the super-
script H denotes Hermitian. The minimum distance

between the T–F unit X̂ðx; tÞ and the subspace is thus

jjX̂ðx; tÞ � ðaH
i ðxÞX̂ðx; tÞÞaiðxÞjj and represents the proba-

bility of that T–F point of the mixture belonging to the ith
source. The probability of each T–F unit of the mixture
coming from source i can thus be estimated by the normal-
ization across the sources as p̂m

i ðx; tÞ ¼ pm
i ðx; tÞ=P

lðpm
l ðx; tÞÞ where pm

i ðx; tÞ is estimated by Eq. (17).
3.2. EM algorithm

As mentioned before, the DOA distribution is blurred
when the sources are close to each other, whereas the MV
cue is more distinct under the same situation, as demon-
strated by Alinaghi et al. (2013). To improve the reliability
of allocating each T–F unit to a specific source, we propose
to combine the DOA cue hðx; tÞ with the MV cue observed

from X̂ðx; tÞ, similar in spirit to Alinaghi et al. (2011). The
EM algorithm is employed to find the model parameters

that best fit the observations fhðx; tÞ; X̂ðx; tÞg. The param-
eter set H is given by

H ¼ fliðxÞ; kiðxÞ; aiðxÞ; c2
i ðxÞ;wiðxÞg

where liðxÞ and kiðxÞ are the mean and concentration
parameter of the DOAs, and aiðxÞ and c2

i ðxÞ are the mean
and variance of the mixing vector, and wiðxÞ is the mixing
weight corresponding to the ith source. Given an observa-
tion set, assuming the statistical independence between the
two cues (Alinaghi et al., 2011), the parameters that maxi-
mize the log likelihood

LðHÞ ¼ max
H

X
x;t

log pðhðx; tÞ; X̂ðx; tÞjHÞ

¼ max
H

X
x;t

log
X

i

½wiðxÞVðhðx; tÞjliðxÞ; kiðxÞÞ


 N ðX̂ðx; tÞjaiðxÞ; c2
i ðxÞÞ� ð18Þ
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can be estimated using the EM algorithm (Mandel et al.,
2010) by iterating between the E-step and the M-step until
convergence. In Eq. (18), Vf�g and Nf�g represent the von
Mises distribution and the complex Gaussian distribution,
respectively.

In the E-step, given the parameters, H estimated at the
M-step, and the observations, the posterior probability
that the ith source presents at each T–F unit of the mixture
is calculated as

miðx; tÞ / wiðxÞVðhðx; tÞjliðxÞ; kiðxÞÞ

 N ðX̂ðx; tÞjaiðxÞ; c2

i ðxÞÞ ð19Þ

where the symbol ‘/’ means combing the probabilities
obtained by the two cues followed by the normalization
across the sources.

In the M-step, the DOA parameters (liðxÞ; kiðxÞ) and
the MV parameters (aiðxÞ; c2

i ðxÞ) are re-estimated for each
source using the normalized probability miðx; tÞ estimated
in the E-step and the observations. As there is usually no
prior information about the mixing filters, for the first iter-

ation, we set NðX̂ðx; tÞjaiðxÞ; c2
i ðxÞÞ ¼ 1 in (19) to remove

the effect of the mixing vector contribution. Once the occu-
pation probability miðx; tÞ is obtained after one iteration
based on only the information of DOA cue, the parameters
of the mixing vectors, ðaiðxÞ; c2

i ðxÞÞ, can be estimated from
the next M-step as follows (Sawada et al., 2007)

RiðxÞ ¼
X

t

miðx; tÞX̂ðx; tÞX̂H ðx; tÞ ð20Þ

c2
i ðxÞ ¼

P
tmiðx; tÞjjX̂ðx; tÞ � ðaH

i ðxÞX̂ðx; tÞÞaiðxÞjj2P
tmiðx; tÞ

ð21Þ

the optimum aiðxÞ is the eigenvector corresponding to the
maximum eigenvalue of RiðxÞ.

The parameters of the DOA can be updated by the
DOAs which are belong to the set X in the M-step as
Hung et al. (2012)

liðxÞ ¼ tan�1

P
tmiðx; tÞ sinðĥðx; tÞÞP
tmiðx; tÞ cosðĥðx; tÞÞ

 !
ð22Þ

kiðxÞ ¼ A�1

P
tmiðx; tÞ cosðĥðx; tÞ � liðxÞÞP

tmiðx; tÞ

 !
ð23Þ

wiðxÞ ¼
1

T

X
t

miðx; tÞ ð24Þ

where ĥðx; tÞ represents the reliable DOA values which are
included in the set X, as calculated by Eq. (26). In the cur-
rent work, it was found that the best results are obtained
when the threshold is set as b ¼ 30�, i.e. the DOAs which
are more than 30� away from all the mean directions are

excluded in the estimation of the DOA parameters. A�1 is
a function that can be computed from Batschelet’s table
(Batschelet, 1981; Fisher, 1995) and T is the number of
all time frames. After the convergence of the EM algo-
rithm, the mask is finally obtained as
Miðx; tÞ � miðx; tÞ ð25Þ
3.3. Initialization and dealing with the permutation problem

The EM algorithm can be initialized either from the E-
step or the M-step. As there is usually no prior information
about the MVs, similar to Alinaghi et al. (2011), we initial-
ize the mask with only the DOA cue. The parameters of the
DOAs, liðxÞ and jiðxÞ, are initialized as the peaks of the
DOA histograms and 30� respectively. By using these accu-
rate values in the initialization approach, the local optimal-
ity problem associated with the EM algorithm can be
mitigated.

It should be mentioned that the probabilistic classifica-
tion in this BSS method is performed for each frequency
bin separately and thus the permutation alignment over
all the frequency bins is still required. Rather than using
a posteriori probability based approach as in Sawada
et al. (2007), due to its high computational cost, we use
the information from the DOA cue to solve the permuta-
tion alignment problem in the first iteration of the EM
algorithm, similar to Alinaghi et al. (2011). As a result,
the remaining iterations of the EM algorithm will not be
affected by the permutation problem.

3.4. Reliability-based DOA classification

It is noticed in Levin et al. (2010) that the intensity-
based DOA estimation method produces biased results
under reverberant environment. To address this problem,
a new approach based on thresholding is proposed next.

Under reverberant environments, the direction value at
each T–F unit hðx; tÞ via Eq. (9), may contain the informa-
tion of the sources or the reverberation. Obviously, the tail
of the histogram of the DOAs will become broader with the
increase of the reverberation level. To mitigate the rever-
beration effect, the un-reliable DOA estimates should be
eliminated or play a less important role for T–F mask
estimation.

The mean directions at each frequency liðxÞ; i ¼ 1; . . . ; I
are estimated from the peak-finding approach in the first
iteration, or from the M-step in the following iterations
of the EM algorithm (as explained in Section 3.2). The
angular difference between hðx; tÞ and each mean direction
liðxÞ is calculated at each frequency bin, the directions
which are close to any one of the mean directions are con-
sidered as the reliable ones, otherwise, they will be deemed
as the points belonging to the reverberation. A set X is
identified to collect all the reliable direction values at each
frequency bin as

X ¼ fhðx; tÞj cosðhðx; tÞ � liðxÞÞ > cosðbÞ; 9ig ð26Þ

where b is the threshold of the angular difference between
the estimated DOAs and the mean directions, which is
found empirically in our experiments.



48 X. Chen et al. / Speech Communication 68 (2015) 41–54
Then, the von Mises distribution is employed to model
the DOAs which belong to X. For the DOA points which
are excluded from X, the probability of the DOA cue is
set identical and will be determined by the MV cue only,
given as

pd
i ðhðx; tÞjliðxÞ;jiðxÞÞ¼

expðjiðxÞcosðhðx;tÞ�liðxÞÞÞ
2pI0ðjiðxÞÞ ; hðx; tÞ 2X

1=I ; otherwise

8<
:

ð27Þ
where liðxÞ and jiðxÞ represent the mean direction and the
concentration parameter at each frequency corresponding
to the ith source, respectively.

Algorithm 1. soft T–F masking based source separation
Input: p0ðnÞ; gxðnÞ; gyðnÞ
Output: yiðnÞ; i ¼ 1; . . . ; I
T–F representation:

P 0ðx; tÞ ¼ STFTðp0ðnÞÞ;Gxðx; tÞ ¼ STFTðgxðnÞÞ,
Gyðx; tÞ ¼ STFTðgyðnÞÞ
calculate hðx; tÞ {Eq. (9)}

X̂ ðx; tÞ ¼ ½Gxðx; tÞ;Gyðx; tÞ�T

X̂ ¼ X̂=jjX̂ jj {normalization}

X̂ ¼ PreWhiteningðX̂ Þ
Initialization:

li ¼ Peaksðhðx; tÞÞ;x ¼ 1; . . . ; roundðlengthðxÞ=2Þ,
ji ¼ 30�;wiðxÞ ¼ 1=I ; b ¼ 30�

for rep ¼ 1! 16 do

for i ¼ 1! I do

pd
i ðx; tÞ ¼ pðhðx; tÞjliðxÞ; kiðxÞÞ {Eq. (27).}

p̂d
i ðx; tÞ ¼

pd
i ðx;tÞP
l
pd

l ðx;tÞ
; l ¼ 1; . . . ; I {normalization}

if rep < 2 then

pm
i ðx; tÞ ¼ 1

else

pm
i ðx; tÞ ¼ pðX̂ ðx; tÞjaiðxÞ; c2

i ðxÞÞ {Eq. (17).}
end if

p̂m
i ðx; tÞ ¼

pm
i ðx;tÞP
l
pm

l ðx;tÞ
; l ¼ 1; . . . ; I {normalization}

m̂iðx; tÞ ¼ wiðxÞp̂d
i ðx; tÞp̂m

i ðx; tÞ
miðx; tÞ ¼ m̂iðx;tÞP

l
m̂lðx;tÞ

{normalization}

Update liðxÞ; kiðxÞ {Eqs. (22) and (23).}
if rep P 2 then

Update aiðxÞ; c2
i ðxÞ {Eqs. (20) and (21).})

end if

Update wiðxÞ {Eq. (24).}

Miðx; tÞ ¼ miðx; tÞ
Y iðx; tÞ ¼ Miðx; tÞP 0ðx; tÞ
yiðnÞ ¼ ISTFTðY iðx; tÞÞ
end for

end for
The proposed algorithm is summarized in Algorithm 1.
4. Experiments and results

To verify the effectiveness of the proposed method, we
evaluate its performance with speech mixtures of a varying
number of sources. As discussed in Section 2, although the
B-format microphone is composed of four microphones,
only three outputs (e.g. p0; gx; gy) are used in our tests,

and the output of gz which carries the pressure gradient
information at the vertical direction is discarded since in
our experiment the sources and the microphone are placed
in the same plane (i.e. with the same height in a three
dimensional space). Thus, in this work, two, three, and
four speech sources are considered for the over-, even-
and under-determined source separation scenarios,
respectively.

As mentioned in Section 1, four methods are imple-
mented and used as baselines for performance comparison
with the proposed method. First, the two DOA-based sep-
aration algorithms (Shujau et al., 2011; Gunel et al., 2008),
denoted as ‘Gunel’ and ‘Shujau’, respectively, which we
have discussed in Section 2.2, are employed to show the
performance of the DOA cue based source separation.
Then, the bin-wise clustering method (Sawada et al.,
2011), referred to as ‘Sawada’, is adopted to demonstrate
the separation performance based only on the mixing vec-
tor cue. Finally, the convolutive ICA method (Wang et al.,
2005) by exploiting the second-order statistics in the fre-
quency domain is included, which we refer to as ‘Wang’.
The results by comparing the mixtures with the original
sources are also calculated as references, which we denote as
‘Mixture’. It should be noted that the methods of ‘Gunel’,
‘Shujau’, as well as the proposed method, are evaluated
based on the outputs of the B-format microphone
(p0; gx; gy) directly. However, for the methods ‘Sawada’

and ‘Wang’, we considered both the B-format microphone
recordings, denoted as ‘Sawada-B’ and ‘Wang-B’, respec-
tively, and the recordings with a standard 4-microphone
tetrahedral array (LF ; LB;RF ;RB) obtained by inverting
Eq. (1), denoted as ‘Sawada-O’ and ‘Wang-O’, respectively.

The experimental setup and the evaluation metrics are
introduced first, followed by the separation results for both
the synthetic data obtained using a simulated room model
and the real room recordings collected in a reverberant
studio.
4.1. Experimental setup

To study the effect of room reverberation, we first test
the behavior of the proposed and the baseline methods
under various reverberation levels using a simulated room
model. As shown in Fig. 4(a), a shoe-box room with a
dimension of 9
 5
 4 m3 was employed. The B-format
microphone was located at the center of the room, as illus-
trated in Fig. 1. The LF ;RF ; LB;RB of the B-format micro-
phone were collocated at (0:005; 0:005; 0:005),
(0:005;�0:005;�0:005), (�0:005; 0:005;�0:005), (�0:005;



Fig. 4. Experimental setup for the B-format recordings in (a) the simulated room model, (b) the studio with a reverberation time of approximately 0.6 s.
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�0:005; 0:005), respectively, where the coordinate unit is in
meter. The speech sources were fixed at a horizontal dis-
tance of 1.5 m to the origin (0; 0; 0) of the microphone.
15 utterances, each with a length of approximately 3 s were
randomly chosen from the TIMIT dataset1 and then short-
ened to 2.5 s to avoid the silence at the end. Note that the
utterances selected contain both male and female speech.
Moreover, all the speech signals were normalized before
convolving with the room models which were simulated
by using the imaging method (Allen and Berkley, 1979)
with the reverberation time varied from 0 s to 0.6 s with
0.1 s intervals. 15 pairs of mixtures were chosen randomly
from the 15 utterances. In each experimental condition, the
first signal (s1) was fixed at 0�, and other sources were
located 50� away with the neighboring source, the position
of each source is shown in Fig. 4(a).

The B-format signals were also collected in a real studio
(5:2
 4:2
 2:1 m3) in University of Surrey with the rever-
beration time of approximately 0.6 s depicted in Fig. 4(b).
The B-format microphone was kept at the center of the stu-
dio. Similar to the system setup for the synthetic data, the
loudspeaker was 1.5 m away from the microphone, and
also, both the loudspeakers and the microphone were
1.2 m above the floor to ensure that the recordings would
not be affected by the vertical direction. 15 utterances
(include both the male and female speakers) were chosen
randomly from the same dataset as for the synthetic data,
and the first 2.5 s were selected and played by a loud-
speaker (Genelec 1030A). The recordings were collected
at 44.1 kHz by a SoundField B-format microphone system
(SPS422B), and then down-sampled to 16 kHz before being
processed. Based on the linearity and time-invariance
assumption, the convolutive mixtures were obtained by
collecting all the recordings at 0� to 350� with 10� intervals
separately, and then summing several (i.e. two, three, or
four) recordings at different directions together. Before
the collection of each recording, all the utterances were
normalized to have the same root mean square energy.
1 TIMIT dataset, widely used by the speech separation and recognition
community, is generally considered as a dataset of wideband signals and
therefore chosen for the performance evaluation in our work.
To investigate the effect of source configuration, the
speech sources were located with various azimuths for gen-
erating the mixtures. When collecting the mixtures in the
real studio, the first source s1 was fixed at 0� for all the
experimental cases, other sources were arranged counter
clockwise with the same angular difference between the
neighboring sources, as shown in Table 1. The angular dif-
ference Dh is varied from 10� to 90� with 10� increasing
intervals for the two (i.e. s1, s2), three (i.e. s1, s2 and s3)
and four (i.e. s1, s2, s3 and s4) sources case. In Fig. 4(b),
an example of the arrangement of four sources at 60� angu-
lar difference is shown.

We implemented the baseline methods ourselves and
tested them with the same mixtures as for the proposed
method. The frame size of the STFT of the mixtures is
1024, with 75% overlap between the neighboring frames.
The iteration number of the EM algorithm is chosen as
16 in the Sawada’s method and the proposed method.

In Sawada’s method, the parameters of the mean
value ai and the variance c2

i are initialized as 1=I and 0.1
respectively, the same as in Sawada et al. (2011). For
Gunel’s algorithm, following the work in Gunel et al.
(2008), the 6-dB beamwidth is spanned from 10� to 180�

with 10� intervals to calculate the related concentration
parameters j.

4.2. Evaluation metrics

In this work, to quantify the quality of the separated
sources, both the signal-to-distortion ratio (SDR)
(Vincent et al., 2006) and the perceptual evaluation of
speech quality (PESQ) (Loizou, 2007; Di Persia et al.,
2008) are evaluated.

The SDR is defined as the ratio of the energy in the ori-
ginal signal to the energy in the interference from other sig-
nals and artifacts (i.e. reverberation). The energy of the
target signal can be obtained by the energy in the estimated
signal yi which can be considered as a linear combination
of delayed version of the original signal si. The remaining
energy in the estimated signal which does not belong to
the target is considered as the distortion energy, including
the interference and artifact energy.



Table 1
All the orientations of the sources with different angular difference (Dh).

s1 0� 0� 0� 0� 0� 0� 0� 0� 0�

s2 10� 20� 30� 40� 50� 60� 70� 80� 90�

s3 20� 40� 60� 80� 100� 120� 140� 160� 180�

s4 30� 60� 90� 120� 150� 180� 210� 240� 270�

Dh 10� 20� 30� 40� 50� 60� 70� 80� 90�
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The SDR is calculated as the averaged value for each
source

SDR ¼ 1

I

XI

i¼1

10log10

EfðsiÞ2g
Efðyi � siÞ2g

 !
ð28Þ

where I is the number of the sources.
We also evaluate the PESQ by using the ITU-PESQ

software (Thiede et al., 2000). The separated signal is com-
pared with the original clean signal to evaluate the percep-
tual quality of the separated speech using the Mean
Opinion Score (MOS). As noted in Mandel et al. (2010),
the MOS has the range from �0:5 to 4.5, with �0:5 and
4.5 indicating the worst and the best quality of the sepa-
rated speech, respectively. It is worth noting that PESQ
was originally proposed to quantify the perceptual speech
quality of telephone networks and speech coding. For
example, it is often used to measure the impairment of a
speech codec. However, due to its popularity in predicting
subjective quality of a speech signal, PESQ has also been
widely used in speech separation community for perceptual
quality evaluation of separated speech sources.

In order to investigate whether the proposed method
shows significant improvements compared with the base-
line methods, the one-way ANOVA test (Hoel et al.,
1960) is also performed with the significance level set at
5%, and the p-values are calculated to determine whether
the performance difference between the methods is statisti-
cally significant.

4.3. Experimental results

4.3.1. Results for the synthetic data

Fig. 5 shows the SDRs versus T 60s for the mixtures of two,
three and four sources respectively, with the confidence
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Fig. 5. The SDR results in dB for the simulated mixture of (a) two sources,
intervals shown as bars surrounding the means in the plots.
As expected, the SDR values decrease when the reverbera-
tion level increases. The proposed method (‘Proposed’) per-
forms better than the baseline methods, giving an
improvement of 0:47=0:91 dB, 0:43=0:65 dB, and 0:22=0:60
dB, averaged over all the reverberation levels, as compared
with ‘Gunel’/‘Shujau’ under the two, three and four sources
cases, respectively. The proposed method based on the reli-
ability information (‘Proposed-R’) can further improve the
separation performance, on average, giving 1:42=1:87 dB,
0:77=0:98 dB, and 0:94=1:32 dB improvements as compared
to ‘Gunel’/‘Shujau’, respectively.

As shown in Fig. 5, with the same methods, the separa-
tion results based on B-format microphone recordings
(‘Sawada-B’ and ‘Wang-B’) appear to be better than
those based on omnidirectional microphone recordings
(‘Sawada-O’ and ‘Wang-O’). Note that the omnidirectional
microphone recordings are obtained virtually based on
the B-format recordings as discussed earlier in this section.
It can be seen that under anechoic condition, the ICA
method (‘Wang-B’) outperforms the T–F masking based
approaches for B-format recordings. However, with the
increase in room reverberation, the methods of ‘Pro-
posed’/‘Proposed-R’ show on average 1:18=1:86 dB
improvements as compared with ‘Wang-B’ for the rever-
berant cases, and giving an improvement of 0:67=1:35 dB,
as compared with ‘Sawada-B’. The corresponding
improvements are 4:1=4:6 dB and 5:9=6:5 dB, as compared
with ‘Sawada-O’ and ‘Wang-O’, respectively.

The PESQ results follow the similar trend to the SDR
results, as shown in Fig. 6. The avarage improvements
of ‘Proposed’/‘Proposed-R’ are approximately 0:05=0:1;
0:1=0:15, and 0:18=0:22,, as compared with ‘Gunel’,
‘Shujau’, and ‘Sawada-B’, respectively.
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(b) three sources and (c) four sources versus various reverberation times.
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Fig. 6. The PESQ results for the simulated mixture of (a) two sources, (b) three sources and (c) four sources versus various reverberation times.
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Furthermore, the p-value is estimated by the one-way
ANOVA test to determine whether the proposed method
gives significant improvements compared with the baseline
methods. For the significance level at 5%, the results are
considered as statistically significant if the p-value is smal-
ler than 0.05. The p-value of the SDR results (number of

mixtures = 315) are 1:42
 10�8; 2:14
 10�10, and

1:48
 10�22, by comparing the proposed method with
‘Gunel’, ‘Shujau’, and ‘Sawada-B’, respectively. Thus the
improvements by the proposed method are statistically sig-
nificant as compared with the baseline methods.

It is worth noting that the results of the baseline meth-
ods of ‘Sawada-B’ and ‘Wang-B’ are obtained based on
the x- and y-gradient components of the B-format outputs
(gx; gy), as we found that the separation performance would

degrade when the component p0 is included. To show this,
we present a comparison of the SDR results between dis-
carding and including the pressure component, denoted
as ‘Sawada-B’/‘Sawada-B-3input’, ‘Wang-B’/‘Wang-B-
3input’ respectively, which were obtained by 15 pairs of
mixtures with two sources located at (40�; 70�), and three
sources located at (40�; 70�; 100�) and (40�; 100�; 160�)
respectively (see Fig. 2). The results are shown in Table 2.
Due to the common limitation of the ICA algorithms, the
separation results of ‘Wang-B’ are only shown for two
sources case, and hence for the three-source case, no results
(denoted by ‘-’) are shown in this table.
4.3.2. Results for the real data

In Fig. 7, an example is given to show the T–F mask
obtained by the proposed method with reliability informa-
Table 2
The SDR results in dB of two baseline methods (‘Sawada’, ‘Wang’) by
discarding and including the pressure component of the B-format
microphone recordings, respectively.

Direction of
sources (�)

Sawada-B/Sawada-B-
3input (dB)

Wang-B/Wang-B-
3input (dB)

40�; 70� 7:58=5:74 5:88=4:93
40�; 70�; 100� 2:92=2:01 �=1:88
40�; 100�; 160� 5:10=4:96 �=3:92
tion based on the DOA values in set X, and three baseline
methods, respectively. The SDR results corresponding to
each mask are also shown in the brackets for comparison.

In Figs. 8 and 9, the SDR and PESQ results, which are
obtained by averaging over 15 pairs of mixtures at each
angular difference, are plotted against the angular differ-
ence between the two, three and four sources, respectively.
As can be observed from the SDR and PESQ results, the
performance gradually deteriorates with the increase in
the number of sources.

Almost for all angular differences, the proposed method
shows better separation performance than the competing
methods. It is because the two DOA-based methods
(‘Gunel’, ‘Shujau’) rely on the mean directions estimated,
which become less accurate and reliable when the sources
are located close to each other, especially in highly rever-
berant environments.

In the proposed method, however, the mean directions
are only used at the initialization stage, the parameters of
DOA and mixing vector cues are updated iteratively at
each frequency bin to improve the estimates towards the
true value. The averaged SDR improvements of the pro-
posed method (without the reliability measure) over all
the angle differences are about 0:87=0:80=0:53 dB,
0:76=1:05=1:84 dB, and 0:74=1:05=2:76 dB under two, three
and four sources cases, compared with the methods of
‘Gunel’, ‘Shujau’, and ‘Sawada-B”, respectively.

The reliability-based approach can further improve the
separation performance by removing the un-reliable direc-
tion information which is caused by the reverberation. The
corresponding SDR improvements are around 1:33=1:41=
1:14 dB, 1:27=1:66=2:36 dB, and 1:12=1:42=3:14 dB com-
pared with ‘Gunel’/‘Shujau’/‘Sawada-B’, for the mixture
of two, three, and four sources, respectively. The p-value
of the SDR results (number of mixtures = 405) are

4:09
 10�22; 7:02
 10�24, and 7:20
 10�30, by comparing
the proposed method with ‘Gunel’, ‘Shujau’, and ‘Saw-
ada-B’, respectively.

The PESQ results follow the trend of the SDR results
quite closely. Compared with ‘Gunel’, ‘Shujau’, and
‘Sawada-B’, the proposed method (without the reliability
measure) shows approximately 0.08, 0.11, and 0.23 improve-
ments, under two, three, and four sources case respectively,
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Fig. 8. The SDR results in dB for the real collected mixture of (a) two sources, (b) three sources and (c) four sources versus different angular difference
(Dh).
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the corresponding improvements are 0.13, 0.17, and 0.29
for the reliability-based method.

For the two sources case, the SDR improvements of
‘Proposed’/‘Proposed-R’ are 0:94=1:55 dB, and the corre-
sponding PESQ results are 0:02=0:05, compared with the
method of ‘Wang-B’.
In addition, we have also added the step of reliability
based DOA classification to the methods of ‘Gunel’ and
‘Shujau’, and the results are denoted by ‘Gunel-R’ and
‘Shujau-R’, respectively. The SDR results are tested under
the same situation with Table 2. As shown in Table 3,
similar to the proposed method, the performance of both
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Table 3
The SDR results in dB of the proposed method and two baseline methods
with and without the step of reliability-based DOA classification,
respectively.

Direction of
sources

Proposed-R/
Proposed (dB)

Gunel-R/
Gunel (dB)

Shujau-R/
Shujau (dB)

40�; 70� 10:18=8:23 8:06=7:62 7:98=7:51
40�; 70�; 100� 4:54=3:36 3:13=2:81 3:07=2:71
40�; 100�; 160� 6:70=6:45 5:58=5:31 5:57=5:22
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baseline methods has been improved using the reliability
based DOA classification.
5. Conclusions

We have presented a new algorithm for the separation of
convolutive mixtures by incorporating the intensity vector
of the acoustic field with probabilistic time–frequency
masking. The DOA and mixing vector cues are then mod-
eled by the von Mises mixture model and complex Gauss-
ian mixture model respectively, the parameters of which are
updated iteratively via the EM algorithm to estimate and
refine the probability of each T–F unit of the mixture
belonging to each source. Based on this, a reliability-based
method is also introduced to improve the performance of
source separation in which the points that are far away
from all the mean directions are considered as the outliers
due to the effect of room reverberation.

The proposed method has been tested extensively for the
mixture of two, three and four speech sources respectively
under the simulated room model with different reverbera-
tion level, and also for real recordings acquired in a rever-
berant studio with the reverberation time of approximately
0.6 s with various angular intervals. The proposed method
shows better separation performance in SDR and PESQ as
compared with the baseline methods under almost all the
situations tested.
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