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Abstract—We study the problem of wideband direction of
arrival (DoA) estimation by joint optimisation of array and
spatial sparsity. Two-step iterative process is proposed. In the
first step, the wideband signal is reshaped and used as the input
to derive the weight coefficients using a sparse array optimisation
method. The weights are then used to scale the observed signal
model for which a compressive sensing based spatial sparsity
optimisation method is used for DoA estimation. Simulations are
provided to demonstrate the performance of the proposed method
for both stationary and moving sources.

I. INTRODUCTION

Source localisation, such as direction of arrival (DoA)
estimation, is an important issue in a number of applications
such as underwater acoustic detection, target tracking and
environmental monitoring [1] [2]. The key to successful source
localisation lies in the reliable extraction of useful information
about the states of targets from the observations, which are
collected by acoustic transducers, often operated in a noisy
environment [2] [3]. Due to the constraints on computation
resources, sensing range, communication bandwidth, and en-
ergy consumption, it is usually desirable not to use all the
sensors in the array to report their measurements at all the
time instants [4] [5] [6] [7]. This leads to the problem of
sparse array optimisation and sensor selection, which seeks to
activate a subset of sensors at different time to optimize the
tracking performance under the given constraints.

Our work focuses on the problem of using as few sensors
as possible to achieve DoA estimation at each sampling time.
Traditionally, DoA estimation is addressed by methods, such
as Capon beamformer, high-resolution and multiple signal
classification (MUSIC) algorithm [8] [9] [10]. Recently, spatial
sparsity based optimisation, which aims at extracting meaning-
ful lower-dimensional information from high-dimensional data
[11], has attracted great interests. Based on compressive sens-
ing (CS) theory [12], the DoAs can be estimated by solving an
optimisation problem constrained with the l1 norm of a vector
of the coefficients corresponding to the source activities in the
spatial domain [13], which is assumed to be sparse, implying
that only a few sources are active simultaneously. In these
existing works, a full array has been used. However, as pointed
out earlier, it would be desirable if the spatial sparsity can be
used jointly with the array sparsity so that the sources can be
localised with as few sensors from the array as possible.

This paper presents a joint array and spatial sparsity optimi-
sation approach for wideband DoA estimation. The wideband
signal is reconstructed as the combination of each sub-band to
form a transverse line. The rebuilt signal can be regarded as a
‘narrowband’ input to a CS based two-step iterative process.
With the joint approach, a fixed set of weight coefficients
can be derived for each sensor, which are then used in the
spatial sparsity based optimisation process for the estimation
of DoAs. Different from the work in [14], whose wideband
DoA estimation is achieved by exploiting joint sparsity of
the divided spectral sub-bands of signals with a sensor array
designed in advance, our approach exploits sparsity in both
array and source space, and the sensor separation is calculated
automatically based on given inputs. A two-layer Bayesian
model was used in [15] based on sparse Bayesian learning
[16], where a vector of hyper-parameters is used to control
the common sparsity shared among different frequency bands
in an underdetermined wideband scenario, and the expectation
maximization algorithm is employed to estimate the DOA.
However, in both layers, the problem of sparse signal recovery
is considered, using a two-level nested array with fixed sensor
elements. Therefore, this work does not consider the problem
of sparse array optimisation and sensor selection. In [17], joint
multicast beamforming and antenna selection is proposed to
achieve the message propagation using the squared `1-norm of
the weight vector for the transmit-antenna elements, where the
goal is to jointly select a limited number of antennas, and find
their corresponding beamforming vectors so that the transmit
power is minimized. However, the number of selected antennas
is manually set in order to solve the induced non-convex
optimisation problem, which is different from our method
where this is found automatically as a result of the optimisation
for the corresponding weights. In addition, the beamforming
process based on the transmit power is different from the
spatial sparsity based optimisation where a dictionary matrix
is used to represent the received signal in a low-dimensional
space.

This article is organised as follows. In Section II, the
background including basic settings and related formulas are
presented. The proposed method is presented in Section III.
In Section IV, simulations on a stationary source, a moving
source, noise added sources and a comparison with a baseline
are presented. Finally, the conclusion is given in Section V.



II. BACKGROUND

A. Signal Model

Suppose that at each time instant k , there is a wideband far-
field source impinging on a linear array xk = (x1, · · · , xM )T

where M is the number of possible source directions (i.e. DOA
angles). The received sensor signal at each k is denoted as
yk(j) = (yk1(j), · · · , ykN (j))

T , where N is the number of
sensors and j = 1, ..., J is the index of the frequency bands.
We assume that the detection capability of each array element
is unitary. In addition, source signals can only arrive in one
half of the plane and the array is expected to have a perfect
baffle, which means the arrival directions are from -90 degrees
to +90 degrees along the plane of the array elements, and 0
degree is the normal to the line of the array [18].

A dictionary matrix A is created by sampling all possible
DoAs for the wideband array. The nm-th element of A for
the j -th frequency band is defined as

Anm(j) = exp
[
i2πf (j)dnc

−1 sin θm
]

(1)

where i ≡
√
−1, dn denotes the distance between the n-

th sensor and the first sensor for n = 1, 2, · · · ,N , c is the
speed of wave propagation, and θm is the DoA of the m-th
hypothetical source to the array for the j -th frequency band
f (j), where m = 1, 2, · · · ,M .

For each vector xk, the N dimensional array output of the
j -th frequency band is expressed as

yk(j) = A(j)xk + nk(j) (2)

where nk(j) is a random noise vector at the j -th frequency
band. Here we consider isotropic noise in the assumed half
plane as used in our experiments.

B. CS-Based Sparse Array

In a sparse array, the aim is to use as few sensors as possible
to achieve similar performance to that via the full array. For
the narrowband case, this can be formed as a CS problem
by minimising the `1 norm of the weight coefficients [19], as
follows,

min ‖w‖1

subject to ‖pT −wHA‖2 ≤ α (3)

where w ∈ CN is the coefficient vector of the array, p ∈ CM

is the vector holding the desired beam response at the sampled
angular points θm for the frequency of interest Ω, α ∈ <+ is
a threshold measuring the similarity between the designed re-
sponse and the desired response, (·)H is a Hermitian operator,
‖ · ‖1 and ‖ · ‖2 are respectively the `1 and `2 norm of their
arguments. Here, p is defined by

p = [p(Ω, θ1), p(Ω, θ2), · · · , p(Ω, θM )]
T (4)

where p(Ω, θ) is a desired response at the direction θ and
frequency Ω, which, in the wideband case, can be replaced as
Ωj for the j-th frequency band.

C. Spatial Sparsity based DoA Estimation

Different from the sparse array problem, in spatial sparsity
based DoA estimation, the aim is to find the weight that corre-
sponds to the source direction based on a full array, assuming
that the number of active sources is small as compared to
the total number of possible source directions. This can be
achieved by a sequential Bayesian technique based on the
least absolute shrinkage and selection operator (LASSO), as
proposed in [20], [21]. For the narrowband signal yk at time
k and source activation vector xk, the cost function to be
minimised is given as follows,

argmin
xk

‖yk −Axk‖22 + µ‖Dxk‖1 (5)

with
D = σ2V (6)

V = diag(v) (7)

where D and V are the matrices holding the coefficients
vector v = (v1, v2, . . . , vM)T , which corresponds to the source
activity in the source space, µ is a regularization parameter,
and σ2 is the noise variance. For the broadband scenario, the
relative levels of added noise are different at each frequency
band. As a result, the value of σ can be taken as the average
of relative levels.

The weights can be estimated sequentially, i.e. the result at
the (k + 1)-th time step vm[k+ 1] should be calculated using
vm[k] at the k -th time step. In the neighbourhood of an active
source defined by a threshold [21] [22], the predicted weights
vm[k + 1] are calculated as below:

(vm[k + 1])
2

=

 l∑
j=−l

αj

(vm+j [k])
2

−1

(8)

with non-negative coefficients αj ,
∑

j αj = 1 and the weights
in v are bounded by 1. In practice, a small threshold e.g. 100×
2−52 is used to prevent the value of vm+j [k] from approaching
zero in order to avoid invalid division. When the estimation
is out of the neighbourhood of the active source, the weight
prediction is replaced by:

vm[k + 1] = vm[k] + cv0 (9)

where v0 and c are defined empirically [21] [22].

III. JOINT SPARSITY BASED METHOD FOR WIDEBAND
DOA ESTIMATION

In this section, we present a method for wideband DoA
estimation by exploiting the spatial sparsity and using as few
sensors from the array as possible. This method is actually
an extension of our recent work in [18], which is a two-step
process designed for narrow-band DoA estimation. With the
input of a given beam, the first step is to implement the CS-
based sparse array algorithm through the cost function (3) to
obtain a set of sparse sensor weight coefficients. The second
step is to plug the estimated weight coefficients into the cost



function (5), as a scaling factor for yk. The cost function for
the joint sparsity approach is defined as

argmin
xk,vm

‖Wyk −Axk‖22 + µ‖Dxk‖1 (10)

where W is defined as

W =

 |w1|
· · ·

|wN |

 (11)

For the wideband scenario, the signal needs to be reshaped
as a narrowband-like input. With this input the sparse array
optimisation is used to calculate the weight coefficients for
each sensor for different frequency bands. Then the weight
coefficients are restructured to match the length of yk and to
scale the expanded yk. The spatial sparsity based technique is
then used to derive the DoA before reshaping it back to the
wideband set up.

A. Reshaping Step

For the sparse array optimisation, in order to implement the
cost function (3) for wideband signals, the response matrix
P ∈ CM×J can be reshaped to an MJ dimensional vector,
preshape ∈ CMJ , as follows,

preshape = [p(Ω1, θ1), · · · , p(Ω1, θM ), · · · ,
p(Ω2, θ1), · · · , p(Ω2, θM ), · · · ,
p(ΩJ , θ1), · · · , p(ΩJ , θM )]T

(12)

Corresponding to the desired beam response, the dictionary
matrix A whose elements are defined in (1) for sparse array
optimisation is changed to Aarray ∈ CN×(MJ), as follows

Aarray = exp[i2πf (1)dnc
−1 sin θm,

i2πf (2)dnc
−1 sin θm, · · · ,

i2πf (J)dnc
−1 sin θm]

(13)

Similar to sparse array optimisation, the observed signal yk

used in spatial sparsity based DoA estimation is reshaped as

yk−reshape = [yk(1),yk(2), · · · ,yk(J)]T (14)

The dictionary matrix A used in the spatial sparsity based
DoA estimation becomes Aspatial ∈ C(NJ)×M defined as

Aspatial = exp[(i2πf (1)dnc
−1 sin θ1, · · · ,

i2πf (J)dnc
−1 sin θ1)T , (i2πf (1)dnc

−1 sin θ2, · · · ,
i2πf (J)dnc

−1 sin θ2)T , , · · · , (i2πf (1)dnc
−1 sin θM , · · · ,

i2πf (J)dnc
−1 sin θM )T ]

(15)

B. Sparse Array Optimisation Step

For the CS-based sparse wideband array optimisation, the
cost function (3) with complex vector weight coefficients, i.e.
w = wR + wI i, is modified as

min ‖wR‖1 + ‖wI‖1

subject to ‖pT
reshape − (wR + wI i)

H
Aarray‖2 ≤ α

(16)

where preshape is the reshaped input vector holding the desired
beam response at source directions and Aarray is the reshaped
dictionary matrix matching the size of the re-shaped response
vector.

The length of the obtained w is N . Before performing the
spatial sparsity based DoA estimation, the weight coefficients
for all the frequency bands are structured to match the size of
yk−reshape as follows

wrepeat = [w1,w2, · · · ,wJ ]T (17)

C. Spatial Sparsity based DoA Estimation Step

After obtaining the suitable wrepeat, the LASSO function
(5) is then modified as

argmin
xk,vm

‖Wreshapeyk−reshape −Aspatialxk‖22 + µ‖Dxk‖1
(18)

where Wreshape ∈ C(NJ)×(NJ) is defined as

Wreshape = diag(|wrepeat|) (19)

The obtained xk ∈ CM is then used to construct
xk−repeat ∈ C(MJ), as below

xk−repeat = [xk, · · · ,xk]T (20)

For the iterative implementation, the estimated xk is then
used to reconstruct the response vector (21) and D is updated
as (6). The above two processes are iterated until the DoA is
found using a minimum number of sensors.

p = [(Aarrayxk−repeat)
HAarray]T (21)

Both cost functions (16) and (18) are optimised by the CVX
toolbox in Matlab [23].

The procedure of the proposed joint sparse array and spatial
sparsity based optimisation for wideband DoA estimation is
shown in Table I, where the number of iterations in the inner
loop kk could be increased to achieve better performance. The
input beam response p can be initialised randomly, e.g. at 0
degree.

IV. SIMULATION EXPERIMENTS AND DISCUSSIONS

In this section, we illustrate the performance of the proposed
joint sparsity based method for wideband DoA estimation. All
the experiments are based on simulated data, which consists of
a stationary source at 20 degrees and a moving source whose
DoAs changes gradually from 43 degrees to -9 degrees. For
each experiment, the first input beam response is initialised at
0 degree based on a Chebyshev window function (simply set
to be different from the ground truth of the source direction to
show the capability of the proposed method). The incidence
source angle is assumed to be the same for each frequency
band and the value is changed at a constant rate, therefore no
Doppler shift is considered in this paper.

The speed of underwater sound used in this approach is
assumed to be 1500 m/s, and the wideband frequency of the
sources is divided into bands at 1000 Hz, 1100 Hz, 1200 Hz,
1300 Hz, and 1400 Hz. A linear array with 300 sensors is used



Implementation of joint array and spatial sparsity approach
Input: observed signal yk

Output: weight coefficients for sensors: w and
estimated DoA: p

Initialisation: generate preshape ∈ CMJ at 0 degrees,
form Aarray ∈ CN×(MJ) as in (13),
form Aspatial ∈ C(NJ)×M as in (15)

Run:
for k = 1, 2, 3, · · ·

for kk = 1, 2
optimise (16) to obtain wR and wI

w = wR +wI i
form wrepeat as in (17)
obtain D as in (6)
reshape wrepeat to Wreshape as in (19)
optimise (18) to obtain xk

calculate xk−repeat as in (20)
reconstruct p as in (21)
preshape = p

end
end

TABLE I
THE PROPOSED JOINT SPARSITY BASED OPTIMISATION METHOD.

Stationary source Moving source
MSEarray (dB) -52.6 -53.7
MSEspatial (dB) -39.8 -39.1

No. of active sensors 64 69
TABLE II

SIMULATION RESULTS FOR STATIONARY SOURCE AND MOVING SOURCE.

and the inter-sensor spacing is 0.05λ (λ is the wavelength).
Here the value of sensor separation is chosen empirically
according to the scale of the array. The maximum running
time-step is K = 20. The number of steps is set to ensure
convergence. The constraint value of α used in (16) is 0.3,
which controls how close the designed response is to the
desired response. The Mean Square Errors (MSEs) for sparse
array optimisation and spatial sparsity based optimisation are
used as the performance index, which are defined according
to functions (16) and (21) as

MSEarray = 20log10

(
‖pT

reshape −wHAarray‖22
M

)
dB

(22)

MSE spatial = 20log10

(
‖yH

k A− pT ‖22
M

)
dB (23)

where M is the number of potential source directions. The
results of yH

k A obtained through calculating each frequency
band are combined to match the size of p. The average values
for both MSEs are calculated with the total running step of
K .

For the sources without noise, the simulation results shown
in Table II illustrate a close match between the desired signal
preshape and the designed signal wHAarray as defined by
(22). The values of MSEs for the stationary source are similar
to those for the moving source, but for the moving source,
more sensors need to be used under the same level of noise.

To demonstrate the influence of noise, noise at the levels 25
dB, 30 dB and 40 dB in terms of Signal to Noise Ratio (SNR)
is added to the sensor signals. The noise is isotropic around

MSEarray MSEspatial Active SNR
(dB) (dB) sensors (dB)

Stationary source -45.9 -34.6 61 30
Moving source -45.4 -38.8 64 30
Moving source -31.5 -26.8 75 25
Moving source -57.0 -39.9 60 40

TABLE III
SIMULATION RESULTS FOR NOISE ADDED SOURCES.

the half space and follows the i.i.d. Gaussian distribution with
zero mean and unit variance. The results are shown in Table
III. From this table, we can see that when the noise level
is identical, the moving source tends to use more sensors as
compared with the stationary source. In both cases, the MSEs
are larger than those without noise. As the SNR increases,
the MSEs decrease and fewer active sensors are used. The
experiments for both the stationary source and moving source
demonstrate a satisfactory performance of the joint approach.

We also compare the joint approach with a baseline which
only considers the spatial sparsity-based optimisation using a
full array. The MSE spatial results at each time-step are shown
in Figure 1. In this experiment, we only process noiseless
signals at frequency bands of 1000 Hz and 1100 Hz and the
total running time K = 100. It can be seen that the joint
optimisation method gives similar DoA estimation results to
those in the spatial sparsity based baseline. The minimum
value is almost the same as -164 dB for both methods at the
time step of k = 84. From Figure 2 we can observe that
after k = 84, there is less estimation noise than the interval
from k = 40 to k = 80. The comparison experiment shows
that the joint approach can achieve DoA estimation similar to
the single spatial sparsity optimisation but with much fewer
sensors.

V. CONCLUSION

We have presented a new algorithm for wideband DoA esti-
mation based on joint optimisation of array and spatial sparsity.
The method operates by reshaping the wideband signal which
is then used in CS-based sparse array optimisation to estimate
the weight coefficients for the selection of the sensors. The
obtained weight coefficients are then used to derive the DoA
of the sources based on spatial sparsity. The procedure is
iterated in an alternating manner. The algorithm starts from
an initialized input and the approach can adjust itself to
obtain the DoA estimation. The results evaluated for both a
stationary source and a moving source show good performance
of the proposed method. For the future work, we will consider
the scenarios of multiple sources with larger bandwidth and
stronger noise, typically happening in underwater applications.
A comparison to other conventional DOA estimation methods
will also be considered.



0 50 100
−200

−150

−100

−50

0

Time steps

M
S

E
 (

d
B

)

 

 

joint approach

only spatial sparsity

Fig. 1. MSEspatial for the moving source without noise.

Time steps

D
O

A
 (

d
e
g
)

 

 

20 40 60 80 100

−50

0

50

0

0.2

0.4

0.6

0.8

1

Fig. 2. DoAs (p) estimated for the moving source without noise at the
frequency band of 1100 Hz.

REFERENCES

[1] J. Benesty, J. Chen, and Y. Huang, Microphone array signal processing.
Springer Science & Business Media, 2008, vol. 1.

[2] M. R. Bai, J.-G. Ih, and J. Benesty, Acoustic Array Systems: Theory,
Implementation, and Application. John Wiley & Sons, 2013.

[3] M. E. G. Borges, D. Maltese, P. Vanheeghe, G. Sella, and E. Duflos,
“Sensor management using expected risk reduction approach,” in 2016
19th International Conference on Information Fusion (FUSION). IEEE,
2016, pp. 2050–2058.

[4] S. Liu, F. Chen, A. Vempaty, M. Fardad, L. Shen, and P. K. Varshney,
“Sparsity-promoting sensor management for estimation: An energy
balance point of view,” in 2015 18th International Conference on
Information Fusion (Fusion). IEEE, 2015, pp. 231–238.

[5] L. Zuo, R. Niu, and P. Varshney, “Posterior crlb based sensor selection
for target tracking in sensor networks,” in ICASSP 2007. IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing, vol. 2.
IEEE, 2007, pp. II–1041.

[6] R. Tharmarasa, T. Kirubarajan, and M. Hernandez, “Large-scale optimal
sensor array management for multitarget tracking,” IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications and Reviews),
vol. 37, no. 5, pp. 803–814, 2007.

[7] R. Tharmarasa, T. Kirubarajan, A. Sinha, and T. Lang, “Decentralized
sensor selection for large-scale multisensor-multitarget tracking,” IEEE
Transactions on Aerospace and Electronic systems, vol. 47, no. 2, pp.
1307–1324, 2011.
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