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Bootstrap Averaging for Model-Based Source
Separation in Reverberant Conditions

Swati Chandna and Wenwu Wang , Senior Member, IEEE

Abstract—Recently proposed model-based methods use time-
frequency (T-F) masking for source separation, where the T-F
masks are derived from various cues described by a frequency do-
main Gaussian mixture model (GMM). These methods work well
for separating mixtures recorded in low-to-medium level of rever-
beration, however, their performance degrades as the level of rever-
beration is increased. We note that the relatively poor performance
of these methods under reverberant conditions can be attributed
to the high variance of the frequency-dependent GMM parame-
ter estimates. To address this limitation, a novel bootstrap-based
approach is proposed to improve the accuracy of expectation max-
imization estimates of a frequency-dependent GMM based on an
a priori chosen initialization scheme. It is shown how the proposed
technique allows us to construct time-frequency masks which lead
to improved model-based source separation for reverberant speech
mixtures. Experiments and analysis are performed on speech mix-
tures formed using real room-recorded impulse responses.

Index Terms—Gaussian mixture model (GMM), expectation
maximization (EM) algorithm, bootstrap averaging, model-based
source separation, time-frequency (T-F) masking, reverberant
speech mixtures, audio signal processing, spectral histogram.

I. INTRODUCTION

SOURCE separation is defined as the problem of separating
multiple sources mixed through an unknown mixing system

(channel), using only the system outputs (e.g. observed mixtures
of speech). Let I denote the number of sources and M denote
the number of channels. At discrete time point n ∈ {1, . . . , N},
the system output xm (n) at the mth channel is a convolutive
mixture of the form

xm (n) =
I∑

i=1

si(n) ∗ him (n) ∗ em (n), (1)

where ∗ denotes convolution, si(n) is the ith source, him (n)
for m = 1, . . . ,M , is the room impulse response from source i
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to channelm, and em (n) denotes convolutive noise. The choice
of a convolutive noise is made for analytical convenience as it
leads to an additive term in the log-magnitude and phase do-
mains, [1]. For each i = 1, . . . , I , let si = [si(1), . . . , si(N)]T

denote the source observed at N time points, and similarly,
for each m = 1, . . . ,M , let xm = [xm (1), . . . , xm (N)]T de-
note the corresponding mixture vector. Then the problem of
source separation deals with the estimation of the source vectors
s1 , . . . , sI , given the mixture vectors x1 , . . . ,xM . This problem
is termed underdetermined when the number of observed mix-
tures, M , is less than the number of sources, I , that comprise
the mixture.

In many real-world applications, the population may con-
sist of several sub-populations and a standard distribution is
not able to capture the variation over these sub-populations ef-
fectively. Finite mixture1 models, as the name suggests, are
extensively used to model such data with a finite mixture of
standard distributions. Mixture distributions are extremely pop-
ular in areas such as audio-signal processing, image analysis,
and geology, where they are used to model spectrograms in
the time-frequency domain. Here, the time-frequency analysis
of piecewise stationary signals allows the use of GMMs over
time frames at each frequency. We shall refer to such frequency-
specific GMMs as frequency domain GMMs. Some examples
of applications employing GMMs in the frequency domain are
[2], [3], [4] in speech signal analysis; [5], [6] in image analysis.

Model-based blind source separation for exactly determined
and underdetermined speech mixtures such as [1], [7], [8], [9],
are more recent examples of applications in speech analysis in-
volving frequency-specific GMMs. These methods have gained
significant popularity due to their simple model-based approach
for integration of cues. Here a by-product of the EM algorithm
used to estimate parameters of the frequency domain GMM, is
a time-frequency (T-F) mask that allows separation of the target
source of interest from the source of interference. These meth-
ods perform extremely well for mixtures recorded under low-
to-medium levels of reverberation, however, their performance
degrades as the reverberation level is increased. The poor perfor-
mance of such algorithms for reverberant mixtures is attributed
to inaccurate EM estimation of the frequency-dependent GMM
parameters. More generally, this is due to the absence of an
explicit model for reverberation. In addition to this, the fre-
quency domain GMM in these algorithms, [1], [7], [8], relies
on the assumption of the cues being independent. As noted in

1Note that the term ‘mixture’ here refers to a mixture of distributions and not
a mixture of sources.
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[8, sec. III.A], this assumption of the cues being independent
does not hold in practice and is used as a convenieway to make
the problem of source separation tractable. Overall, this results
in a misspecified mixture model, leading to EM estimates with
a very high variance. We show how better EM estimates of the
target source parameters can be obtained using the proposed
bootstrap-based procedure to improve model-based source sep-
aration from reverberant speech mixtures. Our method is de-
scribed for a univariate GMM in the frequency domain. Note
that this does not require the observed time domain sample to be
univariate, for example, as in the source separation algorithm of
[1], where a univariate frequency domain GMM is constructed
by transforming a two-dimensional vector observation of speech
mixtures.

Bootstrap methods are commonly used to draw inference on
statistics of interest when no theoretical results are available, or
when inference based on theoretical results is computationally
intractable, such as to obtain standard errors and confidence
intervals, [10]. Non-traditional applications of bootstrap which
show how it can also facilitate a more robust statistical analysis
are found, e.g., in machine learning to improve the forecast
accuracy of models selected by unstable decision rules, [11], as
well as in the area of pattern analysis where it is applied to the
problem of fitting ellipse segments to noisy data to eliminate
bias in the ellipse estimates [12]. The use of bootstrap for EM
estimates of a frequency-dependent GMM, or to improve source
separation performance as shown in our work, to the best of
our knowledge, has never been mentioned in the literature and
is the contribution of this paper. We would like to point out that
the proposed idea of bootstrap averaging is very well-suited to
the above mentioned source separation problem since the GMM
appears in the frequency domain, and hence can be bootstrapped
indirectly using the sample in the time domain, details of which
are provided in this paper. Results from a set of preliminary
experiments using this approach were presented in [13].

More recently, there has been a growing interest in tech-
niques employing non-negative matrix factorization (NMF) and
deep neural networks (DNN) to the problem of source separa-
tion. The idea with NMF for multichannel source separation,
e.g. [14], is to model the power spectrogram of each source
in the T-F domain as a product of two non-negative matrices.
Then modeling the short-time-Fourier transform (STFT) of each
source as the sum of a finite number of latent Gaussian com-
ponents, an EM implementation and a multiplicative update
(MU) approach have been proposed to estimate the matrix fac-
tors (determining the variance of the Gaussian components) as
well as the unknown convolutive mixing matrix. An NMF and
spatial covariance model has also been studied for underdeter-
mined source separation under reverberant conditions [15]. This
is based on the EM algorithm for estimation of the model pa-
rameters and the authors note the sensitivity of their estimates
to parameter initialization as well as degrading performance
with increasing reverberation times. Another formulation for
multichannel NMF described in [16], clusters the NMF bases
according to their spatial properties. DNNs have been used to
separate sources from binaural mixtures under reverberation via
a binary classification, e.g. [17] and related work by [18], or
using a probabilistic time-frequency mask, e.g. [19]. The latter

approach integrates binaural cues following the model-based
method of [8]. A multichannel source separation method is de-
scribed in [20].

DNN based approaches are supervised methods that need
training data sets, which may not always be available. Model-
based approaches such as [1], [9], [8] considered in this paper as
well as NMF methods for source separation allow the inclusion
of spatial and spectral cues; do not require training data and are
easier to deploy in unfamiliar environments. Noting these points,
it is of interest to study improvements that can be achieved with
such model-based methods and are the subject of this paper. Our
approach is illustrated using the method of [8] and can also be
adapted, for example, to improve the NMF-based multichannel
source separation of [14], as discussed in Section VIII.

A. Contributions and Organization

Following some background and notation on GMMs and their
EM estimation, the contributions of this paper are presented as
follows:

1) The proposed idea of bootstrap averaging is described in
Section III. A simulation example to illustrate the case
of sub-optimal EM estimates and the use of averaging to
reduce the mean-squared-error is discussed. This experi-
ment shows the benchmark improvement (measured via
MSE) that may be achieved via the proposed method in
an ideal set-up (without bootstrapping).

2) Model-based source separation focusing on the forms of
frequency domain GMMs that appear in such applications
is described in Section IV.

3) Bootstrap averaging for the source separation algorithm
of [8] is presented in Section V. Simulation experiments
using speech mixtures formed with real room-recorded
impulse responses are included in Section VI.

4) A further in-depth analysis to understand overall improve-
ments in model-based source separation via the proposed
methodology is provided in Section VII.

II. BACKGROUND AND NOTATION

Let G ≡ {gY |j (y|λj ), j = 1, . . . , d} denote a set of d proba-
bility density functions, each with parameter vector λ1 , . . . ,λd ,
respectively. Let y1 , . . . , yK denote a length-K sample from a
scalar-valued random process Y , such that each observation of
the length-K sample arises from one of the d density functions
in G. For j = 1, . . . , d, let Zj (y) denote an indicator variable
which takes the value one if observation y comes from the jth
component density gY |j (y|λj ). Consider the case where Zj (y)
is not observed for y ≡ y1 , . . . , yK , i.e., the membership of yi
for i = 1, . . . ,K in one of the d components is unknown. Then,
the probability density function of Y , denoted as gY (.) is ob-
tained by marginalizing the joint density of Y and Zj over the
latent variable Zj , as

gY (y|Λ,w) =
d∑

j=1

gY |Zj
(y|zj )gZj

(zj ) =
d∑

j=1

gY |j (y|λj )wj ,

(2)
where gZj

(zj ) = wj is the probability of the observed y arising
from the jth component density with parameter λj . Thus, the
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weights are non-negative and satisfy the condition w1 + . . .+
wd = 1. On the left hand side of (2), w denotes the vector
of weights w ≡ [w1 , . . . , wd ]T and Λ ≡ [λT1 , . . . ,λ

T
d ]T is the

vector of density parameters. So for a mixture of d Gaussian
distributions with mean and variance parameters denoted using
μ, σ2 , we have λj = [μj , σ2

j ]
T and Λ = [μ1 , σ

2
1 , . . . , μd , σ

2
d ]
T .

Thus (2) denotes a weighted mixture of component densities
gY |j (y,λj ), j = 1, . . . , dwith weightsw1 , . . . , wd , respectively
[21]. If the component densities gY (y|λj ) are Gaussian, then (2)
takes the form

gY (y|Λ,w) =
d∑

j=1

gY |j (y|μj , σ2
j )wj , (3)

where gY |j (y|μj , σ2
j ) denotes the Gaussian probability density

function with mean μj and variance σ2
j .

A. EM Estimation

Let Ψ denote the vector of all unknown parameters of the
GMM, i.e. Ψ = [w1 , . . . , wd−1 , μ1 , . . . , μd , σ

2
1 , . . . , σ

2
d ]
T , and

let Ω denote the parameter space for Ψ. The problem of max-
imum likelihood estimation of the parameters in Ψ is formu-
lated as an incomplete data problem, where the observed vector
y = [y1 , . . . , yK ]T ∈ RK is viewed to be incomplete since the
corresponding component labels are not available.

For each i = 1, . . . ,K, let zi = [z1(yi), . . . , zd(yi)]T denote
the length-d vector of indicator variables where the index of its
non-zero entry indicates the component to which the ith obser-
vation yi belongs. Let yC = [y,Z], with Z = [zT1 , . . . , z

T
K ]T ∈

{0, 1}K×d , denote the complete-data matrix. The EM algo-
rithm forms the log-likelihood function LC (Ψ) based on the
complete-data yC as,

logLC (Ψ) =
K∑

i=1

d∑

j=1

zij
{
log g

(
yi |μj , σ2

j

)
+ logwj

}
, (4)

where zij = (zi)j , and circumvents the problem of unobserved
component-labels by working iteratively with the conditional
expectation of the complete-data log-likelihood given the ob-
served sample vector y. More specifically, the E-step computes:

Q(Ψ|Ψ̂(m )
) = E(LC (Ψ)|y, Ψ̂(m )

), using the fit Ψ̂
(m )

at the
mth iteration. The M-step on the (m+ 1)th iteration involves

computing the global maxima of Q(Ψ|Ψ̂(m )
) w.r.t Ψ over

the parameter space Ω to get the updated estimate Ψ̂
(m+1)

,
[22]. The EM algorithm is initialized with parameter values in
Ψ(0) and subsequently the iterative E- and M- steps are alter-
nated repeatedly until the difference between the observed data
log-likelihood function L(Ψ) computed at Ψ(m+1) and Ψ(m )

changes by a small amount, i.e. stop at stage m when
∣∣∣∣∣∣

L
(
Ψ(m+1)

)

L
(
Ψ(m )

) − 1

∣∣∣∣∣∣
< ε, (5)

where ε denotes the desired tolerance, [22]. The EM algorithm
is sensitive to the choice of starting values or initialization, and
therefore it is important to use robust initialization schemes,
[23], [22]. For our experiments in the next section, we use the

search/run/select (S/R/S) initialization scheme of [23] which is
known to perform well in practice. The three step strategy is
to first (i) search for p initial positions, for example based on
random starts using an EM run; next, (ii) run the EM algorithm
at each initial position for a fixed number of times, say L; and
finally (iii) select the solution that provides the best likelihood
among all the L× p trials.

III. THE PROPOSED METHOD

We propose a bootstrap averaging approach where for each
GMM parameter, the EM estimates (based on the a priori chosen
initialization scheme) computed from bootstrap replicates of
the observed sample are averaged to reduce the variance, while
leaving their bias unchanged.

Let y = [y1 , . . . , yK ]T denote a length-K sample obtained by
independently drawing samples from the probability distribution
FY . Let θ̂(y) ≡ θ̂ denote a scalar-valued statistic of interest
derived from y. Consider the averaged estimator

θ̂A(B) =
θ̂1 + . . .+ θ̂B

B
, (6)

based on B samples y1 , . . . ,yB from Fy , with the bth
estimate θ̂b derived from the bth length-K sample yb =
[yb,1 , . . . , yb,K ]T . Then the bias and variance of θ̂A, are
given by

bias(θ̂A) = E(θ̂A) − θ

=
1
B

[bias(θ̂1) + . . .+ bias(θ̂B )]

= bias(θ̂); (7a)

var(θ̂A) =
1
B2

⎛

⎜⎜⎝
B∑

j=1

var(θ̂j ) +
B∑

j,k=1
j �=k

correlation(θ̂j , θ̂k )

⎞

⎟⎟⎠ .

(7b)

Then if θ̂1 , . . . , θ̂B are pairwise uncorrelated, we get

var(θ̂A) =
var(θ̂)
B

. (8)

Thus, on averaging, under the pairwise uncorrelated assump-
tion, the bias remains unchanged whereas the variance is
reduced. Since MSE(θ̂A) = {bias(θ̂A)}2 + var(θ̂A), it follows
that MSE(θ̂A) ≤ MSE(θ̂). This provides motivation for the
averaged estimator θ̂A, when θ̂ is known to have a small bias
but high variance.

In practice, the underlying distribution of the observed sam-
ple is unknown. We propose the idea of constructing the aver-
aged estimator by bootstrapping the given sample y to obtain
bootstrap samples y∗

1 , . . . ,y
∗
B , from which the corresponding

bootstrap estimates θ̂∗1 , . . . , θ̂
∗
B can be derived. Then, we define

the bootstrap sample version of (6) as

θ̂∗A(B) =
θ̂∗1 + . . .+ θ̂∗B

B
. (9)



CHANDNA AND WANG: BOOTSTRAP AVERAGING FOR MODEL-BASED SOURCE SEPARATION IN REVERBERANT CONDITIONS 809

The bootstrap samples are easily generated to be independent
of each other, however, the corresponding estimates θ̂∗1 , . . . , θ̂

∗
B ,

may be correlated. Since the correlation term in (7b) is weighted
by a factor of 1/B2 , choosing a bootstrap size B such that the
sum of pairwise correlations is negligible in comparison to B,
is sufficient for a reduction in the variance of the estimate. This
leads to

bias(θ̂∗A) =
1
B

[bias(θ̂∗1) + . . .+ bias(θ̂∗B )], (10a)

var(θ̂∗A) =
1
B2 [var(θ̂∗1) + . . .+ var(θ̂∗B )]. (10b)

Note that bias(θ̂∗j ) = E(θ̂∗j ) − θ for any j = 1, . . . , B, ap-

proximates bias(θ̂) =E(θ̂) − θ, with the expectation taken over
the bootstrap distribution of θ̂ rather than its theoretical distri-
bution. Thus, under an appropriately chosen bootstrap method
for θ̂ [10], (10a) and (10b) imply that

bias(θ̂∗A) ≈ bias(θ̂), (11a)

and similarly,

var(θ̂∗A) ≈ 1
B

[var(θ̂)], (11b)

so that MSE(θ̂∗A) ≤ MSE(θ̂). This shows that assuming an ap-
propriate bootstrap method based on a sufficiently large number
of bootstrap samples B, a smaller mean squared error esti-
mate can be achieved by using the bootstrap averaged estimator
θ̂∗A(B) given by (9). Note that the main motivation for proposing
the bootstrap averaged EM estimator is the sub-optimal nature
of EM estimates of GMMs used to approximate structure in the
frequency domain, providing scope for further improvement.

Since our interest in this paper lies in frequency domain
GMMs, we prescribe a fast circulant embedding based pro-
cedure [24, Chapter 7], [25], which has the ability to correctly
mimic the underlying dependence structure in the frequency do-
main. Details of the bootstrap procedure for use with frequency
domain GMMs arising in model-based source separation are
provided in Section VI.

A. A Simulation Example

To get an indication of the scope of improvement via the
averaging approach, we consider the averaged estimate θ̂A (B)
given by (6), computed fromB randomly generated realizations,
without bootstrapping. We illustrate the case of high variance
EM estimates using a misspecified GMM and show how the
averaged estimator provides a smaller MSE. For simplicity, we
work with EM estimates of realizations generated from a GMM
in the time domain– a term used in the rest of the paper to refer
to any GMM not in the frequency domain.

We consider a mixture of two Gaussian distributed random
variables where each component is generated from an autore-
gressive process of order one, denoted AR(1), i.e.

yt = φjyt−1 + εj,t , j = 1, 2, (12)

where εj,t ∼ N (0, σ2
ε,j ) is the error term and φj denotes the

AR coefficient, corresponding to the jth component of the
Gaussian mixture. Then, clearly for each j = 1, 2, the true

component meansμj = E(εj ) = 0 and the true component vari-
ances σ2

j = σ2
ε,j /(1 − φj

2). Now from eqn. (12), it follows that
(yt − φjyt−1)/σε,j is distributed as a standard normal random
variable. Thus, conditional on the history of the process till time
t− 1, denoted as Ft−1 , the cumulative distribution function
(cdf) of yt is given by

F (yt |Ft−1) =
d∑

j=1

Φ
(
yt − φjyt−1

σε,j

)
wj , (13)

where Φ(.) denotes the cdf of the standard normal distribution.
Following the notation in Section II-A, let y = [y1 , . . . , yK ]T

denote a length-K GMM sample obtained using (12) with
Z = [zT1 , . . . , z

T
K ]T ∈ {0, 1}K×d as the indicator variable de-

noting the mixture component to which each yi belongs, and
Ψ = [w1 , φ1 , φ2 , σε,1 , σε,2 ]T as the vector of all unknown pa-
rameters.The log-likelihood functionLC (Ψ) based on the com-
plete data yC = [y,Z] is

logLC (Ψ) =
K∑

i=2

⎧
⎨

⎩

d∑

j=1

zij log(wj ) −
d∑

j=1

zij log(σε,j )

−
d∑

j=1

zij
(yt − φjyt−1)2

2σ2
ε,j

⎞

⎠

⎫
⎬

⎭ , (14)

where zij = (zi)j is the jth entry of zi . Again, the EM algo-
rithm can be used to obtain the unknown parameters. Note that
the formulation described above appropriately standardizes the
AR component to take the dependence across time points into
account. This is in contrast to a standard GMM where sam-
ples for each mixture component are independently Gaussian
distributed. To understand the improvement via averaging, a
simple simulation study is performed as described below. The
main steps of our simulation study are as follows:

i) We first simulate (e.g. [22]) a length-K realization y =
[y1 , . . . , yK ]T from a d = 2-component GMM with w =
[1/2, 1/2], where each component follows an AR(1)
model with coefficients φ1 = 0.3, φ2 = 0.8, and noise
variances σ2

ε,1 = 2.25, σ2
ε,2 = 7.84.

ii) Given y and the number of components d = 2, the EM
algorithm is used to estimate parameters of the GMM. We
used Biernacki’s search/run/select initialization strategy,
first searching for p = 5 initial positions using a short
EM run with tolerance in eqn. (5) fixed at ε = 10−2 , each
based on random starts initialized using the sample mean
and variance of y, see e.g. [22, p. 55]. Next, starting at
each of these p initial positions, we ran short EM runs
repeatedly for L = 20 times with tolerance ε = 10−5 . Of
all the p× L = 100 solutions, the one corresponding to
the highest likelihood was chosen as the starting point for
the final long EM run for which we fixed ε = 10−10 .

iii) Next, we repeat steps (i) and (ii) above, for a fixed
number of times say B, to generate time series sam-
ples y1 , . . . ,yB and the corresponding EM estimates
θ1 , . . . , θB , for each GMM parameter θ ∈ Ψ. A conse-
quence of the non-identifiability of GMMs is the permu-
tation of component labels of the estimated parameters
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Fig. 1. The true GMM variance parameter values (solid) in comparison with
the EM estimates (dotted) and averaged estimates (dashed) using B = 200.

The subplots display component variance estimates of the form σ̂
2(r )
j across

a subset of Monte Carlo iterations indexed using r (as in the text) for
(a) j = 1, K = 600, (b) j = 2, K = 600 , (c) j = 1, K = 1200, and
(d) j = 2, K = 1200.

[22]. Consequently, for each parameter, the set of d com-
ponent parameter estimates are sorted consistently across
all B replications, before averaging. In our example, es-
timated means of the two components are very close to
each other (due to the true means fixed to zero), how-
ever there is a large difference between the estimated
variances (due to σ2

1 << σ2
2 ), which gives us the permu-

tation that allows us to consistently order the estimated
means and weights for each replication, before averaging
to construct θ̂A(B).

iv) The MSEs of these estimates are computed overRMonte
Carlo iterations, i.e. steps (i)–(iii) are repeated R times,
subsequently we compute

MSE(θ̂) =
1
R

R∑

r=1

(θ̂(r) − θ)2 ;

MSE(θ̂A) =
1
R

R∑

r=1

(θ̂(r)
A − θ)2 ,

where the superscript .(r) denotes the estimate at the rth,
r = 1, . . . , R, Monte Carlo iteration, and dependence of
θ̂A on B (fixed) is suppressed.

Our study is based onR = 500 Monte Carlo iterations. Before
a MSE comparison, we draw attention to Fig. 1 which displays
the true component variances σ2

j (solid line) and a subset of the

corresponding EM estimates σ̂2(r)
j (dotted) and averaged esti-

mates σ̂2(r)
A,j (B) (dashed) for a subset of Monte Carlo iterations

with lengthsK = 600 ((a) and (b)) andK = 1200 ((c) and (d)),
respectively. The high variation in EM estimates of component
variances, particularly for σ̂2

2 (note the difference in scale on
the y-axis) is clearly visible. This is due to our simulation de-
sign where components of each Monte Carlo realization are

TABLE I
RATIO OF THE MSE OF θ̂A TO THE MSE OF θ̂ (EM), FOR θ ∈ {σ2

1 , σ
2
2 }

K MSE(θ̂A)/MSE(θ̂)

σ2
1 σ2

2

600 0.0061 0.0181
800 0.0065 0.0160
1000 0.0063 0.0137
1200 0.0055 0.0116

generated from an AR model, imposing dependence structure
in time which is completely ignored when fitting a standard
GMM to these realizations. As expected, the averaged esti-
mates σ̂2(r)

A,j (B) have little or no variation and are very closely
aligned with the true values in each case. This is reflected in a
comparison of the MSE of the EM estimates θ̂ with the MSE
of the averaged estimates θ̂A(B), for example, as shown for the
component variances in Table I. This table displays the ratios
of MSE, precisely: {MSE of σ̂2

A,j} /{MSE of σ̂2
j }, for j = 1, 2.

We see that as the sample size is increased from K = 600 to
K = 1200, the reduction in MSE of the EM estimate of σ2

1 via
averaging approaches 0.0055. This follows from eqns. (7a) and
(8) which imply that

MSE(θ̂A)

MSE(θ̂)
=

{bias(θ̂A)}2 + 1
B var(θ̂)

{bias(θ̂)}2 + var(θ̂)
≈ 1/B = 0.0050,

with B = 200, when the bias in θ̂ is close to zero and as
bias(θ̂A) = bias(θ̂). On the other hand, when the bias is away
from zero, the ratio will contain contribution from both the bias
and the variance terms and we shall not expect the ratio to
be around 0.0050. This is what we observe for σ2

1 when K is
small, and for all K’s in the case of σ2

2 . This is because of the
small bias in the parameter estimates of the first component in
comparison to the second component. This is exactly what we
expect as the first component is generated using an AR(1) model
with AR coefficient φ1 = 0.3 imposing significantly weaker de-
pendence in comparison to the relatively stronger dependence
due to φ2 = 0.8 used to generate the second component of the
GMM. Of course, in practice when the true model is unknown,
bootstrap will be used and relatively larger MSE ratios will be
observed. The results in Table I show the benchmark improve-
ment that may be achieved over EM estimates via averaging.

Our experiments show that in the case of a misspecified
GMM, EM estimates based on a robust initialization strategy
can still be very unstable leading to estimates with high vari-
ance. We see that in such cases, the averaging approach can
lead to estimates with relatively smaller MSE. For simplicity
and convenience, we have simulated this scenario in the time
domain. In practice, it shall find applications in the frequency
domain, as illustrated via the source separation application in
the remaining part of the paper. Our simulation experiments in
Section VI show that the proposed methodology works for EM
estimates of the frequency domain GMM.
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IV. SOURCE SEPARATION

Our focus is on exactly determined and underdetermined
source separation for speech mixtures using the model-based
approaches involving frequency domain GMMs. Model-based
methods often achieve underdetermined source separation by re-
lying on the assumption that any two distinct speech sources are
disjoint in the T-F domain, formally, known as the W-disjoint or-
thogonality (WDO) condition [26]. This assumption reduces the
source separation problem to identifying the dominant source
at each T-F point. Since the WDO condition is only approxi-
mately true in a reverberant environment, probabilistic methods
using statistical models for a chosen set of cues, [1], [8], [9], are
considered more suitable than the binary approach [27].

A common feature of the probabilistic methods is that given
an observed speech mixture, the overall likelihood for cue model
parameters takes the form of a partially observed frequency
domain GMM, which must be estimated. We provide the exact
forms of such frequency domain GMMs below.

A. Model-Based EM Separation

Let x(n) = [x1(n), x2(n)]T denote a two-channel mixture
vector, where components x1(n) and x2(n) are formed by con-
volutions of the form (1). Here we focus on the two-channel
or the binaural case (M = 2) as in [1] and [8], and use their
notation with l(n) ≡ x1(n) and r(n) ≡ x2(n), so that x(n) =
[l(n), r(n)]T . Suppose that the speech mixture is observed at
N time points, then let l = [l(1), . . . , l(N)]T , and r = [r(1),
. . . , r(N)]T denote components of the observed binaural mix-
ture with L = [L(ω, t)] ∈ CW ×T and R = [R(ω, t)] ∈ CW ×T

denoting their STFT matrices, respectively. Here ω and t denote
the frequency bin and time frame indices, respectively; W de-
notes the number of frequency bins and T denotes the number
of time frames.

The method proposed in [9] (not limited to two-channels) per-
forms classification of the T-F points into one of the I classes
(or I sources) based on the mixing vector (cue) in the T-F
domain, i.e. X(ω, t) = [L(ω, t), R(ω, t)]T for each (ω, t) pair
in a frequency bin-wise manner. This is done by employing a
complex Gaussian density function for X(ω, t) for each ω, i.e.
p(X(ω, t)|ai(ω), σ2

i (ω)) ∼ NC(ai(ω), σ2
i (ω)) where ai(ω) is

the mean vector (of the left and right speech mixture com-
ponents) with ||ai(ω)|| = 1 and σ2

i (ω) denotes the common
variance. Then the density of X(ω, t) ≡ X(t) (ω fixed) is
given by

p(X(t)|θ) =
I∑

i=1

βi(ω)p(X(ω, t)|ai(ω), σ2
i (ω)), (15)

where θ ≡ (a1(ω), σ1(ω), β1(ω), . . . ,aI (ω), σI (ω), βI (ω)) is
the parameter set and βi(ω) is the fraction of T-F points
that belong to class i ∈ {1, . . . , I}, so that 0 < βi(ω) < 1,
and

∑I
i=1 βi(ω) = 1. Clearly, the above equation represents

a complex-valued, I-component GMM with weights βi(ω),
M = 2 dimensional mean vector ai(ω) and variance σ2

i (ω).
The E-step computes p(Ci |X(ω, t),θ) whereCi denotes the ith
class, for each i = 1, . . . , I andω. Then a binary T-F mask is de-
rived by identifying the dominant source based on a comparison

of probabilities p(Ci |X(ω, t),θ) for source i with probabilities
p(Cj |X(ω, t),θ) for source j, i �= j, at each (ω, t).

The method proposed in [1] works with the interaural spec-
trogram which is given by the ratio of L(ω, t) to R(ω, t), and
can be expressed as

L(ω, t)
R(ω, t)

= 10α(ω,t)/20eiφ(ω,t) , (16)

in terms of the interaural level difference (ILD) denoted by
α(ω, t), and the interaural phase difference (IPD) φ(ω, t) and
where i denotes the unit imaginary number. Gaussian distri-
butions are found appropriate for both α(ω, t) and φ(ω, t)
and the corresponding densities are chosen to be of the
form p(α(ω, t)|μi(ω), η2

i (ω)) ∼ N (α(ω, t)|μi(ω), η2
i (ω)) and

p(φ(ω, t)|ξiτ (ω), γ2
iτ (ω)) ∼ N (φ(ω, t)|ξiτ (ω), γ2

iτ (ω)). Then,
assuming that T-F points from the same source and at the same
delay τ are independently distributed, the joint density function
of α(ω, t) and φ(ω, t) is expressed as

p(φ(ω, t), α(ω, t)|Θiτ ) = p(φ(ω, t)|ξiτ (ω), γ2
iτ (ω))

·p(α(ω, t)|μi(ω), η2
i (ω))

·p(i, τ), (17)

where p(i, τ) ≡ ψiτ is the joint probability of any T-F point
being in source i at delay τ ∈ T , where T denotes the set of
admissible values for delay τ . Let Θ = [Θiτ ; i = 1, . . . , I; τ ∈
T ] where Θiτ = {ξiτ (ω), γiτ (ω),μi(ω), ηi(ω), ψiτ } denote the
complete parameter set. Then, the total probability density is
given by

p(φ(ω, t), α(ω, t)|Θ) =
∑

i,τ

p(φ(ω, t), α(ω, t)|Θiτ )

=
∑

i,τ

ψiτ {p(α(ω, t)|μi(ω), η2
i (ω))

·p(φ(ω, t)|ξiτ (ω), γ2
iτ (ω))}, (18)

which clearly represents a real-valued GMM with one Gaus-
sian per (i, τ) combination and mixing weights ψiτ , given the
assumed Gaussian distributions for the ILD and IPD. Again,
the EM algorithm is implemented to estimate the unknown pa-
rameters in Θ. Here initializations for parameter estimation via
the EM algorithm are chosen informatively as discussed in [1],
with the main objective of achieving the best possible local
maximizer and in order to avoid spurious estimates.

The iterative E-step computes the conditional probability of
the spectrogram point (ω, t) coming from source i and delay τ ,
given the observed interaural cues φ(ω, t) and α(ω, t) and the
current Θ, i.e.,

p((ω, t) ∈ (i, τ)|φ(ω, t), α(ω, t),Θ) ≡ νiτ (ω, t), (19)

using which MLEs of the unknown parameters are calculated
in the M-step, [1, eqn. (18)]. Repeated iterations of the E- and
M-steps are performed to obtain final estimates of the parame-
ters, and subsequently νiτ (ω, t) in the final E-step is computed
using (19). Clearly, summing νiτ (ω, t) over all possible delays
τ gives the probability of the ith source being dominant at the
time-frequency point (ω, t). Therefore, for each source i, a prob-
abilistic T-F mask denoted as Mi = [Mi(ω, t)] ∈ [0, 1]W ×T is
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computed as,

Mi(ω, t) =
∑

τ

νiτ (ω, t), (20)

which allows estimation of the I source vectors of interest from
the observed binaural mixtures.

Recently, [7], [8] combined the mixing vector model
of [9] with the ILD and IPD models of [1] to per-
form source separation based on the combined set of
parameters denoted as Γ = [Γiτ , i = 1, . . . , I; τ ∈ T ] with
Γiτ = {ai(ω), σi(ω), ξiτ (ω), γiτ (ω), μi(ω), ηi(ω), ψiτ }. Here
the total probability density for a given (ω, t) i.e.∑

i,τ p(φ(ω, t), α(ω, t),X(ω, t)|Γiτ ) is a GMM of the form

∑

i,τ

ψiτ {p(α(ω, t)|μi(ω), η2
i (ω)).p(φ(ω, t)|ξiτ (ω), γ2

iτ (ω))

· p(X(ω, t)|ai(ω), σ2
i (ω))}. (21)

The initialization strategy from [1] is easily adapted to deal with
the additional mixing vector cue as discussed in [8, sec. V]. Sub-
sequently, the EM algorithm is used to derive a probabilistic T-F
mask. It is shown that the probabilistic mask obtained as a result
of this joint model leads to improvements in separation perfor-
mance measured by SDR over the methods of [1] and [9]. We
use this joint model of [8] to study improvement via the pro-
posed bootstrap averaging approach. Here, our main objective is
to show how the proposed bootstrap averaging technique can be
implemented to improve the EM estimates of frequency domain
GMM appearing in [8], and to improve the source separation
performance for reverberant mixtures.

V. BOOTSTRAP AVERAGING FOR SOURCE SEPARATION

To immediately illustrate the need for improvement in EM
estimates of the frequency domain GMM arising in the source
separation algorithms described above, a comparison of the EM
estimates of the ILD mean parameter μ̂(ω) computed using the
algorithm of [8] with the ground-truth values μ(ω) is provided
in Fig. 2. It displays the ground-truth ILD mean (black) and its
EM estimate (grey) for two-source binaural mixtures formed by
convolving two randomly chosen speech signals from the TIMIT
data set with impulse responses measured by Hummersone [28]
under anechoic (Room A) and reverberant conditions (Room D
with RT60 = 0.89 s), with the two sources placed at 0◦ and
30◦ (further details are provided in Section VI). The top row
of the plot corresponds to (a) μ1(ω) – the ILD mean for s1 ,
and (b) μ2(ω) – the ILD mean for s2 , for the anechoic mixture;
subplots (c) and (d) similarly correspond to the ILD mean for s1
and s2 in the reverberant room. Clearly, the estimated ILD mean
follows the ground truth ILD very closely for the anechoic case,
especially for source 2 (Fig. 2(b)). On the other hand, we see
large variation in the EM estimates of the ILD mean parameter,
[8] in the reverberant case. In this section, we describe the
bootstrap averaging algorithm to yield improved estimates of
the frequency domain GMM parameters (in Γ) employed in the
framework of [8].

A convenient way to bootstrap the frequency-dependent
GMM parameter estimates is to bootstrap the observed

Fig. 2. The mean ILD estimates μ̂i (ω) (solid grey) from the joint model of [8]
vs. frequency (kHz) in an anechoic environment for (a) i = 1 and (b) i = 2; and
a reverberant (Room D, RT60 = 0.89 s – see sec. VI for further details) room
environment for (c) i = 1 and (d) i = 2. The solid black line in each subplot
shows the ground-truth ILD mean (dB) μi (ω). Sources s1 and s2 chosen from
the TIMIT data set were placed at ϕ = 0◦, and ϕ = 30◦, respectively.

mixture vector

x =
[
x(1) . . . x(N)

]
=
[
l(1) . . . l(N)
r(1) . . . r(N)

]

to obtain time domain bootstrap samples, denoted as x∗
1 , . . . ,x

∗
B

from which bootstrap estimates of the cue model parameters can
be obtained directly using the algorithm of [8]. Since model-
based source separation relies on the interaural spectrogram
derived from the speech mixture vector, it is important to use
a bootstrap procedure that appropriately mimics the frequency
domain dependence in the given sample. Bootstrap samples of
the mixture vector are obtained using the circulant embedding
based approach of [25]. The basic idea in [25] is to generate por-
tions of realizations with spectral density given by an estimated
spectral density derived from the observed vector-valued time
series via circulant embedding. The procedure of [25] is easily
implemented using a FFT which makes it computationally ef-
ficient and hence very attractive for our application where the
length-N of the observed speech mixtures is usually very large.

Consider a bivariate discrete time second-order stationary
process Vt = [Xt, Yt ]T , where t ∈ Z denotes the time index.
Without loss of generality, assume that each component process
has a mean of zero. Given a length-N realization V1 , . . . ,VN

from the vector process Vt , the following bootstrap algorithm
[25], allows us to generate bootstrap time series samples.

Bootstrap Algorithm:
1) Choose the embedding size m1 > 2(N − 1) such that

m1 = 2g for some g ∈ Z + . Estimate the spectral ma-
trix ŜV (fl), fl = l/(m1Δ) , l = 0, 1, . . . ,m1 − 1, with
Δ denoting the sampling interval, using one of the rec-
ommended spectral estimation methods [25], such as
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multitaper, Welch’s Overlapped Segment Averaging
(WOSA) etc.

2) Set λl = ŜTV (fl)/Δ, l = 0, . . . ,m1 − 1. For each l =
0, . . . ,m1 − 1, determine the 2 × 2 unitary matrix Ul and
the diagonal matrix Dl such that λl = UlDlUH

l , where
.H denotes conjugate transpose.

3) Simulate two real bivariate independent standard nor-
mal vectors Z(α)

l ∼ N(0, I2);α = 1, 2, and set Cl =
UlD

1/2
l (Z(1)

l + iZ(2)
l ).

4) Define Ṽj = m
−1/2
1

∑m 1 −1
l=0 Cle−i2π lj/m 1 , j = 0, . . . ,

m1 − 1, which can be computed easily via an FFT.
Then for each j, Ṽj is a complex-valued bi-
variate vector. Re{Ṽn}, n = 0, 1, . . . , N − 1 and
Im{Ṽn}, n = 0, 1, . . . , N − 1 are two independent
length-N bootstrap replications.

Remark: The consistency of the spectral estimators allowed
for this algorithm [29, p. 785] guarantees that asymptotically
these bootstrap samples have the specified second-order struc-
ture. This has also been verified empirically, [24].

Note that most of the existing bootstrap procedures are only
applicable to second-order stationary data. Since short seg-
ments of speech (30–50 ms) are considered to be second-
order stationary [30], we shall apply the bootstrap procedure to
short segments of the observed speech mixture. The algorithm
for bootstrap-based source separation under the model-based
framework of [8] is outlined below.

1) Divide x ≡ [x(1), . . . ,x(N)] into adjacent pseudo
second-order stationary blocks of length-Ñ . The jth block
is given by

zj = x(2 − j + (j − 1)Ñ : 1 + j(Ñ − 1));

j = 1, . . . , Nb , where Nb denotes the number of blocks
required to cover the full length-N of x. For each j, zj is
a matrix of size 2 × Ñ .

2) For each block zj , implement the bootstrap algorithm
of [25] (given above), to generate B bootstrap sam-
ples, each of length Ñ − 1 (to avoid generating the end
point twice due to adjacent blocks). So for the jth block,
j = 1, . . . , Nb, obtain z∗j,b , b = 1, . . . , B. For each block,
the algorithm of [25] is implemented with the multitaper
spectral estimation technique, which for a given length-Ñ
bivariate time series z is a 2 × 2 matrix given by:

Ŝz(ω) =
Δ
P

P∑

p=1

⎧
⎨

⎩

∣∣∣∣∣∣

Ñ∑

n=1

un,pz(n)e−i2πωnΔ

∣∣∣∣∣∣

2⎫⎬

⎭ , (22)

where |ω| ≤ 1/(2Δ), and {un,p}Ñn=1 is the pth data taper.
Tapering prevents the spectra from the problem of leakage
and the application of P orthogonal data tapers as in the
multitaper approach leads to a consistent spectral estimate
[31]. Then the bth full length-N bootstrap sample for x is
given by

x∗
b =

[
z∗1,b . . . z∗Nb ,b

]
2×N ,

and x∗
1 , . . . ,x

∗
B are the B bootstrap samples.

3) The source separation algorithm of [8] is applied
to each of the B bootstrap samples x∗

1 , . . . ,x
∗
B ,

individually. This leads to B bootstrap estimates
for each parameter in Γiτ . For each i and τ ,
let Γ∗

iτ ,1 , . . . ,Γ
∗
iτ ,B denote the bootstrap parameter

set where Γ∗
iτ ,b = {a∗

i,b(ω), σ∗
i,b(ω), ξ∗iτ ,b(ω), γ∗iτ ,b(ω),

μ∗
i,b(ω), η∗i,b(ω), ψ∗

iτ ,b} contains model parameter esti-
mates derived from the bth bootstrap sample x∗

b . This
is used to construct the bootstrap averaged estimates for
each frequency dependent parameter.

4) The algorithm of [8] allows us to compute bootstrap T-F
masks M∗

i,b = [M ∗
i,b(ω, t)] ∈ [0, 1]W ×T corresponding to

the bootstrap estimates of GMM parameters in Γ∗
iτ ,b using

each of the b = 1, . . . , B bootstrap replications. The av-
eraged bootstrap T-F mask given by M∗

i,A = [M ∗
i,A(ω, t)]

where

M ∗
i,A(ω, t) =

M ∗
i,1(ω, t) + . . .+M ∗

i,B (ω, t)
B

, (23)

is used for recovering the source vectors s1 , . . . , sI from
the observed speech mixture vectors in x.

Note that the time-frequency mask given by (20) is a by-
product of the EM algorithm, computed using the output of the
E-step (19) which gives the probability of a spectrogram point
(ω, t) coming from source i and delay τ , conditional on the
interaural cues α(ω, t) and φ(ω, t) (estimated using the spec-
trogram of the observed speech mixture), in addition to the
parameter estimates from the final M-step of the EM algorithm.
For each bootstrap replication, the E-step allows us to compute
this probability or T-F masks, conditional on the interaural cues
α∗(ω, t) and φ∗(ω, t), estimated from the spectrogram of the
bootstrap speech mixture. From [24, Chapter 7], we know that
the bootstrap procedure leads to samples which replicate the true
frequency domain statistics, i.e. the spectra of bootstrap sam-
ples, on average, mimics the theoretical spectra of the process
generating the observed sample. Thus, if the bootstrap averaged
GMM parameter estimates lead to a smaller MSE in compar-
ison with the original EM estimates, each bootstrap T-F mask
is a reasonable estimate (of the true T-F mask). The average
of the bootstrap T-F masks provides a simple way to construct
an overall T-F mask based on the bootstrap data. We verify the
performance of the bootstrap averaged estimates and the boot-
strap averaged T-F mask for the task of source separation in our
experiments below.

VI. EXPERIMENTS AND RESULTS

A. Set-up

We present the experimental set-up used to test the proposed
bootstrap averaging technique for source separation as described
above using speech mixtures formed with real room-recorded
impulse responses. We use the TIMIT data set from which 15
utterances are randomly selected to form convolutive mixtures
using binaural room impulse responses (BRIRs), [8]. The BRIRs
were captured by Hummersone [28] using a Head and Torso
Simulator (HATS). The HATS and the sources were placed at a
height of 2.8 m in the room and were separated by a distance
of 1.5 m. The target source is placed exactly in front of HATS,
i.e. at zero degree relative to HATS and the two interfering
sources are positioned symmetrically on the left and right hand
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side of the target source in an arc at azimuth denoted by ϕ
(in degrees). The BRIRs were measured in 5 different rooms
corresponding to five different reverberation levels given by
RT60 and azimuths ranging from−90◦ to 90◦ at 5◦ intervals. The
sampling frequency denoted as fs is 16 kHz and the sampling
interval is Δ = 1s. From the chosen set of 15 utterances, we
combined two (three) speech signals (about 3s, shortened to 2.5s
for consistency) with BRIRs from Room D which corresponds
to the highest reverberation time of 0.89s within the recorded
data set to construct two sets of mixtures: (i) 15 two-source
mixtures, and (ii) 15 three-source mixtures, for each azimuth
ϕ = 15◦, 30◦, 45◦, 60◦, 75◦.

To implement the algorithm described in Section V, we divide
x into pseudo stationary blocks of length 30ms which corre-
spond to Ñ = fs × 0.003= 16000 × 0.003 = 480 samples and
Nb = 84 adjacent blocks. Multitaper spectral estimates for the
bivariate time series in each block are computed as given in (22).
We employ P = 8 sine tapers {un,p}, where

un,p =
2

(Ñ + 1)1/2
sin

(p+ 1)πn
Ñ + 1

, n = 1, . . . , Ñ , (24)

leading to a bandwidth of WÑ = (P + 1)/2(Ñ + 1) = 0.0094
[31]. Then following the steps in Section V, the simulation pro-
cedure of [25] is applied to the time series in each block with
B = 500 to obtain B bootstrap samples x∗

1 , . . . ,x
∗
B of the full

length-N speech mixture. Next, parameter sets Γ∗
iτ ,1 , . . . ,Γ

∗
iτ ,B

containing bootstrap estimates and time-frequency masks
M∗

i,1 , . . . ,M
∗
i,B for each source index i = 1, . . . , I , and ad-

missible τ are derived using the source separation algorithm of
[8]. We conduct all our experiments with the additional garbage
source which aims to account for spectrogram points where re-
verberation (rather than one of the I sources) dominates, [1].

B. Comparison of Cue Parameter Estimates

Here we focus on estimates of the frequency domain GMM
parameters, i.e. elements of Γ. We compare estimates obtained
using the algorithm of [8], and the bootstrap averaged estimates,
with their ground-truth values. Here ground-truth refers to the
parameter values that would be obtained if each source was ob-
served in isolation. We focus on the ILD, IPD, and the mixing
vector cue mean parameters. The ground-truth for these parame-
ters is obtained as described below. The ground-truth ILD mean
is computed from the isolated one-source direct-path mixture,
i.e. μi is obtained by convolving only the ith source with the
direct-path impulse response denoted as [h̃il(n), h̃ir (n)]T to
form the convolutive mixture vector x̃(i)(n) = [l̃i(n), r̃i(n)]T ,
where .̃ denotes direct-path and superscript .(i) indicates that the
mixture only involves the ith source. Then from the definition
of ILD, it follows that

μi(ω) =
1
T

T∑

t=1

20 log10
|L̃(i)(ω, t)|
|R̃(i)(ω, t)|

, (25)

where [L̃(i)(ω, t)]W ×T , and [R̃(i)(ω, t)]W ×T denote the
STFTs of direct path mixture vectors [l̃i(1), . . . , l̃i(N)] and
[r̃i(1), . . . , r̃i(N)], respectively. Alternatively, from [1], the
ground-truth ILD mean may be computed directly from the

direct-path impulse response as

μi(ω) = 20 log10

(
|H̃il(ω)|
|H̃ir (ω)|

)
, (26)

where H̃il = F{h̃il}, and similarly, H̃ir = F{h̃ir}, F{.} de-
noting the Fourier transform.

Similarly, the ground-truth IPD residual mean for the ith
source is given by, [1]:

ξiτ (ω) = arg
(
e−iφ̃(ω,t)e−iωτ (ω )

)
, (27)

where φ̃(ω, t) = arg(H̃il(ω)/H̃ir (ω)), and τ(ω) = τl − τr +
arg(H̄il(ω)/H̄ir (ω)), with H̄il(ω) = F{h̄il(n)}, H̄ir (ω) =
F{h̄ir (n)} and h̄il(n), h̄ir (n) denoting the impulse response
truncated at the length of the analysis window. Also arg(.) de-
notes the argument, taking values in the interval (−π, π].

Since ai(ω) denotes the mean of the reverberant mixture
vector in the T-F domain, the ground-truth mixing vector mean
ai(ω) is computed as described in [9] from the isolated mixture
x̌(i)(n) = [ľi(n), ři(n)]T , where .̌ indicates that the ith source
is convolved with the full impulse response. The corresponding
EM estimates and bootstrap averaged estimates for each GMM
parameter are computed using the algorithm of [8] and bootstrap
as described above in Section V and VI-A.

Due to the non-identifiability of GMMs, it is important
to learn the permutation that allows consistent averaging
across bootstrap estimates for each parameter. We described in
Section III-A, how this may be achieved using the fact that
the component variances are well-separated. Different ways to
solve the permutation problem due to EM estimation have been
studied in the blind source separation literature. In the case of
a frequency specific GMM, as in the algorithms of [9], [1], and
[8], dealing with the permutation problem is crucial to be able to
group together components corresponding to the same source
estimated at each frequency. Traditionally, correlation coeffi-
cients of amplitude envelopes which represent sound source
activity, are used to identify the permutation, for example, [32],
[33], however, more recently efficient approaches as in [9], have
been discussed and are commonly employed. Other techniques
solving the permutation problem for frequency domain source
separation are discussed in [34] and [35]. Thus, applications
employing the EM algorithm for frequency domain source sepa-
ration commonly have a built-in strategy to deal with the permu-
tation problem, allowing us to average the component parameter
estimates consistently across bootstrap replications.

Consider the set of two-source mixtures with the target source
s1 at ϕ = 0◦ and the interference source s2 at ϕ = 30◦. For con-
venience, we label the 15 two-source mixtures ask′ = 1, . . . , 15.
Fig. 3 shows a comparison of the ILD mean estimates μ̂i(ω) ob-
tained from the model-based method of [8] (solid grey), and
the bootstrap-based estimates μ̂i,A(ω) (solid black), with the
ground-truth estimates μi(ω) (dashed black) over the frequency
range (kHz) [0, fs/2Δ] = [0, 8]. The dotted black lines show
the ground-truth ILD mean of each source convolved with im-
pulse response truncated to the length of our analysis window.
Note that it follows the direct path ILD mean (dashed black)
very closely but has a relatively higher variation. This is due
to the early echoes in the impulse response truncated at the
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Fig. 3. A comparison of the ground-truth ILD mean (dB) μi (ω) (dashed
black) with the estimate μ̂i (ω) (solid grey) obtained from [8], and the bootstrap
averaged estimate μ̂∗

i ,A(ω) (solid black) vs. frequency (kHz) for (a) i = 1,
k′ = 1, (b) i = 2, k′ = 1, (c) i = 1, k′ = 2, (d) i = 2, k′ = 2, (e) i = 1, k′ =
3, (f) i = 2, k′ = 3, (g) i = 1, k′ = 4, and (h) i = 2, k′ = 4 with s1 placed at
ϕ = 0◦, and s2 placed at ϕ = 30◦. The ground-truth ILD mean of each source
convolved with impulse response truncated to the window length are shown in
dotted black.

window length. The subplots in the left column of Fig. 3 cor-
respond to μ1(ω), i.e. the ILD mean parameter for the target
source with subplots in consecutive rows corresponding to the
first four mixtures, i.e. k′ = 1, 2, 3, 4, respectively; similarly, the
subplots in the right column correspond to μ2(ω), the ILD mean
parameter for the interference source for k′ = 1, 2, 3, 4, respec-
tively. From the figure we see that the bootstrap averaged ILD
mean estimates μ̂∗

i,A(ω) (solid black) follow the ground-truth
μi(ω) (dashed black) very closely; ILD mean estimates μ̂i(ω)
(solid grey) obtained from the joint method of [8] evidently
show large deviations from the ground-truth at each frequency.
For a clearer comparison, we compare the absolute error in
μ̂i(ω) i.e. |μ̂i(ω) − μi(ω)| with the absolute error in μ̂∗

i,A(ω),
i.e. |μ̂∗

i,A(ω) − μi(ω)|.
Fig. 4 displays absolute error in μ̂i(ω) (solid grey) and

μ̂∗
i,A(ω) (dashed black) for source and mixture combinations

corresponding to the two sources and the first two mixtures,
i.e. (a) i = 1, k′ = 1, (b) i = 1, k′ = 2, (c) i = 2, k′ = 1 and
(d) i = 2, k′ = 2. For clarity, we have only plotted absolute er-
rors for a set of equally spaced frequencies. From Fig. 4(a)–(b)
it is clear that μ̂∗

1,A(ω) outperforms μ̂1(ω) at all frequencies,
however, for i = 2, we observe frequencies where μ̂2(ω) has a
smaller error as compared to μ̂∗

2,A(ω). The frequencies marked
with ∗ depict four different scenarios and are discussed in the
next subsection. Similarly, Fig. 5 displays absolute error in the
IPD mean estimates ξ̂iτ (ω) (solid grey) and ξ̂∗iτ ,A(ω) (dashed
black) for (a) i = 1, k′ = 1, (b) i = 1, k′ = 3, and (c) i = 2,
k′ = 1, and (d) i = 2, k′ = 3, at the ground truth delay for a set
of equally spaced frequencies. For the target source, the boot-
strap averaged IPD mean estimates, seem to have a relatively

Fig. 4. A comparison of the absolute errors in the ILD mean (dB) estimate
μ̂i (ω) from [8] (solid grey), and the bootstrap averaged estimate μ̂∗

i ,A(ω)
(dashed black) vs. frequency (kHz), for (a) i = 1, k′ = 1, (b) i = 1, k′ = 2,
(c) i = 2, k′ = 1, and (d) i = 2, k′ = 2. The asterisk ∗ denotes the frequency
of interest in each case.

Fig. 5. A comparison of the absolute errors in the IPD mean estimate
ξ̂iτ (ω) from [8] (solid grey), and the bootstrap averaged estimate ξ̂∗A, iτ (ω)
(dashed black) vs. frequency (kHz) for (a) i = 1, k′ = 1, (b) i = 1, k′ = 3,
(c) i = 2, k′ = 1, (d) i = 2, k′ = 3 at the ground truth delay τ = 4.

smaller error. On the other hand, absolute errors for the inter-
ference source corresponding to the two set of estimates follow
each other very closely.

Recall that the mixing vector means are complex-valued. Ab-
solute errors in the components of the mixing vector mean es-
timates âi(ω) and â∗

1,A(ω) for the left components of mixtures
(a) k′ = 2, (b) k′ = 4; and the right components of mixtures
(c) k′ = 2, and (d) k′ = 4 are shown in Fig. 6. Overall, we see
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Fig. 6. A comparison of the absolute error in the mixing vector mean esti-
mate â1 (ω) (solid grey) from [8], and the bootstrap averaged estimate â∗

1 ,A(ω)
(dashed black) vs. frequency (kHz) for the left component al1 (ω) of mix-
tures (a) k′ = 2, (b) k′ = 4, and for the right component ar 1 (ω) of mixtures
(c) k′ = 2, and (d) k′ = 4.

relatively smaller errors using the bootstrap based approach. A
further analysis is provided in Section VII.

Remark: Note that firstly, (i) the bootstrap procedure of [25]
allows us to replicate the frequency domain structure of the un-
derlying process generating the observed speech mixture, and
secondly, (ii) EM estimates of model parameters from these
bootstrap samples are based on informative initializations (us-
ing the ILD prior for the ILD parameters and the PHAT his-
togram for the component weights, [8]), hence, ensuring that
EM estimates of parameters using the bootstrapped mixtures are
consistent with the true parameter values. This is evident from
Fig. 3 displaying the bootstrap averaged ILD mean estimate and
the ground truth ILD mean over the entire frequency range.

VII. FURTHER ANALYSIS AND RESULTS

To see what exactly differentiates a substantial improvement
to none, we consider four possible scenarios using the ILD
mean parameterμi(ω): (i) when the bootstrap averaged estimate
μ̂∗
i,A(ω) significantly outperforms the estimate μ̂i(ω) from [8],

(ii) when both the bootstrap averaged estimate as well as the
estimate from [8] have zero absolute error, (iii) when both the
estimates have a significant error, and (iv) when the bootstrap
averaged estimate has a larger absolute error. The frequencies
marked with an asterisk ∗ in Fig. 4(a)–(d) exactly depict these
four scenarios (in order).

Let ωa, ωb , ωc , and ωd denote the frequencies marked in
Fig. 4(a)–(d), respectively. We study bootstrap histograms
for the ILD mean estimate for each of the four cho-
sen frequencies, for example, bootstrap ILD mean estimates
μ̂∗

1,1(ωa), . . . , μ̂
∗
1,B (ωa) (with i = 1) derived from mixture

k′ = 1 are used to obtain the bootstrap histogram corresponding
to frequencyωa marked in Fig. 4(a), and so on. These histograms
are shown in Fig. 7. From Fig. 7(a) we observe that the EM
estimate from [8] (square) is at the right extreme of the

Fig. 7. Bootstrap histograms for the ILD mean estimate (dB) μ̂i (ω) for
(a) ωa , i = 1, k′ = 1, (b) ωb , i = 1, k′ = 2, (c) ωc , i = 2, k′ = 1, and
(d) ωd , i = 2, k′ = 2. The corresponding ground-truth ILD mean μi (ω) (red
diamond), and estimates μ̂i (ω) from [8] (blue square) and the bootstrap av-
eraged estimate μ̂∗

i ,A(ω) (green circle) are marked to indicate their position
relative to the histogram.

distribution, with the ground-truth (diamond) very close to the
mean of the histogram or the bootstrap averaged estimate (cir-
cle). Fig. 7(b) shows that for ωb , the original estimate as well
as the bootstrap-averaged estimate coincide with the ground-
truth. Obviously, in this case the estimate from [8] has zero
error and bootstrap averaging is not required. However, the fact
that the bootstrap estimate also coincides with the ground-truth
indicates that the bootstrap methodology has performed impres-
sively well for this frequency. Clearly, the bootstrap histograms
of the ILD mean estimate for ωc and ωd in Fig. 7(c) and (d),
unlike histograms in (a) and (b) do not appear to be normal
with the ground-truth located at an extreme of the histogram in
each case. Now from (11a) we know that under a suitable boot-
strap technique (for θ̂), if the EM estimator θ̂ is unbiased, then
the mean of the bootstrap estimates (circle) should also coincide
with the true value of θ (diamond). Therefore, for frequenciesωc
and ωd either the EM estimator μ̂2(ω) has a significant non-zero
bias or the bootstrap for x does not lead to ILD mean estimates
which accurately represent their underlying second-order statis-
tics. The significant bias in the ILD mean estimates towards
0 dB at some frequencies has been independently noted in the
literature, e.g., [36] and [37], suggesting that our methodology
does not lead to any surprising results.

From a practical point of view, since each parameter is fre-
quency dependent, one would consider using bootstrap averaged
estimate for a given parameter if it leads to a smaller error over
the frequency range. Thus, for a given frequency dependent
parameter θ(ω) with estimate θ̂(ω), it is natural to define a
frequency averaged squared error (FASE), as

FASE(θ̂) =
1
W

W∑

ω=1

|θ̂(ω) − θ(ω)|2 , (28)
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TABLE II
RATIOS OF THE FASE OF θ̂∗A TO THE FASE OF θ̂ (EM), FOR

θ ∈ {μi , ξiτ , ai ; i = 1, 2, τ = 4}

FASE(θ̂∗A)/FASE(θ̂)

k′ μ1 μ2 ξ1 ,τ ξ2 ,τ a1 a2

l r l r

1 0.1121 0.6786 0.8893 0.9826 0.6162 1.0481 0.7277 0.7844
2 0.1723 0.9879 0.9811 0.9940 0.6936 0.7232 0.7117 0.8742
3 0.2244 1.1773 0.6664 0.9943 0.7155 0.7809 0.8544 0.9079
4 0.1630 0.9733 0.9901 0.9903 0.7269 0.7577 0.8801 0.8610

which quantifies the overall error in a parameter estimate by
averaging the squared errors for each frequency over the set of
chosen frequencies. Here |.| denotes the absolute value of a real
or a complex-valued quantity.

A comparison of the FASE of EM estimate of each parameter
with FASE of the bootstrap averaged estimate shall allow us to
see if an overall improvement is achieved. The ratios of FASE
for estimates of the ILD, IPD and the mixing vector mean by the
bootstrap averaged technique to the corresponding EM estimates
from [8] for two-source mixtures with indices k′ = 1, 2, 3, 4 are
reported in Table II. Now, the ILD parameters are only fre-
quency dependent, however, IPD parameters are frequency and
lag dependent; mean of the mixing vector, on the other hand, is
a frequency dependent bivariate complex-valued quantity. For
the IPD mean parameter ξiτ , we compare FASE at the ground
truth delay. With the target source at 0◦ and the interference
source placed at 30◦, and a sampling frequency of 16000 Hz.,
this is calculated to be 0.00027 s, equivalent to 4 samples. For
the mixing vector mean ai , the error in each component (l and
r) is compared separately. From the ratio comparison for the
target source parameters (s1) in Table II, we immediately see
that the ratios for the ILD, IPD and mixing vector mean param-
eters are all less than 1 (with the exception of a1r where it is
≈ 1), indicating that the bootstrap averaged estimates lead to
an overall smaller error in comparison to the directly obtained
EM estimates. We observe a significant improvement via our
method for the ILD mean parameters as indicated by the ex-
tremely small FASE values for μ1 across the four mixtures.
Relatively higher FASE ratios are observed for the IPD and
mixing vector mean parameter estimates. Due to the complex
source and lag-dependent structure as well as the number of
parameters, it is practically not feasible to perform a FASE
comparison for the entire parameter set for all mixtures. The
results in Table II, however, assure us of the improvement in
the EM estimates via the proposed method. We would like to
point out that in general, following [8], unequal weights may be
assigned to the three cues in order to optimize the gain from the
improved bootstrap averaged estimates.

Subsequently, we proceed with the final step of performing
source separation. With the target source placed at 0 degree and
the interference source(s) placed at azimuth ϕ (and −ϕ), we
perform source separation for a set of 15 two-source and 15
three-source binaural mixtures, i.e. for a total of 15 × 5 = 75
two-source mixtures and 75 three-source mixtures. For each

Fig. 8. A comparison of the average SDR over a set of (a) 15 two-source
mixtures, and (b) 15 three-source mixtures, for separation performed using
the proposed technique (square), the integrated method of [8] (asterisk), the
interaural cue-based technique of [1] (circle), and the mixing vector model
based method of [9] (dot) for ϕ = 15◦, 30◦, 45◦, 60◦, and 75◦. Error bars show
standard error.

mixture, the bootstrap averaged T-F mask M∗
i,A is computed as

in (23), using which the target and the interference source(s) are
separated. A comparison of the average SDR for the estimated
target sources (over 15 mixtures) with the average SDR obtained
from [8], [1], and [9] for each azimuth ϕ = 15◦, 30◦, 45◦, 60◦,
and 75◦ with (a) two-source and (b) three-source mixtures is
displayed in Fig. 8. The improvement in the SDR of the sources
separated using our bootstrap averaged T-F mask (squares) and
[8] (asterisks) is clearly visible. Comparing the SDR (average)
levels obtained using the joint method of [8] in Fig. 8(b), we
note that relatively smaller SDRs are obtained either when the
two interference sources s2 and s3 are placed too close with
ϕ = 15◦ or too far with ϕ = 75◦ from the target source s1 . It is
interesting to note that the bootstrap averaging approach leads
to a significantly greater improvement for ϕ = 75◦ in the case
of the three-source mixtures. The difference between the aver-
age SDR from the bootstrap average approach and the approach
of [8] is calculated to be (in dB): 0.59, 0.31, 0.28, 0.57, 0.25
for ϕ = 15◦, 30◦, 45◦, 60◦, 75◦, respectively. A t-test (5% sig-
nificance level) confirms that the average gain (in SDR) of
0.4 dB over 75 mixtures (15 mixtures for each ϕ) is signifi-
cant. Similarly, the gain in the three-source case is calculated
to be 0.60, 0.31, 0.23, 0.18, 1.19 forϕ = 15◦, 30◦, 45◦, 60◦, 75◦,
respectively, and a t-test (5% significance level) confirms that
the average gain (in SDR) of 0.5 dB is significant.

The existing model-based source separation methods [1], [8],
[9], have focused on the separation of the target source placed
at 0◦ (exactly in front of the head). It is of interest to understand
how these methods perform when the target source is positioned
laterally at an angle greater than 0◦. With the target source placed
at 15◦, and the interference source placed at azimuth ϕ = 30◦,
we constructed a set of 15 two source mixtures using the bin-
uaral room impulse responses exactly as described above. To
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Fig. 9. A comparison of the ground-truth ILD mean (dB) μi (ω) (dashed
black) with the estimate μ̂i (ω) (solid grey) obtained from [8], and the bootstrap
averaged estimate μ̂∗

i ,A(ω) (solid black) vs. frequency (kHz) for (a) i = 1,
k′ = 1 and (b) i = 1, k′ = 2, with s1 placed at ϕ = 15◦, and s2 placed at
ϕ = 30◦. The ground-truth ILD mean of each source convolved with impulse
response truncated to the window length are shown in dotted black.

understand the gain in performance via the bootstrap approach,
a comparison of the ILD mean parameter estimates using the
joint model-based method of [8] with the bootstrap averaged
estimates is shown in Fig. 9. From the subplots in Fig. 9, we
observe a notable improvement in the bootstrap averaged esti-
mate (solid black) at higher frequencies in comparison to the
estimate of [8] (solid grey), but only for the second mixture.
This is confirmed by the corresponding FASE ratios, with an
FASE of 1.19 for k′ = 1 in comparison to an FASE of 0.70
for k′ = 2. The relatively larger bias in the bootstrap averaged
estimates for the first mixture is a consequence of the inherent
bias in the estimates obtained directly from the speech mixture
via [8] (solid grey) in this case. A comparison of the directly
obtained estimates of [8] (solid grey) when the target source is
placed at 0◦ (as shown in Fig. 3) with the estimates when the
target source is placed laterally at 15◦ (shown in Fig. 9), makes
this bias apparent. The SDR for the target source at 15◦ using
the method of [8] is calculated to be 2.22 dB for k′ = 1 and
-1.60 dB for k′ = 2, in comparison to 2.94 dB for k′ = 1 and
1.57 dB for k′ = 2 via bootstrap averaging. The average SDR
over 15 mixtures calculated to be 1.49 dB from [8] in compari-
son to the average SDR of 2.60 dB via the bootstrap averaging
approach, confirms improvement via the proposed procedure.

VIII. CONCLUSION

We draw attention to the problem of sub-optimal EM esti-
mates of frequency-dependent GMMs and propose a bootstrap-
based method to obtain estimates with smaller MSE. We identify
the problem of model misspecification in the area of source
separation where the absence of a precise model for rever-
beration leads to poor separation performance for reverberant
speech mixtures. Our simulation experiments with speech mix-
tures show a clear improvement in estimates of the frequency
domain GMM parameters via the proposed bootstrap averag-
ing algorithm. An overall improvement is indicated by the
FASE comparison. The averaged T-F mask leads to a higher
SDR implying improved source separation. Further improve-
ments in separation performance can be achieved by assigning

frequency-specific weights to cues in order to maximize the gain
from the bootstrap averaged estimates of cue model parameters.
This will be investigated in our future work. Following the recent
work by [38], another possible direction is to suitably combine
T-F masks estimated from different model-based methods us-
ing appropriately bootstrapped speech mixtures to maximize
improvement in source separation for reverberant mixtures.

Our bootstrap averaging approach applies to any frequency-
specific GMM and hence its use is not limited to model-based
source separation. In the multichannel NMF-based method [14],
the authors note the poor performance of the EM estimates when
assumptions on their model are not satisfied, e.g. due to non-
linear sound effects, longer reverberation times, and non-point
sources. This corresponds to a misspecified mixture model in
the T-F domain and hence the proposed bootstrap-based method
finds application. The alternative MU algorithm for estimation,
also discussed in [14], which does not exploit these assumptions
is seen to be more robust to such model discrepancies. This is-
sue with the EM implementation (e.g. [14], [15]) is also noted
in [16], where only a MU algorithm is studied. An interesting
direction for future work would be to understand if the EM im-
plementation of [14] combined with our bootstrap approach can
outperform the MU algorithm when assumptions on the mixing
model are known to be violated, for example as in the case of
professionally produced music recordings, [14].
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