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Abstract—We investigate the problem of visual tracking of
multiple human speakers in an office environment. In particular,
we propose novel solutions to the following challenges: (1) robust
and computationally efficient modeling and classification of the
changing appearance of the speakers in a variety of different
lighting conditions and camera resolutions; (2) dealing with full
or partial occlusions when multiple speakers cross or come into
very close proximity; (3) automatic initialization of the trackers,
or re-initialization when the trackers have lost lock caused by
e.g. the limited camera views. First, we develop new algorithms
for appearance modeling of the moving speakers based on dic-
tionary learning (DL), using an off-line training process. In
the tracking phase, the histograms (coding coefficients) of the
image patches derived from the learned dictionaries are used
to generate the likelihood functions based on Support Vector
Machine (SVM) classification. This likelihood function is then
used in the measurement step of the classical particle filtering (PF)
algorithm. To improve the computational efficiency of generating
the histograms, a soft voting technique based on approximate Lo-
cality-constrained Soft Assignment (LcSA) is proposed to reduce
the number of dictionary atoms (codewords) used for histogram
encoding. Second, an adaptive identity model is proposed to track
multiple speakers whilst dealing with occlusions. This model is
updated online using Maximum a Posteriori (MAP) adaptation,
where we control the adaptation rate using the spatial relationship
between the subjects. Third, to enable automatic initialization of
the visual trackers, we exploit audio information, the Direction of
Arrival (DOA) angle, derived from microphone array recordings.
Such information provides, a priori, the number of speakers and
constrains the search space for the speaker’s faces. The proposed
system is tested on a number of sequences from three publicly
available and challenging data corpora (AV16.3, EPFL pedestrian
data set and CLEAR) with up to five moving subjects.

Index Terms—Visual Tracking, Particle Filters, Dictionary
Learning.

Manuscript received March 27, 2013; revised August 19, 2013; accepted
November 27, 2013. Date of publication January 22, 2014; date of current ver-
sion March 13, 2014. This work was supported by the Engineering and Physical
Sciences Research Council of the UK (grant no. EP/H050000/1 ). The associate
editor coordinating the review of this manuscript and approving it for publica-
tion was Prof. Sen-Ching Cheung.
M. Barnard, W. Wang, and J. Kittler are with the Centre for Vision, Speech

and Signal Processing, University of Surrey, Surrey GU2 7XH, U.K. (e-mail:
mark.barnard@surrey.ac.uk; w.wang@surrey.ac.uk; j.kittler@surrey.ac.uk).
P. Koniusz was with the Centre for Vision, Speech and Signal Processing,

University of Surrey, and is now with INRIA LEAR, Rhône-Alpes 38334,
France (e-mail: peter.koniusz@inria.fr).
S. M. Naqvi and J. Chambers are with the Advanced Signal Processing

Group, Loughborough University, Leicestershire LE11 3TU, U.K. (e-mail:
s.m.r.naqvi@lboro.ac.uk; j.a.chambers@lboro.ac.uk).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TMM.2014.2301977

I. INTRODUCTION

T HE problem of object tracking in computer vision has
received much interest from researchers in recent years.

Tracking concerns estimating the position of an object, be it a
human, an animal, a car or a missile in space and time. Applica-
tions for tracking objects are wide ranging, including as diverse
sectors as security, defence, robotics, sport, wildlife preserva-
tion, as well as communications. In this paper, we focus on the
tracking of multiple moving speakers in various indoor envi-
ronments using multiple cameras with the assistance from mi-
crophones. The methods developed here are however not con-
fined to this specific application, and they can be readily applied
to track different objects in a variety of environments. There
are several fundamental problems to be solved to enable effi-
cient and accurate object tracking. Firstly, we must address the
problem of robustly modeling the appearance of the object, due
to, for example, the changes in illumination and also object ori-
entation. Secondly, when tracking multiple objects occlusions
or near occlusions between objects are a major problem causing
loss of tracking of one or both objects, especially when the ob-
jects are of similar appearance. Another challenge, particularly
in the task of tracking people in meeting room applications, is to
preserve the identity of the subjects through occlusions. Lastly,
a problem facing most tracking systems is the initialization of
object’s positions at the start of the tracking sequence. Many
systems overcome this by simply manually initializing the ob-
ject’s location before tracking.
There are broadly two approaches to the problem of robust

appearance modeling, using either adaptive models or static
models. Adaptive models are updated as the object’s appearance
changes over time and have been used extensively in tracking
applications [1], [2]. While these approaches can be effective
in modeling changing appearance, they have the disadvantage
that any tracking error will accumulate and propagate as the
model is updated. Therefore, in any on-line adaptation method
control of the adaptation is important. This is often done
through setting a predefined confidence threshold for adapting
to data [2] or introducing a forgetting function so newer data is
used for adaptation [1]. While these methods have had some
success they tend to be tuned for specific applications. The use
of static appearance models avoids the problem of drift [3],
[4], [5], however these models have difficulty in coping with
changes in object appearance as tracking continues. There are
two solutions to this problem: use sufficient training data to
model appearance changes or construct an initial static model
and adapt this online. Liu et al. [6] propose using a pre-trained
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model of an object’s appearance. This model is then updated
online based on the appearance of the object. Multiple instance
learning has been used to update pre-trained initial appear-
ance models [7], [8]. As with purely adaptive models these
approaches still find it difficult to control the adaptation and
avoid drift. We take the approach of training a static appearance
model offline. To generate sufficient training data we use a
semi-supervised tracker to extract both positive (face) and
negative (background) training examples from sequences con-
taining only simple smooth motions and a single subject. This
allows us to construct a model capable of robustly representing
the full range of appearances of the object being tracked. As
this appearance model is not updated online it is not affected
by accumulated errors in the tracking.
Currently, one of the most effective methods for object ap-

pearance modeling in still images is dictionary learning (DL) or
bag of visual words [9], which has shown state-of-the-art per-
formance in many object recognition comparisons such as, the
PASCAL Visual Object Class challenge [10] and the Image-
CLEF Visual Concept Detection challenge [11]. DL methods
have also been applied recently to the problem of tracking [6]
where to model changes in appearance, a sparse coding his-
togram of the distribution of atoms for an image patch is adapted
using the distribution of the target image patch. However, this
method uses a learning rate parameter that is set a priori, this
static learning rate does not account for changes in the tracking
environment such as two similar objects occluding each other.
Given that we can generate large amounts of training data we
take the approach of training a static dictionary that is capable
of representing all the variations in appearance found in the test
set. Thus we avoid the problem of controlling adaptation in the
appearance model. First we create a dictionary using K-means
clustering, then use Soft Assignment (SA) methods to generate
histograms or coefficient vectors. These vectors are then used to
train a Support Vector Machine (SVM) classifier to discriminate
face/head from background.
One drawback of using dictionary based methods in tracking

applications is computational complexity. Liu et al. [6] propose
a method known as K-selection to select a subset of atoms from
the dictionary to represent an image patch. A gradient descent
method is used to select the subset based on the location within
the dictionary space. This method requires a search through
all atoms in the dictionary to identify this subset for each fea-
ture vector at each time step in the tracking. For large dictio-
nary sizes this may become prohibitively expensive. We also
present a subset selection based method for improving the ef-
ficiency of histogram assignment using approximate Locality-
constrained Soft Assignment (LcSA) [12]. The LcSA method
has been shown to produce state-of-the-art results in the task of
object recognition whilst giving a significant improvement in
computational performance [12]. However, in contrast to K-se-
lection, we employ a hierarchical dictionary structure to con-
strain our search space to a subset of dictionary codewords,
based on Fast Hierarchical Nearest Neighbor Search (FHNNS)
[12]. The LcSA method also improves the classification perfor-
mance due to the sparseness of the histograms being more likely
to render the classes linearly separable [13]. Therefore we can
use the computationally efficient linear SVM [14], as opposed

to more complex non-linear kernel based SVMs. The reason
underlying this observation will also be studied by the sparsity
index measures for different histogram generation methods (see
Section VIII-B3).
In our application we are tracking multiple speakers moving

around in a meeting room environment. This leads to the sub-
ject’s occluding each other with possible loss of tracking or loss
of the speaker’s identity. Many tracking systems include sub-
ject identification to enable the tracking of multiple people [15],
[16], [17], [18], however these approaches generally require a
high resolution image of the face to perform well. Li et al. [19]
proposed an on-line algorithm to adaptively model the identity
of the subject, however they report difficulties in controlling the
rate of adaptation. In our proposed tracking system we separate
tracking from identification. We use a static appearance model
for tracking thereby avoiding accumulation of errors, andwe use
an adaptive identity model for the more complex task of iden-
tity recognition. Due to the low resolution of our data, traditional
face detection methods, such as those proposed by Viola-Jones
[20], do not work, so instead we train a GaussianMixtureModel
(GMM) using data from around the subject’s head. This data in-
cludes the context around the subject’s head such as the clothes
and background. We learn this identity on-line using Maximum
a Posteriori (MAP) adaptation [21] to update the parameters of
the GMM to account for new data. To overcome the problem
of measurements being corrupted by data from another subject
during occlusions, we use the distance between the subjects to
control adaptation. If the subjects are far apart then more weight
is given to the contribution of new data in updating the model
parameters. As the subjects move closer together more weight
is given to the prior distribution of the model parameters and
ultimately adaptation is disabled. This is based on the fact that
if the subjects are widely separated the data collected in the area
of the subject’s head will be more specific to that subject.
One current problem in most tracking applications is the ini-

tialization of the tracker. In the majority of cases the object to
be tracked is simply manually selected in the initial frame of the
sequence [22], [23], [24], [25], [26], [27]. In some cases a prior
template or model is used to search in the initial frame for the
object, for example a prior color template of a face is used by
[28], [2], [29]. Alternatively a common face detection algorithm
such as that proposed by Viola and Jones [20] can be used, as in
the case of Naqvi et al. [30]. These methods require an exhaus-
tive search of the initial frame and also if the number of objects
to be tracked is not known a priori they can lead to false posi-
tive object detections. We propose a novel initialization method
by using the audio azimuth angle for each speaker to constrain
the search area for the visual face detector. We show that even a
noisy audio tracker, discussed in Section VI-A1, combined with
our general dictionary learning based face detector can be used
for effective initial face localization.
The overall structure of this proposed system is outlined in

Section II. In Section III we discuss the visual features used for
dictionary construction. In Section IVwe address the problem of
appearance modeling using DL. Section V introduces methods
such as LcSA and fast hierarchical clustering for improving the
computational efficiency for dictionary based tracking. We de-
scribe how this DL based appearance modeling is integrated
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Fig. 1. Overall system to generate the 3-D head position, showing training and
tracking or testing phases.

into a PF framework in Section VI, including our proposed
novel method of audio-visual face detection in Section VI-A.
In Section VII we enable the tracking of multiple subjects using
our proposed adaptive identity model. In Section VIII, we show
the experiments conducted and the data used together with the
results obtained. Conclusions are given in Section IX.

II. THE OVERALL STRUCTURE OF THE PROPOSED SYSTEM

In this section we present a system for tracking using a pre-
trained dictionary and SVM classifier within the PF framework
to provide robust and accurate three-dimensional tracking using
multiple cameras. Fig. 1 shows the training and testing phases of
our proposed tracking system, where the components of feature
extraction, dictionary building and SVM classifier are standard,
and the principal contributions of this paper are indicated in
the shaded components. More specifically, in the testing phase
we detect faces at the start of the sequence using our novel
audio-visual face detector. Following this initialization we use
our pre-trained dictionary and SVM classifier in the measure-
ment step of the PF algorithm. Finally, we introduce a novel
method of identity modeling and adaptation control to overcome
occlusions.

III. FEATURE EXTRACTION

As shown in Fig. 1, feature extraction is needed for both
training and testing. A feature vector

is a vector of transform coefficients for characterizing an
image patch, where is the feature dimension and is a trans-
pose. We extract two types of features from each image patch,
the standard grey-scale SIFT and color histogram features of
dimensions and respectively. SIFT features [31], which
are histograms of gradient orientation, have been shown to be
highly distinctive and also robust to affine image transformation
[32]. Color histograms have many advantages in tracking ap-
plications being rotation and partially scale invariant, robust to
partial occlusions, easy to calculate, and fairly robust to changes
in illumination.
To calculate the SIFT feature vector, we densely sample the

image patch with, typically, a horizontal step size of and a
vertical step size of , with the sampling points shown by the
white crosses in Fig. 2, where and are the width and height
of the image patch respectively. At each sampling point, we
extract an image block of, typically, pixels, from which
we calculate the SIFT feature vector, . In practice, the

Fig. 2. Extraction of SIFT features from image patches. These are used in the
training phase for dictionary construction and in the test phase for recognition.

adjacent image blocks may overlap with each other depending
on the choice of and .We form the color feature vector

simply as a histogram of Hue values after transforming the
image from the RGB color space to HSV space. The SIFT and
color features are either used separately or concatenated to give
a combined feature vector, , where

. In our experiments while we test a number of
different values for and , we typically choose ,

for the majority of our experiments. As a result of
the above calculation methods, for each image patch, we obtain
nine SIFT, one color, and nine combined SIFT and color vectors.
Note that, the combined feature vectors (for each image patch)
are obtained by concatenating the same color vector with each
of the nine SIFT vectors.

IV. DICTIONARY LEARNING BASED TRAINING METHODS

A. Dictionary Construction

Based on the feature vectors extracted from image patches
as in Section III, we form the training set as a matrix

where is the total number of feature
vectors in the training set.1 From , we can learn a dictionary

, using e.g. the GMM algorithm,
where , i.e. the so-called visual codewords (or
atoms), and is the total number of atoms in the dictionary.
Such a dictionary provides a succinct representation of the fea-
ture vectors in .
In a GMM, each vector in the training set can be con-

sidered as a mixture of Gaussian functions [33] with
the following parameters to estimate,

, where , ,
are the mixture component weights, are the means and
are vectors of the Gaussian component standard deviations. The
density estimation problem can be addressed by optimizing the
likelihood function :

(1)

where is denoted as

(2)

1 is used to distinguish from used later to denote the number of feature
vectors extracted from each image patch.
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where denotes the determinant of and is a diagonal
co-variance matrix with diagonal entries ,
being the elements of .
Commonly the parameters of models such as GMMs are esti-

mated through an iterative training algorithm such as Expecta-
tion-Maximization (EM). In practice, however, due to the sim-
plifications detailed in the next section, we can directly allocate
the parameters of the GMM from the parameters estimated by
K-means clustering. Therefore, in our work, the means of the
Gaussian mixtures are obtained from the dictionary codewords
produced by the K-means clustering, . The mixture
weights, , are all set to the same value of . The standard
deviations are set to the same value such that

, where is estimated experimentally. As an
example, the values of estimated for different dictionary sizes
are described in Section VIII.
As there is little previous work using DL for this application

we decided to test a number of different values for in our
experiments in Section VIII, to balance the number of visual
words in the dictionary between being able to discriminate the
object we wish to track and over-fitting on the training set. By
over-fitting we mean that the model becomes over-specified on
the training set and is unable to generalize to examples in the
test set [34].
Our goal is, based on the dictionary , to create a compact

representation of an image, or image patch, by using a coding
coefficient vector (or histogram) . The
elements in weight the contributions of each atom of for
coding the image, and are populated using a soft voting tech-
nique, as discussed next.

B. Histogram Generation Based on Soft Assignment (SA)

The simplest form of dictionary learning employs a vector
quantizationmethod known asHard Assignment (HA). For each
visual codeword in the dictionary the th bin of the his-
togram is assigned according to

otherwise
(3)

where is the Euclidean distance from the visual code-
word to the feature vector and each bin is normalized by,
, the number of feature vectors extracted from an individual
image patch. This is the simplest formulation for DL based clas-
sification methods. However, recent results in object recogni-
tion show that SA provides much better performance over HA
[35], [36]. In SA, the expression of the membership probability,

of the component being selected to represent is
given by:

(4)

The parameters of the model in equation (1) provide a vast
number of degrees of freedom and therefore can be further re-
duced to by
fixing all mixing weights

to be equal and having a single parameter vector such that
. This yields the membership

probabilities as follows:

(5)

Such a simplification renders a model that is more robust than
the one given by equation (4) [36].
The th bin of the histogram representing an individual

image patch is now calculated as

(6)

The above SA formulation can be shown to be equivalent to the
codeword uncertainty based SA method presented in [35].

C. Classifier Training

We have a number of histogram vectors with each being a
sparse representation of an image patch in the training set,

, where is the total number of image patches
in the training set. These histograms which are produced by the
processes described in Sections IV-B, V-A and V-B are then
used as labelled training data to train an SVM classifier. Due
to the sparsity of the histograms produced by these methods the
two classes, head and background, are more likely to be linearly
separable in a high dimensional space. This is confirmed in our
experimental results in Section VIII where a binary linear SVM
is used for classification.

V. FAST ALGORITHMS FOR HISTOGRAM GENERATION
FROM DICTIONARY ATOMS

A. Approximate Locality-Constrained Soft Assignment (LcSA)

The SA technique described above does not explicitly min-
imize the error between and its reconstructed version using
the codewords from the dictionary. This can be addressed using
Sparse Coding (SC) [37], [38] and Locality-constrained Linear
Coding (LLC) [39], both aiming to optimize a cost function
based on such an approximation error. However, the coding
process in both SC and SA involves the whole set of the dictio-
nary atoms, rendering potentially expensive computations. This
can be a problem especially for a large size of dictionary, or for
applications where computational load is a concern, as is our
case. To address the limitations of SA, we adopt the notion of
locality in coding, as used in LLC [39] and other recent methods
[37], [38], [40], [41], [42], [43], by constraining codeword se-
lection to the most relevant few.
We define the locality around , as the region of the dic-

tionary space containing the nearest codewords to , deter-
mined by the Euclidean distance. Specifically, we constrain SA
to activate only nearest codewords to the feature vectors as
in [39], [43] when computing the membership probabilities. We
refer to this variant of SA as approximate Locality-constrained
SA (LcSA), i.e. finding nearest codewords for reconstruction
prior to the computation of assignments. Hence, LcSA obtains
an approximate locality-constrained solution rather than a fully
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Fig. 3. Fast Hierarchical Nearest Neighbor Search. The left panel shows the
reconstruction of a feature vector using the nearest dictionary codewords.
The center panel shows the effect using hierarchical K-means to constrain the
volume of the nearest neighbor search. The right panel shows that the recon-
struction error can be reduced by dilating the boundaries of the higher level
cluster centered on .

analytical one [12], and also achieves local smoothness and
sparsity. To span local membership probabilities (as opposed to
global ones as in equation (5)), one has to determine the nearest
neighbors (NNs) for every feature . Let us denote a subset of
codewords as where is a mapping
of the nearest codewords to the feature vector from all the
codewords in the dictionary . Limiting the membership prob-
ability in equation (5) to be based on only this subset of code-
words yields:

otherwise
(7)

We can further consider the use of max-pooling for populating
the histogram , representing an individual image patch, in the
case of LcSA, so equation (6) is replaced with:

(8)

B. Fast Hierarchical Nearest Neighbor Search (FHNNS)

In Section V-A, the mapping function in LcSA
is defined for the NNs, with the search space still being the en-
tire dictionary . The left panel of Fig. 3 shows the reconstruc-
tion of as a linear combination of the nearest codewords
weighted by the coefficients from the histogram vector . This
shows a small reconstruction error [12].
However, to improve computational efficiency in the NN

search utilized by LcSA we constrain the search space of the
mapping function. We employ a fast hierarchical NN search
method by exploiting hierarchical K-means clustering [12].
First, we cluster the codewords of the dictionary into a dic-
tionary, , of higher level codewords , . We
now define a subset of codewords
which is composed of the nearest lower level codewords
to the higher level codeword . If there is no overlap between
the higher level clusters, that is, a lower level codeword can
only belong to a single higher level cluster, then we have

.
During histogram generation we define a new mapping func-

tion as which gives , i.e. the closest
high level codeword to the feature vector . We now define
our subset of codewords as, ,
where is the set of lower level codewords within the
cluster centered on the high level codeword . In practice, ,

, can all be chosen identical to (found empiri-
cally in our experiments). The center panel of Fig. 3 shows the

effect of using hierarchical K-means to constrain the volume of
our NN search. It can be seen, however, that the reconstruction
error can be larger due to the feature being unable to be rep-
resented by potentially more appropriate codewords across the
boundaries of the selected higher level cluster.
To overcome this problem we propose dilating the bound-

aries of the higher level cluster centered on , used for the NN
mapping, as shown in the right panel of Fig. 3. This relaxes the
assumption that each lower level codeword can belong to only
a single high level cluster, allowing overlap of the higher level
clusters. The number of codewords in each high level cluster
is now given by where . The value of is adjusted
experimentally to achieve a balance between efficiency and ac-
curacy. The reconstruction error in this case approaches that of
the standard NN search [12], whilst still considerably reducing
the search volume for the nearest codewords. In practice this
means that the histogram entry for the codeword will be
zero if is not within the set of nearest codewords. A sim-
ilar approach to fast NN search is employed by spill-trees [44].

C. Computational Efficiency Comparison

In this section we take a brief look at theoretical computa-
tional efficacy of HA, SA, LcSA and FHNNS, based on the re-
sults in [12]. HA can be easily described in terms of the NN
search which scales linearly with the number of feature vec-
tors to process, , and the number of visual words to search
through denoted as . Thus, the complexity of HA amounts to

. SA computes Gaussian-based distances from every
feature vector to all available visual codewords. Next, it com-
putes the sum of Gaussian distances. Lastly, it determines the
ratio for every visual codeword to the total distance as in equa-
tion (5). Therefore, its complexity is .
LcSA ismainly limited by theNN search. This can be performed
efficiently by the partial sort algorithmwith a typical complexity

, where is a desired number of nearest code-
words in searches. Summing distances and computing the ratio
of Gaussians in equation (7) becomes an efficient operation with
complexity . Therefore, the total assignment com-
plexity is .
Note, for sufficiently small , LcSA becomes notice-
ably faster compared to SA. In our case . The
FHNNS further reduces the complexity of LcSA to approxi-
mately . This reduction in complexity from SA to
LcSA is demonstrated in Section VIII-B3. Given the improved
efficiency of LcSA, in the next section we describe how this is
integrated into a PF framework for tracking.

VI. MODIFIED PF ALGORITHM

The widely-used PF algorithm is modified here to incorporate
the DL based histogram generation method described above.
There are essentially four steps involved in a standard PF al-
gorithm: initialization, propagation, measurement and re-sam-
pling. Our new contributions are mainly in the initialization
and measurement steps: an automatic initialization method of
the visual tracker using audio information; and a novel method
for computing the likelihood function in the measurement step
based on LcSA (assisted by FHNNS) and SVM classification.
The details of the proposed tracking algorithm are described
below.
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Fig. 4. Our modified DL based PF showing proposed changes to the measure-
ment step in the shaded box.

We consider a dynamic system consisting of a hidden
state sequence , where is the
length of the sequence. This hidden sequence is the loca-
tion through time of the target speaker we wish to track
where . In our case each state is the position
of a rectangular image patch centered on the subject’s head,

, where , and
, are the coordinates of the top left and bottom right

corners of the image patch for the th particle respectively
and is the velocity derived from the Euclidean distance
from the center of the image patch defined by to the
center of . We also have a sequence of measurements

. In practice is assumed to be a first
order Markov process, so depends solely on the previous
state and the current observation .
The task in tracking is to estimate the posterior probability

distribution . To this end, we generate a collection of
particles, , each of which can be consid-

ered a hypothesis of the location of the target object, . Each
particle also has an associated weight, giving a vector of particle
weights . The four steps of the PF algorithm
are summarised in Algorithm 1 and Fig. 4. The details for each
step are given in the following subsections.

Algorithm 1 Particle Filter for tracking a target state.

Input:

Output:

% Initialization

while do

for to do

% Propagate particles

Calculate using Algorithm 2

% Measure particle fitness

and update particle weights

end for

. % Estimate target position

if ( ) then

Resample particles

end if

end while

A. Audio-Assisted Automatic Initialization

In this section we address the problem of tracker initializa-
tion. This is very much an ongoing area of research in tracking
and indeed most tracker systems rely on manual initialization.
To initialize the tracker we must detect the initial head posi-
tions of the subjects. We did attempt to use one of the standard
methods of face detection [20], however the results from this
were disappointing on our dataset. This was possibly due to the
small scale of the faces in our data and also the range of different
head poses from each camera. Here we propose to exploit audio
information and our general face model to initialize the tracker.
Specifically, we use the direction of the speaker given by the
audio tracker described in the following subsections to find au-
tomatically the initial head positions of the speakers in the room.
This gives a collection of particles at time defined as

all with the same image patch rectangle and the ini-
tial velocity of .
1) Audio Tracker: To find the approximate initial locations

of the speakers, we employ the SAM-SPARE-MEAN method
[45], which is an audio tracking algorithm developed for a
smart meeting room environment. Other state-of-the-art audio
tracking algorithms could also be used for this purpose, but are
not considered here for two reasons. First, our focus is on the
visual trackers, where audio tracker is used only for facilitating
the initialization of the visual tracker. Second, our experiments
in Section VIII indicate that even using a perfect tracker (i.e.
annotated ground-truth) makes no difference in improving
tracking performance of our proposed system.
The SAM-SPARE-MEAN algorithm is a two-step method.

In the first step, the space around a circular microphone array
is divided into a number of sectors, and the spectrum of the
microphone signals is also discretized into a number of fre-
quency bins. For each sector and frequency bin, the source
activity (SAM), i.e. the posterior probability that at least one
audio source, is estimated. In the second step, a parametric ap-
proach [46] is used for the localization of the sources (when
detected as active in the first step), with the location parameters
optimized with respect to a cost function such as SRP-PHAT
[47].
2) Initialization of Visual Tracker: The azimuth angle pro-

duced by the audio tracker provides two very important pieces
of prior information: the number of speakers and the general
direction of each speaker, which are used here to constrain the
number of trackers to be initialized and the area of the image
to search for the face. To this end, we project a line in three
dimensions from the center of the microphone array to a point

, where is equal to the distance from the center of the
microphone array to the wall of the room in meters, denoted as
(which is 1.75 meters in our experiment, as shown on Fig. 7

in Section VIII), can be estimated as the height of a human
speaker, typically chosen as 1.80 meters in our experiment, and
is calculated as

(9)
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where is the azimuth angle (in degrees) of the speaker with re-
spect to the circular microphone array shown in Fig. 7. The par-
ticle filter is initialized at intervals along this line to detect a face.
The dispersal of particles gives a reasonable search area around
this line. We then select the particle with the highest un-nor-
malized weight as containing the subject’s face. The sampling
points and the initial face positions for the two multi-person se-
quences can be seen in Fig. 16 of Section VIII.

B. Particle Propagation

A particle filter assumes that can be measured at a
number of points, drawn from a proposal distribution , and
so the distribution can be approximated by sampling
these points. This sampling is performed in the propagation step
of the PF as shown in Fig. 4 and in Algorithm 1. The particles are
updated from time step to , with the th particle propagated
according to the dynamic model

(10)

where , the transition noise, is a random variable with 2D
Gaussian distribution with zero mean. Hence the particles are
propagated based on their previous values and a certain amount
of additive white Gaussian noise added to model the uncertainty
in the motion involved.

C. Dictionary Learning Based Measurements

For each of these particles produced by the propagation
step, we generate a hypothesis of , for each of the
current particle states . To generate this hypoth-
esis we use the SA approach described in Section IV, and
the FHNNS assisted LcSA approach from Section IV. So for
each particle an image patch is extracted from the current
frame using the coordinates . A
set of features are extracted from the image patch as described
in Section III. The pre-trained dictionary is then used to
produce a representation of the image patch according to
equation (8), i.e. , which is then
classified by the pre-trained linear SVM in Section IV to obtain
the likelihood of a particular particle’s image patch containing
a head as , where is the
Euclidean distance from to the nearest point on the
decision hyperplane of the pre-trained SVM. The weight of the
th particle at time , , is given by:

(11)

where is a measure of the difference between
and given by . The particle weights are then
normalized so that .
Finally, the position of the speaker can be estimated as:

(12)

This gives us an updated estimate of the target position.
Algorithm 2 summarizes the proposed DL based measurement
step.

Algorithm 2 Dictionary learning measurement step.

Input: ,

Output:

for to do

Extract image patch at frame according to
;

Extract features , from the image patch;

Create image patch representation ,

where

;

Classify each image patch using SVM classifier to produce
the likelihood .

end for

D. Degeneracy Testing and Particles Resampling

The method described above is known as sequential impor-
tance sampling (SIS). This sampling method leads to a problem
known as degeneracy, where the weight is concentrated in a
single particle. This has the effect of dramatically degrading the
approximation of the updated distribution. An effective measure
of degeneracy is given by [48]:

(13)

If all the weights of the sampled particles are equal, ,
then . For re-sampling to take place a threshold is set
on and if it rises above the threshold value the particles
are re-sampled with probabilities proportional to their weights

. This, known as Sampling Impor-
tance Re-sampling (SIR), eliminates particles with low weights
and makes multiple copies of particles with high weights.

VII. MULTI-SPEAKER TRACKING VIA ADAPTIVE
IDENTITY MODELING

The general pre-trained head model as described in
Section VI is capable of differentiating head/face from
background but not differentiating between faces. This leads to
tracking errors when subjects approach and occlude each other.
To overcome this problem we propose an adaptive model to
recognize individual speakers, based on a GMM that is updated
online using the MAP principle.
In a GMM the likelihood of the feature vector

is given by

(14)

where is a Gaussian distribution at , defined in
equation (2), is the number of Gaussian mixtures, , ,
and are the weights, means, and standard deviations of the
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Gaussian mixture, respectively. Hence the GMM is fully pa-
rameterized by the set , where ,

, and .
In online learning, as some data may not correspond to the

correct label, prior knowledge is necessary to constrain the
space of solutions for . This can be achieved
using MAP adaptation, where prior knowledge is given by a
prior distribution over , . Using the MAP principle we
select such that it maximizes the a posteriori log likelihood,

(15)

where is the set of data vectors. The con-
tributions of the data likelihood, , and the prior distribu-
tion, , can be balanced by introducing a weighting factor, ,
in equation (15). So, we maximize ,
where is a weighting factor on the prior parameters.
The parameters of the th mixture of the GMM are adapted

using the following set of update equations [21], [49]

(16)

(17)

(18)

where , and are the prior weight, mean and standard
deviation, , , are the parameters estimated by the
maximum likelihood on the current data, and , and are
the updated parameters estimated by the MAP adaptation. The
function selects the diagonal elements of a matrix to
form a single vector.
We use a GMM to model the head features of each subject. At

the initial frame we extract a set of features from the automat-
ically located head positions described in Section VI-A. A set
of feature vectors, described in Section III, are extracted
from image patches taken from the subject’s face and
body as shown in Fig. 5, these form a set of fea-
ture vectors. In the case of two subjects we have two sets of fea-
tures and , where the subscript 0 denotes the time index of
the initial frame and the superscripts 0 and 1 represent the first
and second subject respectively. These two feature sets are used
to train two GMMs with parameters and respectively. At
each subsequent frame a set of features are extracted from the
subject’s head position estimated by each of the trackers. So we
have and at each time step . We then estimate the likeli-
hood of each of these sets of features given each of our GMMs,
we select the subject’s identity according to

for subject one and for the second subject,

where . The data, and , are also used to update the
parameters of each identity model at each time step, according
to equations (16), (17) and (18). Methods for controlling this
adaptation are discussed in the following paragraph.
A key problem in MAP adaptation is the choice of ,

which controls the contribution of the prior parameters and the

Fig. 5. Feature extraction for subject identification. Note: The grids are delib-
erately shifted to avoid the colored balls on the subjects’ heads which were used
in annotation, instead of our tracking system.

new parameters estimated from the current data. Instead of set-
ting at a fixed value as done usually, we adapt according to
the locations of the subjects being tracked as follows

(19)

where and are the head positions
of the first and second subject at frame respectively, is the
width of the image, and 0 in the bracket denotes the center of the
image patch at the estimated head position. This formulation for
means that when the subjects are further apart we are more

certain that the data collected relates only to that subject and so
more weight is given to the new parameters estimated on the
current data. The newly estimated parameters then become the
prior parameters of the GMM.
Due to the low resolution of the video data used in our exper-

iments, focusing solely on the subject’s head was insufficient
for identification. To overcome this we extract the features (as
described in Section III) from a wider area around the head, in-
cluding the context of the subject’s clothing and background as
shown in Fig. 5. Note that the balls in Fig. 5 were added to aid
annotation but not used in our tracking systems. Due to the col-
ored balls on the subject’s heads we use the location of the grid
on the lower half of the face instead of the center of the face. The
initial prior distribution is trained using the initial head location
which is found using the method described in Section VI-A2.
Essentially, when a subject is no longer recognized then the

tracking in that camera does not contribute to the three-dimen-
sional head position, however the position continues to be up-
dated using the three-dimensional estimate of the head position
produced by the other cameras. The identity of the subject con-
tinues to be tested using the three-dimensional position from the
other trackers. Therefore, when the subjects move out of occlu-
sion and the subject is again recognized, the tracker is turned on
again.

VIII. EXPERIMENTS AND RESULTS

To demonstrate the performance of our proposed approaches
we conducted three sets of experiments for tracking in a real
meeting room environment. Firstly, we evaluate the tracking
performance of the DL based appearance modeling methods
using HA, SA, and LcSA with FHNNS (based on equation (7))
respectively. The DL based histogram generation is compared
with the baseline methods based on commonly used histograms
of color or texture. The effect of different dictionary and feature
sizes on the performance is also studied. The measurement step
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of the PF is typically the distance between the histogram gen-
erated by image patch being tested and an exemplar histogram,
typically the Bhattacharyya distance. The standard SA method
proposed by van Gemert et al. [35] is used as a baseline in com-
parison with our proposed LcSA. We show that our system out-
performs these baseline methods and is particularly robust to
changing lighting conditions and large scale changes.
Secondly, we show the performance of our adaptive iden-

tity recognition method described in Section VII for tracking
multiple subjects through occlusions. We show that having a
pre-trained general face/head model combined with an adap-
tive identity model it is possible to track accurately multiple oc-
cluding subjects. We produce quantitative results for two and
three subject tracking on the AV16.3 dataset [50]. In order to
demonstrate that our proposed method can generalize to sim-
ilar datasets we also present qualitative tracking results on the
EPFL multi-camera pedestrian dataset [51] for three and four
subjects and also a sequence from the CLEAR dataset [52] for
five subjects. Finally, we show the performance of our proposed
audio-visual face detection method described in Section VI-A2
for automatically and accurately detecting faces in the initial
frame of the video sequence to be tracked. We demonstrate that
our method outperforms the common baseline Viola-Jones face
detection method [20] for tracker initialization.

A. Experimental Set-Up

The data used in our experiments consist of eleven annotated
sequences from the AV16.3 dataset and also sequences from
the EPFL pedestrian dataset and the CLEAR dataset. All the
datasets feature multiple subjects recorded on multiple cameras
in an indoor office or meeting room environment.
The AV16.3 dataset was recorded at the IDIAP research insti-

tute in 2004, in a smart meeting room environment using three
calibrated cameras and two eight element omnidirectional cir-
cular microphone arrays. The data set was collected to specifi-
cally address the issues of large scale changes, natural illumina-
tion changes and partial and full occlusions. Within a single se-
quence the scale of the face/head may vary from approximately

pixels to pixels, this can be seen from Fig. 6(a)
to Fig. 6(c). The illumination changes within the meeting room
can also be seen in Fig. 6. There are twomain types of sequences
in the AV16.3 dataset, meeting situations (two subjects seated at
the table) and motion situations (subjects moving in the corner
of the room). The position of the cameras was a compromise
between these two situations [50], so camera one was situated
to capture the faces of seated subjects and cameras two and
three positioned to give a reasonable estimate of the 3-D po-
sition when the subjects are moving. We feel that the current
challenges in tracking multiple people in an office environment
are well represented in the AV16.3 dataset.
The data were annotated by using a simple color tracker that

was manually corrected by a human observer. In a number of
sequences colored balls were placed on the subjects’ head to fa-
cilitate this process. However, we must stress that these colored
balls played no part in our system, indeed we had to take partic-
ular pains to avoid them in the identity modeling experiments.
The layout of the smart meeting roomwith the locations of the

three cameras and microphone array can be seen in Fig. 7. The

Fig. 6. Three images from sequence 11 from cameras 1, 2, and 3 respectively.
(a) Camera 1. (b) Camera 2. (c) Camera 3.

Fig. 7. Layout of room used for audio-visual recordings. The shaded area in-
dicates the performance area for the subjects.

TABLE I
A SUMMARY OF THE DATA SEQUENCES USED FOR TRAINING
AND TESTING. THE SEQUENCE NUMBERS CORRESPOND

TO THE NUMBERING IN THE AV16.3 DATASET

sequences feature subjects moving within the field of view of
the three cameras and speaking continuously. The shaded area
in Fig. 7 indicates the area within which the speakers move.
The sequences vary in difficulty from the subject simply moving
around a set of positions in the room with relatively constant di-
rection and velocity, to multiple subjects moving freely around
the room and making abrupt changes in direction. A summary
of the data sequences used for training and testing can be found
in Table I.
Each sequence is between 1000 and 3500 frames long with

a frame rate of 25 frames per second and each video frame is
a color image of pixels. From these annotated se-
quences we selected four for training and five for testing. The
variability of appearance in the training data was maximized by
combining data from all three cameras to train a single model.
We take the approach of training a model of the subject to be

tracked, in this case a person’s head. An initial exemplar patch
of the face is taken for each camera and the Battacharya distance
is then calculated for each particle to determine its weight. This
method is effective for tracking simple sequences and can be
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TABLE II
RMSE IN METERS OBTAINED BY THE METHODS USING SIFT

AND HUE HISTOGRAM AND BOTH HUE AND SIFT DICTIONARIES
AND COMBINED HUE AND SIFT DICTIONARIES

re-initialized by hand when it does fail. The background data
was collected using the same frames as the head data. A single
background image patch is extracted from each frame, this patch
is selected as having the maximum Battacharya distance of all
the particles. Using this methodwe can efficiently generate large
amounts of varied training data. We apply the method to gen-
erate 37050 training examples, for both head and background.
All tracking experiments were conducted with parti-
cles. The tracking errors aremeasured using RootMean Squared
Error (RMSE), calculated as the Euclidean distance from the
3-D position estimated by the tracker to the 3-D annotated po-
sition of the subject’s mouth.

B. Evaluation on Dictionary Learning Based Appearance
Modeling

1) Comparison of Dictionary Versus Non-Dictionary
Methods: For the dictionary based method, we first construct
the dictionaries from the Hue and SIFT features, and then
generate the histograms using these dictionaries (hence denoted
as ‘Hue Dict’ and ‘SIFT Dict’) by the SA method described
in Section IV-B. A combined color and SIFT dictionary was
created and tested. The dictionary size was set to .
The baseline methods that we compare are the non-dictionary
methods i.e. using the Hue and SIFT histograms (hence ‘Hue
Hist’ and ‘SIFT Hist’). The results are shown in Table II. It can
be seen that for all sequences the DL method based histograms
provide better tracking performance as compared with using
the Hue and SIFT feature vectors directly.
We also ran 50 random tests (randomly initialized dictio-

naries) to compare the three dictionary methods, i.e. ‘Hue Dict’,
‘SIFT Dict’ and ‘Combined Hue and SIFT Dict’ respectively,
using a different random initialization for each one. Fig. 8 shows
the tracking error for each frame of sequence 11 in the data, for
a single instance of each tracking method. This plot shows the
contribution of each of the modalities, it can clearly be seen that
at the end of the sequence as the subject moves into an area with
different illumination the errors in using the Hue based dictio-
nary increase dramatically, while the ‘Combined Hue and SIFT
Dict’ in which the contribution of the SIFT and Hue are given
equal weighting shows a much smaller error. The SIFT based
dictionary, on the other hand, performs poorly near the begin-
ning of the sequence, which corresponds to the sectionwhere the
subject sits down and moves into an area with more background
clutter which can be seen in Fig. 6(b), however the ‘Combined
Hue and SIFT Dict’ with a weighting of 0.5 from the Hue man-
ages to overcome this problem. The ‘Combined Hue and SIFT
Dict’ method performs robustly regardless of the subject’s lo-
cation in the room. This can further be confirmed by the error

Fig. 8. The tracking results for sequence 11 of the AV16.3 database. This shows
the performance of Hue and SIFT dictionaries and also the combined Hue and
SIFT dictionary.

maps in Fig. 9 which shows the level of error for different lo-
cations within the room, the thicker the line the larger the error.
The area of the plots in Fig. 9 corresponds to the shaded area in
Fig. 7.
2) Comparison of Dictionary Size: We then evaluate the per-

formance with respect to the dictionary size, . Although in
visual object recognition tasks larger dictionary sizes are com-
monly adopted we decided for practical purposes to limit the
maximum size to 1024 atoms. We tested from 32, 64, 128,
256, 512, to 1024. For each , 50 random tests were performed,
and the ‘Combined Hue and SIFT Dict’ based SA method was
used. The average results of these random tests over the three
single-subject test sequences (shown in Table II) can be seen in
Fig. 10(a), where the error bars represent the standard deviation.
It can be observed that for very small dictionary sizes, particu-
larly for ‘Hue Dict’ and ‘SIFT Dict’, the results become very
unstable due to the small number of dictionary atoms being un-
able to represent the face/head of the subject. However using
the ‘Combined Hue and SIFT Dict’ the size of the error bars
is much smaller, this may be due to the fact that a combined
Hue and SIFT atom can represent more aspects of the data than
a single Hue or SIFT atom. Interestingly, the best performance
comes from the smaller dictionary sizes, this is probably due to
the larger histogram size becoming overly sparse and degrading
the head recognition performance.
We also compare the performance for different feature vector

lengths. In this set of experiments we set the dictionary size to
and vary the length of the SIFT and color histogram fea-

ture vectors, and respectively. The values of used
are 32, 64, 128, 256 and 512 and the values of used are 25,
50, 100, 200, 400. These two feature vectors are then concate-
nated as described in Section III to form a single combined fea-
ture vector of length . These different length
features were then tested on sequence 11 of the AV16.3 dataset.
The results of these experiments can be seen in Fig. 11, this plot
shows that our selection of and is justi-
fied in terms of accuracy and computational feasibility.
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Fig. 9. Error maps for sequence 11 of the AV16.3 dataset. The area shown
corresponds to the shaded area in Fig. 7. The thickness of the trajectory shows
the average RMSE in that location, the thicker the trajectory of the plot the larger
the RMSE. (a) Hue Dict Error Map. (b) SIFT Dict Error Map. (c) Combined
SIFT and Hue Dict Error Map

3) LcSA vs SA: One drawback of the SA method described in
Section IV-B is that the contribution of all atoms in the dictio-
nary is estimated to generate a histogram. In applications such
as tracking this may cause problems with efficiency. In this set
of experiments we test the performance of the LcSA method
described in Section V for histogram generation to investigate
whether we can achieve similar or better results by using a size
reduced set of dictionary atoms for histogram generation.
The same set of training sequences used in Section VIII-B are

used to create the set of training histograms using themethod de-
scribed in Section V-A. We use the 50 randomly initialized dic-
tionaries created in the previous section with the combined Hue
and SIFT features to create the LcSA histograms. The number

Fig. 10. Plot of RMSE averaged over 50 randomly initialized dictionaries and
the three single subject test sequences for various dictionary sizes. The error bars
show one standard deviation of the results from the 50 random tests. (a) Hue,
SIFT and combined Hue and SIFT dictionaries using HA. (b) SA and LcSA
dictionaries.

of NNs, , and the smoothing factor, , used to populate the his-
tograms, according to equation (7), were determined using cross
validation on the training sequences. The values of were set to
0.2 for 32 and 64, 0.19 for 128 and 256, and 0.18 for

512 and 1024. The number of NNs was set to 5 for
32 and 64, 6 for 128, and 7 for 256, 512 and 1024.
For dictionary sizes larger than we implemented the
fast NN search, FHNNS, described in Section V-B. The number
of higher level codewords was set to 128 for all dictionary
size. The number of lower level codewords was set to 128 for

, and 256 for 512 and 1024.
In Fig. 10(b) we plot the average error for all 50 randomly ini-

tialized dictionaries over the three single subject test sequences
for SA and LcSA for various dictionary sizes. It can clearly be
seen that LcSA also gives a small improvement in the accuracy
of the tracking. This could be explained by LcSA providing a
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Fig. 11. The tracking result for different feature sizes for Sequence 11.

more robust representation by selecting a smaller, but more rele-
vant set of dictionary atoms, thus avoiding the noise introduced
by less relevant atoms when using the entire dictionary. Again
we can see that for small dictionary sizes the standard devia-
tion of the results does increase however this effect is approxi-
mately the same as using LcSA. In order to measure the increase
in tracking speed provided by the use of LcSA we measured
the processing time for an individual frame with a single sub-
ject with a dictionary size of . Using the standard SA
method the average frame processing time over 100 frames was
0.26 seconds, while using LcSA this processing time is reduced
to 0.17 seconds. These experiments were performed using an
Intel dual core 3 GHz desktop with 3.7 GB of memory. So we
can see, our proposed system is capable of processing approx-
imately 6 frames per second (despite the code not being opti-
mized or fully parallelized).
Additionally, LcSA provides a more sparse representation

than SAwhichmay improve the classification of the linear SVM
classifier. We use a common measure of sparsity given by

where and are the and norms respectively
and is the th image representation histogram.We then aver-
aged this measure over all the histograms in the training set for
different histogram generation methods. The results were LcSA
(SIFT + Hue) , SA (SIFT + Hue) , SA (SIFT)

and SA (Hue) , where a smaller value of
indicates a sparser vector.

C. Evaluation on Adaptive Identity Modeling on AV16.3
Dataset

Here we present results for tracking multiple speakers using
the adaptive identity models described in Section VII. The ex-
perimental set up is similar to the single subject sequences, de-
scribed in the previous section, with the main difference being
that the dictionary based methods were automatically initial-
ized using audio information extracted by the method described
in Section VI-A2, as opposed to the manual initialization in
Section VIII-B. The same images for dictionary building which
were extracted from the four training sequences (see Table I)

Fig. 12. Multiple person tracking using adaptive identity models. The images
in the top row are from sequence 18, the middle row from sequence 24 and the
bottom row from sequence 45.

are used to train our GMM identity model using the EM algo-
rithm [33]. After cross-validation on the training data we set

, in each frame (i.e. the grid as shown
in Fig. 5), and for each image patch. This gives a total
of feature vectors for training the GMM model
for each frame. Both the SA and LcSA methods (based on the
‘Combined Hue and SIFT Dict’) were tested.
Sequences 18 and 24 (two subjects) and 40 and 45 (three

subjects) of AV16.3 were used in this experiment, whose diffi-
culty can be seen in Fig. 12. In sequence 18, the upper series of
frames, the two subjects bring their heads together very slowly
and then hold them very close for a number of seconds, this
makes it difficult to use the subject’s dynamics to overcome this
type of occlusion. In our proposed system while we take into ac-
count the subject’s motion we do not rely on it in order to be ro-
bust to occlusions. This allows us to track the subjects while the
baseline method fails completely. The middle series of frames
is from sequence 24 and shows the subject dressed in similar
clothing, white t-shirts, despite this the identity of the subjects
is preserved with our method through the occlusion. In theory if
the subjects were dressed identically, with similar hair and skin
color our identity modeling could fail, however we could not
find such sequences in the AV16.3 dataset to test this, and this
could be addressed in future work. The lower series of frames
shows sequence 45 which features three speakers, all of whom
are moving and occluding each other many times.
Table III shows the tracking results in RMSE for using

the identity model, as compared with those without using the
identity model. It can be seen that using the identity model,
the tracking errors are considerably reduced. The error maps
in Fig. 13 show that, as the subjects’ heads come into close
proximity the methods not using identity modeling fail whereas
our proposed method continues to track both subjects. This can
also be seen in Fig. 14 where both the SA and LcSA methods
not employing identity modeling fail at the second occlusion. In
addition, the tracking errors for the multiple person sequences
are relatively higher as compared with those for single person
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Fig. 13. Error maps for sequence 18 of the AV16.3 dataset. The area shown
corresponds to the shaded area in Fig. 7. One subject is shown in red and the
other in blue. The thickness of the trajectories depends on the average RMSE
in that location, the thicker the trajectory the larger the RMSE. (a) SA Error
Map (no identity). (b) LcSA Error Map (no identity). (c) SA Error Map (with
identity). (d) LcSA Error Map (with identity).

sequences. The good performance of sequence 40 is given
by the fact that two subjects are seated and stationary whilst

Fig. 14. The tracking results for sequence 18 of the AV16.3 database. This
shows the performance of SA and LcSA method with and without identity
modeling.

TABLE III
THE RESULTS FOR TRACKING SHOW THE RMSE IN METERS BETWEEN
EACH MULTIPLE SUBJECT TEST SEQUENCE USING DL BASED SA
AND LCSA METHODS, WITH AND WITHOUT IDENTITY MODELING

the third subject moves behind them, there are no occlusions
between the subjects.
It is worth noting that, after an extensive search of the current

literature, we could only find two publications that reported vi-
sual tracking results for multiple subjects on the AV16.3 dataset.
Pham et al. [53] exploit 3-D tracking with multiple cameras to
overcome occlusion in sequence 24 and report an average accu-
racy of 0.06 meters, which is lower than our reported accuracy.
However they do not report any results on the far more chal-
lenging sequence 18 which features slow moving subjects and
partial occlusions. Khan et al. [54] report results for sequence 45
of the AV16.3 dataset, however their method involves tracking
one subject in a multi-person environment and treating the other
subjects as noise. So their results are not comparable with ours.

D. Evaluations of Multiple Subject Tracking on the EPFL and
CLEAR Datasets

In order to show the ability of the system to generalize to data
other than the AV16.3 dataset we selected sequences from two
other indoor multiple subject tracking datasets, the EPFL multi-
camera pedestrian dataset [51] and the CLEAR dataset [52]. In
both cases the sequences feature multiple subjects moving in an
indoor environment with multiple occlusions. We use the dic-
tionary, SVM classifier and parameters trained/optimized on the
AV16.3 dataset (dictionary size of and parti-
cles and the parameters for identity modeling are the same as
those used in the previous section). Fig. 15 shows the results
of tracking on the EPFL and CLEAR datasets. The first two
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Fig. 15. Multiple person tracking using adaptive identity models. The images
in the first two rows are from the EPFL dataset the bottom rows is a sequence
from the CLEAR dataset.

rows of Fig. 15 show tracking from two cameras of the EPFL
dataset. This shows the system accurately tracking four subjects
against a complex background and through multiple occlusions.
The final row shows the tracking of five subjects in a sequence
from the CLEAR dataset, while the background is not as com-
plex as the EPFL data there are still multiple occlusions of the
subjects. The results also suggest that it is not necessary to re-
peat dictionary training for new data and camera configurations.
In both cases the tracking was manually initialized, for the

EPFL data no separate audio signal was available and for the
CLEAR dataset while audio data was provided none of the sub-
jects starts speaking until they are seated and stationary. Also,
no 3D information is available from the multiple cameras, so
each of the tracking results are independent 2D results for each
camera. This shows that strict calibration of the cameras is not
necessary for our proposed tracking system to function.

E. Evaluations on Audio-Visual Tracker Initialization

To start tracking we must first locate the object or person we
wish to track. Here we treat the initialization of the tracker as es-
sentially a face detection and localization problem. To test our
proposed method (described in Sections VI-A1 and VI-A2) we
take the first frame in each sequence where the subjects’ faces
are visible and they are talking. In practice this does limit us
to only detecting a face when the subject starts to talk, how-
ever this method of face detection demonstrates that the audio
DOA can be useful in this task. The proposed system provides a
flexible framework to incorporate other initialization methods,
such as Viola-Jones, or other state-of-the-art face detection al-
gorithms as a complementary way for reducing the possibility
of the failure of initialization.
To provide a reasonable amount of data we annotated the

initial face position on a total of 20 sequences from the AV16.3
dataset. These included 9 single and 11 multiple person se-
quences, giving a total of 84 faces. Each frame was annotated
with a rectangle enclosing the subject’s face. The audio was

TABLE IV
COMPARISON BETWEEN OUR PROPOSED AUDIO-VISUAL
FACE DETECTION WITH THE VIOLA-JONES METHOD

Fig. 16. Initialization of multi-person tracking sequences. Blue and green lines
show the sampling line for the face detector the rectangle is the position of the
particle with the maximum likelihood of a face. Also shown is the estimated
DOA, green and blue lines, and the annotated DOA, red lines.

sampled at 16 kHz using a single 8 element circular micro-
phone array with diameter 10 cm. The following parameters
were fixed for all of our audio tracking experiments, time
frame windows were 32 ms with an overlap of 16 ms. For the
Fast Fourier Transform the number of samples was 512 and
the number of histogram bins was 512. For the SRP-PHAT
algorithm the number of sectors was fixed at 18 with each
sector covering 20 degrees and the speed of sound was fixed at
320 m/s. Further details of the implementation can be found in
[45]. We compare our method with one of the most common
face detection algorithms proposed by Viola and Jones [20] im-
plemented using the OpenCV computer vision library [55]. We
used face images from the four training sequences (described
in Table I) to set the thresholds for the Viola-Jones method.
To measure the performance of both methods we use preci-

sion and recall, where precision is given by ,
where is the number of correct matches and is the
number of potential faces identified by eachmethod and recall is
given by where is the number of faces
in the frame. There are many ways to define what constitutes a
correct face detection and this is often linked to the application
and dataset being used. Rowley et al. [56] define a correct detec-
tion as the center of the detected face rectangle being less than
four pixels from the center of the annotated rectangle and within
1.2 of the scale of the annotated rectangle. We follow a similar
scheme in our experiments, however we adapt the measure to
our particular data and application. As we are using the face de-
tection algorithms to initialize a PF based tracker, in reality we
can relax this measure as our pre-trained face model will con-
verge to the face after a few iterations of the tracker. So we set
the criteria for a face detection to be less than a Euclidean dis-
tance of 10 pixels from the center of the annotated face rectangle
and a scale within 1.5 of the scale of the annotated rectangle.
Table IV shows the detection results for the 84 faces in the ini-

tial frames taken from 20 test sequences in the AV16.3 dataset.
Fig. 16 shows the initial frames for each camera for the multiple
subject sequences 18 and 24. The lines in the images show the
tracks used by our proposed audio-visual face detection system
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Fig. 17. Audio azimuth estimated by the audio tracking algorithm for se-
quences 18 and 11. (a) Sequence 18 audio azimuths. (b) Sequence 11 audio
azimuths.

and the rectangle shows the estimated initial face location. It
can be seen from the results that our proposed method performs
significantly better than the baseline method. It seems most of
the errors in the Viola-Jones approach come from an incorrect
estimation of the number of speakers in the initial frame. The
low precision of the Viola-Jones method is caused by the re-
turn of a number of false positives due to over estimating the
number of faces in the frame. Audio information allows us to
estimate a priori the number of speakers present, this informa-
tion has the advantage of greatly reducing the rate of false pos-
itive detections.
It is worth noting that the audio signals used in our experi-

ments were recorded in real room environments with the pres-
ence of room reverberations (( seconds) and back-
ground noise. As a consequence, the accuracy of the DOA es-
timates are also degraded by such adverse acoustic effects. To
see this, we show in Fig. 17 the output of the audio tracker for
two annotated sequences (sequence 18 with two speakers and

sequence 11 with a single speaker). It is interesting to note that,
the estimation noise in DOAs has no adverse impact on the per-
formance of our proposed visual tracking algorithm. To show
this, we also performed the same experiment using the dataset
annotations to provide a “perfect” estimate of the DOA, and the
results are also included in Table IV. From this table, we can
see that the detection result of the proposed algorithm (i.e. using
the estimated DOAs for the initialization of the visual tracker) is
identical to the result obtained by using the ground-truth DOAs
for the initialization of the visual tracker. This implies that, even
though using an up-to-date audio tracking algorithm may im-
prove the audio tracking results, it does not improve the perfor-
mance of our visual tracking algorithm. This is mainly because
the estimated DOA is used in our algorithm to provide an esti-
mate of the approximate speaker location and a piori the number
of speakers. The accuracy of tracking is essentially achieved
through the visual tracker. This can be further explained by
Fig. 16, from which we can see that, even if there is noise in
the estimated DOA (as in the left most subject), the result of the
face detection offered by the audio tracker is sufficiently accu-
rate for the initialization of visual tracker. For this reason, using
other state-of-the-art audio trackers for the initialization of the
proposed visual tracker is not considered here, we leave this to
our future work.

IX. CONCLUSIONS

We have proposed a tracking system combining a DL
approach for appearance modeling with a PF for dynamic
modeling. We exploit the properties of DL to overcome the
problems of recognition in low resolution images and under
changing lighting conditions. This proposed method is shown to
be more accurate than the baseline methods on the challenging
AV16.3 dataset. We also demonstrate that the combination of
Hue and SIFT features within a DL framework provides more
robust tracking. The issue of the computational complexity
of DL methods was addressed by proposing the use of LcSA
for histogram generation. We show that using LcSA actually
improved the performance of the DL based tracking system. A
significant challenge in tracking is continuing tracking through
occlusions. To overcome this we have introduced a method
of identity modeling, this involves modeling the subject’s
appearance using a GMM and then adapting this model on-line
using MAP adaptation controlled by the proximity of the other
subject. We showed that this method combined with a DL
based tracker can effectively track up to five subjects through
occlusions whilst preserving their identity. We also demon-
strated the ability of the system when trained using one dataset
(AV16.3) to generalise to other datasets (EPFL and CLEAR)
with no further training. Finally, we proposed an audio-visual
face detection method for automatic tracker initialization. An
audio tracker provides the DOA angle for each speaker and the
number of speakers a priori thus greatly reducing the chances
of a false positive face detection. We compared our proposed
method to one of the standard methods for face detection [20],
the results showed our method outperformed this baseline
method on the challenging AV16.3 dataset.
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