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Abstract

We investigate the problem of visual tracking of multiple human speakers in an office environment. In

particular, we propose novel solutions to the following challenges: (1) robust and computationally efficient

modelling and classification of the changing appearance of the speakers in a variety of different lighting

conditions and camera resolutions; (2) dealing with full orpartial occlusions when multiple speakers cross

or come into very close proximity; (3) automatic initialisation of the trackers, or re-initialisation when

the trackers have lost lock caused by e.g. the limited cameraviews. First, we develop new algorithms for

appearance modelling of the moving speakers based on dictionary learning (DL), using an off-line training

process. In the tracking phase, the histograms (coding coefficients) of the image patches derived from

the learned dictionaries are used to generate the likelihood functions based on Support Vector Machine

(SVM) classification. This likelihood function is then usedin the measurement step of the classical

particle filtering (PF) algorithm. To improve the computational efficiency of generating the histograms,

a soft voting technique based on approximate Locality-constrained Soft Assignment (LcSA) is proposed

to reduce the number of dictionary atoms (codewords) used for histogram encoding. Second, an adaptive

identity model is proposed to track multiple speakers whilst dealing with occlusions. This model is

updated online using Maximum a Posteriori (MAP) adaptation, where we control the adaptation rate

using the spatial relationship between the subjects. Third, to enable automatic initialisation of the visual

trackers, we exploit audio information, the Direction of Arrival (DOA) angle, derived from microphone

array recordings. Such information provides,a priori, the number of speakers and constrains the search

space for the speaker’s faces. The proposed system is testedon a number of sequences from three publicly

available and challenging data corpora (AV16.3, EPFL pedestrian data set and CLEAR) with up to five

moving subjects.

I. I NTRODUCTION

The problem of object tracking in computer vision has received much interest from researchers in recent

years. Tracking concerns estimating the position of an object, be it a human, an animal, a car or a missile

in space and time. Applications for tracking objects are wide ranging, including as diverse sectors as
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security, defence, robotics, sport, wildlife preservation, as well as communications. In this paper, we focus

on the tracking of multiple moving speakers in various indoor environments using multiple cameras with

the assistance from microphones. The methods developed hereare however not confined to this specific

application, and they can be readily applied to track different objects in a variety of environments.

There are several fundamental problems to be solved to enableefficient and accurate object tracking.

Firstly, we must address the problem of robustly modelling the appearance of the object, due to, for

example, the changes in illumination and also object orientation. Secondly, when tracking multiple objects

occlusions or near occlusions between objects are a major problem causing loss of tracking of one or

both objects, especially when the objects are of similar appearance. Another challenge, particularly in the

task of tracking people in meeting room applications, is to preserve the identity of the subjects through

occlusions. Lastly, a problem facing most tracking systems is the initialisation of object’s positions at the

start of the tracking sequence. Many systems overcome this by simply manually initialising the object’s

location before tracking.

There are broadly two approaches to the problem of robust appearance modelling, using either adaptive

models or static models. Adaptive models are updated as the object’s appearance changes over time and

have been used extensively in tracking applications [1], [2]. While these approaches can be effective in

modelling changing appearance, they have the disadvantagethat any tracking error will accumulate and

propagate as the model is updated. Therefore, in any on-line adaptation method control of the adaptation

is important. This is often done through setting a predefined confidence threshold for adapting to data [2]

or introducing aforgetting functionso newer data is used for adaptation [1]. While these methodshave

had some success they tend to be tuned for specific applications. The use of static appearance models

avoids the problem of drift [3], [4], [5], however these models have difficulty in coping with changes in

object appearance as tracking continues. There are two solutions to this problem: use sufficient training

data to model appearance changes or construct an initial static model and adapt this online. Liu et al. [6]

propose using a pre-trained model of an object’s appearance. This model is then updated online based

on the appearance of the object. Multiple instance learninghas been used to update pre-trained initial

appearance models [7], [8]. As with purely adaptive models these approaches still find it difficult to

control the adaptation and avoid drift. We take the approachof training a static appearance model offline.

To generate sufficient training data we use a semi-supervisedtracker to extract both positive (face) and

negative (background) training examples from sequences containing only simple smooth motions and a

single subject. This allows us to construct a model capable ofrobustly representing the full range of

appearances of the object being tracked. As this appearancemodel is not updated online it is not affected

by accumulated errors in the tracking.

Currently, one of the most effective methods for object appearance modelling in still images is

dictionary learning (DL) or bag of visual words [9], which hasshown state-of-the-art performance in

many object recognition comparisons such as, the PASCAL Visual Object Class challenge [10] and the
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ImageCLEF Visual Concept Detection challenge [11]. DL methods have also been applied recently to

the problem of tracking [6] where to model changes in appearance, a sparse coding histogram of the

distribution of atoms for an image patch is adapted using thedistribution of the target image patch.

However, this method uses a learning rate parameter that is set a priori, this static learning rate does not

account for changes in the tracking environment such as two similar objects occluding each other. Given

that we can generate large amounts of training data we take the approach of training a static dictionary

that is capable of representing all the variations in appearance found in the test set. Thus we avoid the

problem of controlling adaptation in the appearance model.First we create a dictionary using K-means

clustering, then use Soft Assignment (SA) methods to generatehistograms or coefficient vectors. These

vectors are then used to train a Support Vector Machine (SVM) classifier to discriminate face/head from

background.

One drawback of using dictionary based methods in tracking applications is computational complexity.

Liu et al. [6] propose a method known as K-selection to select asubset of atoms from the dictionary to

represent an image patch. A gradient descent method is used to select the subset based on the location

within the dictionary space. This method requires a search through all atoms in the dictionary to identify

this subset for each feature vector at each time step in the tracking. For large dictionary sizes this

may become prohibitively expensive. We also present a subset selection based method for improving the

efficiency of histogram assignment using approximate Locality-constrained Soft Assignment (LcSA) [12].

The LcSA method has been shown to produce state-of-the-art results in the task of object recognition

whilst giving a significant improvement in computational performance [12]. However, in contrast to K-

selection, we employ a hierarchical dictionary structure to constrain our search space to a subset of

dictionary codewords, based on Fast Hierarchical Nearest Neighbour Search (FHNNS) [12]. The LcSA

method also improves the classification performance due to the sparseness of the histograms being more

likely to render the classes linearly separable [13]. Therefore we can use the computationally efficient

linear SVM [14], as opposed to more complex non-linear kernelbased SVMs. The reason underlying

this observation will also be studied by the sparsity index measures for different histogram generation

methods (see Section VIII-B3).

In our application we are tracking multiple speakers movingaround in a meeting room environment.

This leads to the subject’s occluding each other with possible loss of tracking or loss of the speaker’s

identity. Many tracking systems include subject identification to enable the tracking of multiple peo-

ple [15], [16], [17], [18], however these approaches generally require a high resolution image of the face

to perform well. Li et al. [19] proposed an on-line algorithm to adaptively model the identity of the

subject, however they report difficulties in controlling therate of adaptation. In our proposed tracking

system we separate tracking from identification. We use a static appearance model for tracking thereby

avoiding accumulation of errors, and we use an adaptive identity model for the more complex task of

identity recognition. Due to the low resolution of our data,traditional face detection methods, such as
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those proposed by Viola-Jones [20], do not work, so instead we train a Gaussian Mixture Model (GMM)

using data from around the subject’s head. This data includesthe context around the subject’s head

such as the clothes and background. We learn this identity on-line using Maximum a Posteriori (MAP)

adaptation [21] to update the parameters of the GMM to account for new data. To overcome the problem

of measurements being corrupted by data from another subject during occlusions, we use the distance

between the subjects to control adaptation. If the subjectsare far apart then more weight is given to the

contribution of new data in updating the model parameters. As the subjects move closer together more

weight is given to the prior distribution of the model parameters and ultimately adaptation is disabled.

This is based on the fact that if the subjects are widely separated the data collected in the area of the

subject’s head will be more specific to that subject.

One current problem in most tracking applications is the initialisation of the tracker. In the majority of

cases the object to be tracked is simply manually selected inthe initial frame of the sequence [22], [23],

[24], [25], [26], [27]. In some cases a prior template or model is used to search in the initial frame for the

object, for example a prior colour template of a face is used by [28], [2], [29]. Alternatively a common

face detection algorithm such as that proposed by Viola and Jones [20] can be used, as in the case of

Naqvi et al. [30]. These methods require an exhaustive searchof the initial frame and also if the number

of objects to be tracked is not knowna priori they can lead to false positive object detections. We propose

a novel initialisation method by using the audio azimuth angle for each speaker to constrain the search

area for the visual face detector. We show that even a noisy audio tracker, discussed in Section VI-A1,

combined with our general dictionary learning based face detector can be used for effective initial face

localisation.

The overall structure of this proposed system is outlined in Section II. In Section III we discuss the

visual features used for dictionary construction. In Section IV we address the problem of appearance

modelling using DL. Section V introduces methods such as LcSA andfast hierarchical clustering for

improving the computational efficiency for dictionary basedtracking. We describe how this DL based

appearance modelling is integrated into a PF framework in Section VI, including our proposed novel

method of audio-visual face detection in Section VI-A. In Section VII we enable the tracking of multiple

subjects using our proposed adaptive identity model. In Section VIII, we show the experiments conducted

and the data used together with the results obtained. Conclusions are given in Section IX.

II. T HE OVERALL STRUCTURE OF THEPROPOSEDSYSTEM

In this section we present a system for tracking using a pre-trained dictionary and SVM classifier within

the PF framework to provide robust and accurate three-dimensional tracking using multiple cameras.

Figure 1 shows the training and testing phases of our proposedtracking system, where the components

of feature extraction, dictionary building and SVM classifierare standard, and the principal contributions

of this paper are indicated in the shaded components. More specifically, in the testing phase we detect

faces at the start of the sequence using our novel audio-visual face detector. Following this initialisation
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Fig. 1. Overall system to generate the 3-D head position, showing training and tracking or testing phases.

we use our pre-trained dictionary and SVM classifier in the measurement step of the PF algorithm. Finally,

we introduce a novel method of identity modelling and adaptation control to overcome occlusions.

III. F EATURE EXTRACTION

As shown in Figure 1, feature extraction is needed for both training and testing. A feature vector
~f = {f1, f2, . . . , fM}T ∈ R

M is a vector of transform coefficients for characterising an image patch,

whereM is the feature dimension andT is a transpose. We extract two types of features from each image

patch, the standard grey-scale SIFT and colour histogram features of dimensionsMs andMc respectively.

SIFT features [31], which are histograms of gradient orientation, have been shown to be highly distinctive

and also robust to affine image transformation [32]. Colour histograms have many advantages in tracking

applications being rotation and partially scale invariant, robust to partial occlusions, easy to calculate,

and fairly robust to changes in illumination.

To calculate the SIFT feature vector, we densely sample the image patch with, typically, a horizontal

step size ofIw/3 and a vertical step size ofIh/3, with the sampling points shown by the white crosses

in Figure 2, whereIw andIh are the width and height of the image patch respectively. At each sampling

point, we extract an image block of, typically,12× 12 pixels, from which we calculate the SIFT feature

vector, ~f ∈ R
Ms . In practice, the adjacent image blocks may overlap with each other depending on the

choice ofIw and Ih. We form the color feature vector~f ∈ R
Mc simply as a histogram of Hue values

after transforming the image from the RGB colour space to HSV space. The SIFT and colour features

are either used separately or concatenated to give a combined feature vector,~f = {f1, f2, . . . , fMsc
}T ,

whereMsc = Ms + Mc. In our experiments while we test a number of different values for Ms and

Mc, we typically chooseMs = 128,Mc = 100 for the majority of our experiments. As a result of the

above calculation methods, for each image patch, we obtain nine SIFT, one colour, and nine combined

SIFT and colour vectors. Note that, the combined feature vectors (for each image patch) are obtained by
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concatenating the same colour vector with each of the nine SIFTvectors.

~f = {f1, f2, . . . , f128}

12 pixels

12 pixels

Ih

Iw

SIFT feature sampling points

Fig. 2. Extraction of SIFT features from image patches. These are used in the training phase for dictionary construction and

in the test phase for recognition.

IV. D ICTIONARY LEARNING BASED TRAINING METHODS

A. Dictionary Construction

Based on the feature vectors extracted from image patches asin Section III, we form the training set

as a matrixF = [~f1, . . . , ~fL] ∈ R
M×L̄ whereL̄ is the total number of feature vectors in the training set1.

From F, we can learn a dictionaryD = [~d1, . . . , ~dU ] ∈ R
M×U , using e.g. the GMM algorithm, where

~du, u = 1, . . . , U , i.e. the so-calledvisual codewords(or atoms), andU is the total number of atoms in

the dictionary. Such a dictionary provides a succinct representation of the feature vectors inF.

In a GMM, each vector in the training set can be considered as amixture ofU Gaussian functions [33]

with the following parameters to estimate,θ = (θ1, ..., θU ) = ((ω1, ~m1, ~σ1), ..., (ωU , ~mU , ~σU )), whereωu,

u = 1, ..., U , are the mixture component weights,~mu are the means and~σu are vectors of the Gaussian

component standard deviations. The density estimation problem can be addressed by optimising the

likelihood functionΛ(X ; θ):

Λ(X ; θ) =

L̄
∏

l=1

U
∑

u=1

ωug(~fl; ~mu, ~σu), (1)

whereg(~fl; ~mu, ~σu) is denoted as

g(~fl; ~mu, ~σu) = ([(2π)M · |Σu|]−
1

2 )exp(−1

2
(~fl − ~mu)

T
Σ

−1
u (~fl − ~mu)), (2)

where|Σu| denotes the determinant ofΣu andΣu is a diagonal co-variance matrix with diagonal entries

σ2
ui, i = 1, ...,M being the elements of~σu.

Commonly the parameters of models such as GMMs are estimatedthrough an iterative training

algorithm such as Expectation-Maximisation (EM). In practice, however, due to the simplifications

1L̄ is used to distinguish fromL used later to denote the number of feature vectors extracted from each image patch.
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detailed in the next section, we can directly allocate the parameters of the GMM from the parameters

estimated by K-means clustering. Therefore, in our work, themeans of the Gaussian mixtures are obtained

from the dictionary codewords produced by the K-means clustering, ~mu = ~du. The mixture weights,ωu,

are all set to the same value of1/U . The standard deviations are set to the same value such that

σu1 = σu2 = ... = σuM = σ, whereσ is estimated experimentally. As an example, the values ofσ

estimated for different dictionary sizes are described in Section VIII.

As there is little previous work using DL for this application we decided to test a number of different

values forU in our experiments in Section VIII, to balance the number of visual words in the dictionary

between being able to discriminate the object we wish to track and over-fitting on the training set. By

over-fitting we mean that the model becomes over-specified on the training set and is unable to generalise

to examples in the test set [34].

Our goal is, based on the dictionaryD, to create a compact representation of an image, or image

patch, by using a coding coefficient vector (or histogram)~v = {v1, . . . , vU} ∈ R
U . The elements in~v

weight the contributions of each atom ofD for coding the image, and are populated using a soft voting

technique, as discussed next.

B. Histogram Generation Based on Soft Assignment (SA)

The simplest form of dictionary learning employs a vector quantisation method known as Hard

Assignment (HA). For each visual codeword~du in the dictionaryD the uth bin of the histogram~v

is assigned according to

vu =
1

L

L
∑

l=1







1 if ~du = argmin
~d∈D

(E(~d, ~fl))

0 otherwise
(3)

whereE(~d, ~fl) is the Euclidean distance from the visual codeword~d to the feature vector~fl and each bin

is normalised by,L, the number of feature vectors extracted from an individualimage patch. This is the

simplest formulation for DL based classification methods. However, recent results in object recognition

show that SA provides much better performance over HA [35], [36]. In SA, the expression of the

membership probability,̺u(~fl) of the component~mu being selected to represent~fl is given by:

̺u(~fl) =
ωug(~fl; ~mu, ~σu)

∑U
u′=1 ωu′g(~fl; ~mu′ , ~σu′)

. (4)

The parameters of the model in equation (1) provide a vast number of degrees of freedom and therefore

can be further reduced toθ = (θ1, ..., θU ) = ((ω, ~m1, ~σ), ..., (ω, ~mU , ~σ)) by fixing all mixing weights

ω1 = ω2 = ... = ωU = ω 6= 0 to be equal and having a single~σ parameter vector such that~σ1 = ~σ2 =

... = ~σU = ~σ 6= 0. This yields the membership probabilities as follows:

̺u(~fl) =
g(~fl; ~mu, ~σ)

∑U
u′=1 g(

~fl; ~mu′ , ~σ)
(5)

August 19, 2013 DRAFT



8

Such a simplification renders a model that is more robust than the one given by equation (4) [36].

The uth bin of the histogram~v representing an individual image patch is now calculated as

vu =
1

L

L
∑

l=1

̺u(~fl). (6)

The above SA formulation can be shown to be equivalent to the codeword uncertainty based SA method

presented in [35].

C. Classifier Training

We have a number of histogram vectors with each being a sparserepresentation of an image patch in

the training set,V = [~v1, ~v2, . . . , ~vN ], whereN is the total number of image patches in the training set.

These histograms which are produced by the processes described in Sections IV-B, V-A and V-B are then

used as labelled training data to train an SVM classifier. Due tothe sparsity of the histograms produced

by these methods the two classes, head and background, are more likely to be linearly separable in a

high dimensional space. This is confirmed in our experimental results in Section VIII where a binary

linear SVM is used for classification.

V. FAST ALGORITHMS FORHISTOGRAM GENERATION FROMDICTIONARY ATOMS

A. Approximate Locality-constrained Soft Assignment (LcSA)

The SA technique described above does not explicitly minimisethe error between~fl and its recon-

structed version using the codewords from the dictionary. This can be addressed using Sparse Coding

(SC) [37], [38] and Locality-constrained Linear Coding (LLC) [39], both aiming to optimise a cost

function based on such an approximation error. However, thecoding process in both SC and SA involves

the whole set of the dictionary atoms, rendering potentially expensive computations. This can be a problem

especially for a large size of dictionary, or for applications where computational load is a concern, as is

our case. To address the limitations of SA, we adopt the notionof locality in coding, as used in LLC [39]

and other recent methods [37], [38], [40], [41], [42], [43],by constraining codeword selection to the

most relevant few.

We define the locality around~fl, as the region of the dictionary space containing thec nearest codewords

to ~fl, determined by the Euclidean distance. Specifically, we constrain SA to activate onlyc nearest

codewords to the feature vectors as in [39], [43] when computing the membership probabilities. We refer

to this variant of SA as approximate Locality-constrained SA (LcSA), i.e. findingc nearest codewords for

reconstruction prior to the computation of assignments. Hence, LcSA obtains anapproximatelocality-

constrained solution rather than a fully analytical one [12], and also achieves local smoothness and

sparsity. To span local membership probabilities (as opposed to global ones as in equation (5)), one has

to determine thec nearest neighbours (NNs) for every feature~fl. Let us denote a subset of codewords as
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D
c
l = NND

(

~fl, c
)

whereNND is a mapping of thec nearest codewords to the feature vector~fl from

all the codewords in the dictionaryD. Limiting the membership probability in equation (5) to be based

on only this subset of codewordsDc
l yields:

̺u(~fl) =











g(~fl;~mu,~σ)
∑

~m
u′∈D

c
l
g(~fl;~mu′ ,~σ)

if ~mu ∈ D
c
l

0 otherwise
(7)

We can further consider the use of max-pooling for populating the histogram~v, representing an individual

image patch, in the case of LcSA, so equation (6) is replaced with:

vu = max
l

̺u(~fl), l = 1, . . . , L (8)

B. Fast Hierarchical Nearest Neighbour Search (FHNNS)

In Section V-A, the mapping functionNND

(

~fl, c
)

in LcSA is defined for thec NNs, with the search

space still being the entire dictionaryD. The left panel of Figure 3 shows the reconstruction of~fl as a

linear combination of thec nearest codewords weighted by the coefficients from the histogram vector~v.

This shows a small reconstruction error [12].

However, to improve computational efficiency in the NN searchutilised by LcSA we constrain the

search space of the mapping function. We employ a fast hierarchical NN search method by exploiting

hierarchical K-means clustering [12]. First, we cluster theU codewords of the dictionaryD into a

dictionary,D̄, of H higher level codewords~mh, h = 1, . . . , H. We now define a subset ofρh codewords

D
ρh

h = NND (~mh, ρh) which is composed of theρh nearest lower level codewords~mu to the higher level

codeword~mh. If there is no overlap between the higher level clusters, that is, a lower level codeword

can only belong to a single higher level cluster, then we haveU =
∑H

h=1 ρh.

During histogram generation we define a new mapping function as ~mh = NN
D̄

(

~fl, 1
)

which gives

~mh, i.e. the closest high level codeword to the feature vector~fl. We now define our subset ofc codewords

as,c ≤ ρh, Dc
l = NNDh

(

~fl, c
)

whereDh is the set ofρh lower level codewords~mu within the cluster

centred on the high level codeword~mh. In practice,ρh, h = 1, . . . , H, can all be chosen identical toρ

(found empirically in our experiments). The centre panel of Figure 3 shows the effect of using hierarchical

K-means to constrain the volume of our NN search. It can be seen, however, that the reconstruction error

can be larger due to the feature being unable to be represented by potentially more appropriate codewords

across the boundaries of the selected higher level cluster.

To overcome this problem we propose dilating the boundariesof the higher level cluster centred on~mh,

used for the NN mapping, as shown in the right panel of Figure 3.This relaxes the assumption that each

lower level codeword can belong to only a single high level cluster, allowing overlap of the higher level

clusters. The number of codewords in each high level cluster is now given byρ̂ whereρ̂ > ρ. The value

of ρ̂ is adjusted experimentally to achieve a balance between efficiency and accuracy. The reconstruction

error in this case approaches that of the standard NN search [12], whilst still considerably reducing the
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search volume for thec nearest codewords. In practice this means that the histogram entry vu for the

codeword~mu will be zero if ~mu is not within the set ofc nearest codewords. A similar approach to fast

NN search is employed by spill-trees [44].

Lower level cluster centre~mu

Feature vector~fl

Reconstructed feature vector

High level cluster centre~mh

High level cluster boundary

Dilated cluster boundary

c nearest neighbours to~fl

Fig. 3. Fast Hierarchical Nearest Neighbour Search. The left panel shows the reconstruction of a feature vector~fl using the

c nearest dictionary codewords. The centre panel shows the effect using hierarchical K-means to constrain the volume of the

nearest neighbour search. The right panel shows that the reconstruction error can be reduced by dilating the boundaries of the

higher level cluster centred on~mh.

C. Computational Efficiency Comparison

In this section we take a brief look at theoretical computational efficacy of HA, SA, LcSA and FHNNS,

based on the results in [12]. HA can be easily described in terms of the NN search which scales linearly

with the number of feature vectors to process,L, and the number of visual words to search through denoted

asU . Thus, the complexity of HA amounts toO (L× U). SA computes Gaussian-based distances from

every feature vector to all available visual codewords. Next, it computes the sum of Gaussian distances.

Lastly, it determines the ratio for every visual codeword to the total distance as in equation (5). Therefore,

its complexity isO (L× 3U) ≈ O (L× U). LcSA is mainly limited by the NN search. This can be

performed efficiently by the partial sort algorithm with a typical complexityO (L× U × log c), where

c is a desired number of nearest codewords in searches. Summingdistances and computing the ratio

of Gaussians in equation (7) becomes an efficient operation with complexityO (L× 2c). Therefore, the

total assignment complexity isO (L× U × log c + L× 2c) ≈ O (L× U × log c). Note, for sufficiently

small c ≪ U , LcSA becomes noticeably faster compared to SA. In our case5 ≤ c ≤ 8. The FHNNS

further reduces the complexity of LcSA to approximatelyO
(

L×
√
U
)

. This reduction in complexity

from SA to LcSA is demonstrated in Section VIII-B3. Given the improved efficiency of LcSA, in the

next section we describe how this is integrated into a PF framework for tracking.

VI. M ODIFIED PF ALGORITHM

The widely-used PF algorithm is modified here to incorporate theDL based histogram generation

method described above. There are essentially four steps involved in a standard PF algorithm: initialisation,
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propagation, measurement and re-sampling. Our new contributions are mainly in the initialisation and

measurement steps: an automatic initialisation method of the visual tracker using audio information; and

a novel method for computing the likelihood function in the measurement step based on LcSA (assisted

by FHNNS) and SVM classification. The details of the proposed tracking algorithm are described below.

Support

Vector
Machine

Modified PF Measurement Step

ClassificationHistogram GenerationFeature Extraction

p(~zt|~x
k
t )

Initialisation

~x0 = {a0(1), b0(1), a0(2), b0(2), δ0}

Propagation

~xk
t = ~xk

t−1
+ ~s

Measurement

p(~xt|~z1:t)

Dictionary

D = [~d1, ~d2, . . . , ~dU ]

F = [~f1, ~f2, . . . , ~fL] ~v = {v1, v2, . . . , vU}Keff

Test for degeneracy

SIR

~xk
t ∝ {πk

t }

Fig. 4. Our modified DL based PF showing proposed changes to the measurement step in the shaded box.

We consider a dynamic system consisting of a hidden state sequenceX = {~x0, ~x1, . . . , ~xT }, whereT

is the length of the sequence. This hidden sequence is the location through timet of the target speaker we

wish to track wheret = 1, . . . , T . In our case each state is the position of a rectangular imagepatch centred

on the subject’s head,~xkt = {akt (1), bkt (1), akt (2), bkt (2), δkt }, whereakt (1), b
k
t (1) andakt (2), b

k
t (2) are the

coordinates of the top left and bottom right corners of the image patch for thekth particle respectively

andδkt is the velocity derived from the Euclidean distance from the centre of the image patch defined by

~xkt−1 to the centre of~xkt . We also have a sequence of measurementsZ = {~z0, ~z1, . . . , ~zT }. In practiceX

is assumed to be a first order Markov process, so~xt depends solely on the previous state~xt−1 and the

current observation~zt.

The task in tracking is to estimate the posterior probabilitydistribution p(~xt|~z1:t). To this end, we

generate a collection ofK particles,Xt = {~x1t , . . . , ~xKt }, each of which can be considered a hypothesis

of the location of the target object,~xt. Each particle also has an associated weight, giving a vectorof

particle weights~πt = {π1
t , . . . , π

K
t }. The four steps of the PF algorithm are summarised in Algorithm1

and Figure 4. The details for each step are given in the following subsections.

A. Audio-Assisted Automatic Initialisation

In this section we address the problem of tracker initialisation. This is very much an ongoing area

of research in tracking and indeed most tracker systems relyon manual initialisation. To initialize the

tracker we must detect the initial head positions of the subjects. We did attempt to use one of the standard

methods of face detection [20], however the results from this were disappointing on our dataset. This
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Algorithm 1 Particle Filter for tracking a target state.
Input: Z = {~z0, ~z1, . . . , ~zT }
Output: X = {~x0, ~x1, . . . , ~xT }
~x0 = {a0(1), b0(1), a0(2), b0(2), δ0} % Initialisation

while t ≤ T do

for k = 1 to K do

~xkt = ~xkt−1 + ~s % Propagate particles

Calculatep(~zt|~xkt ) using Algorithm 2

πk
t = p(~zt|~xkt ) + p(~xkt |~xkt−1) % Measure particle fitness and update particle weights

end for

~̂xt ≈
∑K

k=1 π
k
t ~x

k
t . % Estimate target position

if (Keff > Keffthresh) then

Resample particles

end if

end while

was possibly due to the small scale of the faces in our data andalso the range of different head poses

from each camera. Here we propose to exploit audio information and our general face model to initialise

the tracker. Specifically, we use the direction of the speaker given by the audio tracker described in the

following subsections to find automatically the initial headpositions of the speakers in the room. This

gives a collection ofK particles at timet = 0 defined as{~x10 . . . ~xK0 } all with the same image patch

rectangle and the initial velocity ofδk0 = 0.

1) Audio Tracker: To find the approximate initial locations of the speakers, we employ the SAM-

SPARE-MEAN method [45], which is an audio tracking algorithm developed for a smart meeting room

environment. Other state-of-the-art audio tracking algorithms could also be used for this purpose, but are

not considered here for two reasons. First, our focus is on thevisual trackers, where audio tracker is

used only for facilitating the initialisation of the visualtracker. Second, our experiments in Section VIII

indicate that even using a perfect tracker (i.e. annotated ground-truth) makes no difference in improving

tracking performance of our proposed system.

The SAM-SPARE-MEAN algorithm is a two-step method. In the first step, the space around a circular

microphone array is divided into a number of sectors, and thespectrum of the microphone signals is

also discretised into a number of frequency bins. For each sector and frequency bin, the source activity

(SAM), i.e. the posterior probability that at least one audiosource, is estimated. In the second step, a

parametric approach [46] is used for the localisation of thesources (when detected as active in the first

step), with the location parameters optimized with respectto a cost function such as SRP-PHAT [47].
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2) Initialisation of Visual Tracker:The azimuth angle produced by the audio tracker provides two

very important pieces of prior information: the number of speakers and the general direction of each

speaker, which are used here to constrain the number of trackers to be initialised and the area of the

image to search for the face. To this end, we project a line in three dimensions from the centre of the

microphone array to a point(a, b, z), wherea is equal to the distance from the centre of the microphone

array to the wall of the room in metres, denoted asR (which is 1.75 meters in our experiment, as shown

on Figure 7 in Section VIII),z can be estimated as the height of a human speaker, typically chosen as

1.80 metres in our experiment, andb is calculated as

b = tan(φ× π

180
) ·R (9)

whereφ is the azimuth angle (in degrees) of the speaker with respectto the circular microphone array

shown in Figure 7. The particle filter is initialised at intervals along this line to detect a face. The dispersal

of particles gives a reasonable search area around this line. We then select the particle with the highest

un-normalised weight as containing the subject’s face. The sampling points and the initial face positions

for the two multi-person sequences can be seen in Figure 16 of Section VIII.

B. Particle Propagation

A particle filter assumes thatp(~zt|~xt) can be measured at a number of points, drawn from a proposal

distribution q(.), and so the distributionp(~xt|~z1:t) can be approximated by sampling these points. This

sampling is performed in the propagation step of the PF as shown in Figure 4 and in Algorithm 1. The

particles are updated from time stept−1 to t, with thekth particle propagated according to the dynamic

model

~xkt = ~xkt−1 + ~s, (10)

where~s, the transition noise, is a random variable with 2D Gaussiandistribution with zero mean. Hence

the particles are propagated based on their previous valuesand a certain amount of additive white Gaussian

noise added to model the uncertainty in the motion involved.

C. Dictionary Learning Based Measurements

For each of theseK particles produced by the propagation step, we generate a hypothesis ofp(~zt|~xkt ),
for each of the current particle states{~x1t , . . . , ~xKt }. To generate this hypothesis we use the SA approach

described in Section IV, and the FHNNS assisted LcSA approach from Section V. So for each particle

an image patch is extracted from the current frame using the coordinates{akt (1), bkt (1), akt (2), bkt (2)}. A

set of features are extracted from the image patch as described in Section III. The pre-trained dictionary

D is then used to produce a representation of the image patch according to equation (8), i.e.~vk =

{vk1 , vk2 , . . . , vkU} ∈ R
U , which is then classified by the pre-trained linear SVM in Section IV to obtain

the likelihood of a particular particle’s image patch containing a head asp(~zt|~xkt ) = E(~vk, ~vkmin), where
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E(~vk, ~vkmin) is the Euclidean distance from~vk to ~vkmin the nearest point on the decision hyperplane of

the pre-trained SVM. The weight of thekth particle at timet, πk
t , is given by:

πk
t = p(~zt|~xkt ) + p(~xkt |~xkt−1), (11)

wherep(~xkt |~xkt−1) is a measure of the difference betweenδkt andδkt−1 given by1/|δkt −δkt−1|. The particle

weights are then normalised so that
∑K

k=1 π
k
t = 1.

Finally, the position of the speaker can be estimated as:

~̂x ≈
K
∑

k=1

πk
t ~x

k
t . (12)

This gives us an updated estimate of the target position. Algorithm 2 summarises the proposed DL based

measurement step.

Algorithm 2 Dictionary learning measurement step.
Input: ~zt, K, L, U

Output: p(~zt|~xkt )
for k = 1 to K do

Extract image patch at framet according to{akt (1), bkt (1), akt (2), bkt (2)};

ExtractL features~fl, l = 1, ..., L from the image patch;

Create image patch representation~v = {v1, v2, . . . vU}, where

vu = max
l

̺u(~fl), l = 1, . . . , L;

Classify each image patch using SVM classifier to produce the likelihoodp(~zt|~xkt ).
end for

D. Degeneracy Testing and Particles Resampling

The method described above is known assequential importance sampling(SIS). This sampling method

leads to a problem known as degeneracy, where the weightπk
t is concentrated in a single particle. This has

the effect of dramatically degrading the approximation of the updated distribution. An effective measure

of degeneracy is given by [48]:

Keff =
1

∑K
k=1(π

k
t )

2
. (13)

If all the weights of the sampled particles are equal,πk
t = 1

K
, thenKeff = K. For re-sampling to take

place a threshold is set onKeff and if it rises above the threshold value the particles are re-sampled with

probabilities proportional to their weights~xkt ∝ {πk
t }, k = 1, ...,K,. This, known as Sampling Importance

Re-sampling (SIR), eliminates particles with low weights and makes multiple copies of particles with

high weights.
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VII. M ULTI -SPEAKER TRACKING VIA ADAPTIVE IDENTITY MODELLING

The general pre-trained head model as described in Section VI is capable of differentiating head/face

from background but not differentiating between faces. Thisleads to tracking errors when subjects

approach and occlude each other. To overcome this problem wepropose an adaptive model to recognise

individual speakers, based on a GMM that is updated online using the MAP principle.

In a GMM the likelihood of the feature vector~fl, l = 1, . . . , L is given by

p(~fl) =

G
∑

i=1

ωig(~fl; ~mi, ~σi) (14)

whereg(~fl; ~mi, ~σi) is a Gaussian distribution at~fl, defined in equation (2),G is the number of Gaussian

mixtures, ωi, ~mi, and σi are the weights, means, and standard deviations of the Gaussian mixture,

respectively. Hence the GMM is fully parameterised by the set θ = {W,m, σ}, whereW = {ωi},

m = {~mi}, andσ = {~σi}.

In online learning, as some data may not correspond to the correct label, prior knowledge is necessary

to constrain the space of solutions forθ = {W,m, σ}. This can be achieved using MAP adaptation,

where prior knowledge is given by a prior distribution overθ, p(θ). Using the MAP principle we select

θ such that it maximizes thea posteriori log likelihood,

θ̂ = argmax
θ

p(θ|F) = argmax
θ

p(F|θ) + p(θ), (15)

whereF = {~f1, . . . , ~fL×N} is the set of data vectors. The contributions of the data likelihood, p(F|θ),
and the prior distribution,p(θ), can be balanced by introducing a weighting factor,α, in equation (15).

So, we maximiseα · p(F|θ) + (1− α) · p(θ), whereα is a weighting factor on the prior parameters.

The parameters of theith mixture of the GMM are adapted using the following set of update equa-

tions [21] [49]

ω̂i = α · ωpr
i + (1− α) · ωml

i , (16)

~̂mi = α · ~mpr
i + (1− α) · ~mml

i , (17)

~̂σi = α · (~σpr
i +Diag(( ~̂mi − ~mpr

i )( ~̂mi − ~mpr
i )T ))

+(1− α) · (~σml
i +Diag(( ~̂mi − ~mml

i )( ~̂mi − ~mml
i )T )),

(18)

whereωpr
i , ~mpr

i and ~σpr
i are the prior weight, mean and standard deviation,ωml

i , ~mml
i , ~σml

i are the

parameters estimated by the maximum likelihood on the current data, and̂ωi, ~̂mi and~̂σi are the updated

parameters estimated by the MAP adaptation. The functionDiag(.) selects the diagonal elements of a

matrix to form a single vector.

We use a GMM to model the head features of each subject. At the initial frame we extract a set of

features from the automatically located head positions described in Section VI-A. A set ofL = 9 feature

vectors, described in Section III, are extracted fromN = 24 image patches taken from the subject’s face

and body as shown in Figure 5, these form a set ofL × N = 216 feature vectors. In the case of two

August 19, 2013 DRAFT



16

subjects we have two sets of featuresF
0
0 andF

1
0, where the subscript0 denotes the time index of the

initial frame and the superscripts0 and1 represent the first and second subject respectively. These two

feature sets are used to train two GMMs with parametersθ00 and θ10 respectively. At each subsequent

frame a set of features are extracted from the subject’s headposition estimated by each of the trackers.

So we haveF0
t and F

1
t at each time stept. We then estimate the likelihood of each of these sets of

features given each of our GMMs, we select the subject’s identity according toargmax
j

p(Fj
t |θ0t ) for

subject one andargmax
j

p(Fj
t |θ1t ) for the second subject, wherej = 0, 1. The data,F0

t andF1
t , are also

used to update the parameters of each identity model at each time step, according to equations (16), (17)

and (18). Methods for controling this adaptation are discussed in the following paragraph.

A key problem in MAP adaptation is the choice ofα ∈ [0, 1], which controls the contribution of the

prior parameters and the new parameters estimated from the current data. Instead of settingα at a fixed

value as done usually, we adaptα according to the locations of the subjects being tracked as follows

αt = 1− 1

Iw

√

(a0t (0)− a0t (0))
2 + (b1t (0)− b1t (0))

2 (19)

where(a0t (0), b
0
t (0)) and (a1t (0), b

1
t (0)) are the head positions of the first and second subject at framet

respectively,Iw is the width of the image, and0 in the bracket denotes the centre of the image patch at

the estimated head position. This formulation forαt means that when the subjects are further apart we

are more certain that the data collected relates only to thatsubject and so more weight is given to the

new parameters estimated on the current data. The newly estimated parameters then become the prior

parameters of the GMM.

Due to the low resolution of the video data used in our experiments, focusing solely on the subject’s

head was insufficient for identification. To overcome this we extract the features (as described in Sec-

tion III) from a wider area around the head, including the context of the subject’s clothing and background

as shown in Figure 5. Note that the balls in Figure 5 were added toaid annotation but not used in our

tracking systems. Due to the coloured balls on the subject’sheads we use the location of the grid on the

lower half of the face instead of the centre of the face. The initial prior distribution is trained using the

initial head location which is found using the method described in Section VI-A2.

Fig. 5. Feature extraction for subject identification. Note: The grids are deliberately shifted to avoid the coloured balls on the

subjects’ heads which were used in annotation, instead of our tracking system.
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Essentially, when a subject is no longer recognised then the tracking in that camera does not contribute

to the three-dimensional head position, however the position continues to be updated using the three-

dimensional estimate of the head position produced by the other cameras. The identity of the subject

continues to be tested using the three-dimensional position from the other trackers. Therefore, when the

subjects move out of occlusion and the subject is again recognised, the tracker is turned on again.

VIII. E XPERIMENTS AND RESULTS

To demonstrate the performance of our proposed approaches we conducted three sets of experiments

for tracking in a real meeting room environment. Firstly, we evaluate the tracking performance of the

DL based appearance modelling methods using HA, SA, and LcSA with FHNNS (based on equation

(7)) respectively. The DL based histogram generation is compared with the baseline methods based on

commonly used histograms of colour or texture. The effect of different dictionary and feature sizes on

the performance is also studied. The measurement step of the PFis typically the distance between the

histogram generated by image patch being tested and an exemplar histogram, typically the Bhattacharyya

distance. The standard SA method proposed by van Gemert et al. [35] is used as a baseline in comparison

with our proposed LcSA. We show that our system outperforms these baseline methods and is particularly

robust to changing lighting conditions and large scale changes.

Secondly, we show the performance of our adaptive identity recognition method described in Sec-

tion VII for tracking multiple subjects through occlusions. We show that having a pre-trained general

face/head model combined with an adaptive identity model itis possible to track accurately multiple

occluding subjects. We produce quantitative results for two and three subject tracking on the AV16.3

dataset [50]. In order to demonstrate that our proposed method can generalise to similar datasets we

also present qualitative tracking results on the EPFL multi-camera pedestrian dataset [51] for three and

four subjects and also a sequence from the CLEAR dataset [52] for five subjects. Finally, we show

the performance of our proposed audio-visual face detection method described in Section VI-A2 for

automatically and accurately detecting faces in the initial frame of the video sequence to be tracked. We

demonstrate that our method outperforms the common baseline Viola-Jones face detection method [20]

for tracker initialisation.

A. Experimental Set-up

The data used in our experiments consist of eleven annotated sequences from the AV16.3 dataset and

also sequences from the EPFL pedestrian dataset and the CLEAR dataset. All the datasets feature multiple

subjects recorded on multiple cameras in an indoor office or meeting room environment.

The AV16.3 dataset was recorded at the IDIAP research institute in 2004, in a smart meeting room

environment using three calibrated cameras and two eight element omnidirectional circular microphone

arrays. The data set was collected to specifically address the issues of large scale changes, natural

August 19, 2013 DRAFT



18

(a) Camera 1 (b) Camera 2 (c) Camera 3

Fig. 6. Three images from sequence 11 from cameras 1, 2, and 3 respectively.

illumination changes and partial and full occlusions. Within a single sequence the scale of the face/head

may vary from approximately50 × 70 pixels to 8 × 12 pixels, this can be seen from Figure 6(a) to

Figure 6(c). The illumination changes within the meeting roomcan also be seen in Figure 6. There are

two main types of sequences in the AV16.3 dataset, meeting situations (two subjects seated at the table)

and motion situations (subjects moving in the corner of the room). The position of the cameras was a

compromise between these two situations [50], so camera onewas situated to capture the faces of seated

subjects and cameras two and three positioned to give a reasonable estimate of the 3-D position when

the subjects are moving. We feel that the current challengesin tracking multiple people in an office

environment are well represented in the AV16.3 dataset.

Camera 1

Camera3

Camera 2

8 element microphone array

3D co−ordinate origin (0, 0, 0)
1.75 m

3.0 m

Fig. 7. Layout of room used for audio-visual recordings. The shaded area indicates the performance area for the subjects.

The data were annotated by using a simple colour tracker that was manually corrected by a human

observer. In a number of sequences coloured balls were placed on the subjects’ head to facilitate this

process. However, we must stress that these coloured balls played no part in our system, indeed we had

to take particular pains to avoid them in the identity modelling experiments.

The layout of the smart meeting room with the locations of the three cameras and microphone array can

be seen in Figure 7. The sequences feature subjects moving within the field of view of the three cameras

and speaking continuously. The shaded area in Figure 7 indicates the area within which the speakers

move. The sequences vary in difficulty from the subject simply moving around a set of positions in the

room with relatively constant direction and velocity, to multiple subjects moving freely around the room

and making abrupt changes in direction. A summary of the datasequences used for training and testing

can be found in Table I.
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Training Sequences Description

Sequence 02 Single subject standing in predefined positions

Sequence 03 Single subject standing in predefined positions

Sequence 05 Single subject standing in predefined positions with various head poses

Sequence 06 Single subject standing in predefined positions with various head poses

Testing Sequences Description

Sequence 11 Single subject, moving randomly, sitting and standing, abrupt head movements

Sequence 12 Single subject, moving randomly, sitting and standing, abrupt head movements

Sequence 15 Single subject, traversing the room, smooth head movements

Sequence 18 Two subjects, moving heads very close with partial occlusions, sitting and standing

Sequence 24 Two subjects, moving smoothly around the room with occlusions

Sequence 40 Three subjects, two subjects seated and stationary while single subject moves behind them

Sequence 45 Three subjects, all subjects moving with multiple occlusions

TABLE I

A SUMMARY OF THE DATA SEQUENCES USED FOR TRAINING AND TESTING. THE SEQUENCE NUMBERS CORRESPOND TO

THE NUMBERING IN THE AV16.3 DATASET.

Each sequence is between 1000 and 3500 frames long with a framerate of 25 frames per second and

each video frame is a colour image of 288x360 pixels. From these annotated sequences we selected four

for training and five for testing. The variability of appearance in the training data was maximised by

combining data from all three cameras to train a single model.

We take the approach of training a model of the subject to be tracked, in this case a person’s head. An

initial exemplar patch of the face is taken for each camera and the Battacharya distance is then calculated

for each particle to determine its weight. This method is effective for tracking simple sequences and can be

re-initialised by hand when it does fail. The background datawas collected using the same frames as the

head data. A single background image patch is extracted fromeach frame, this patch is selected as having

the maximum Battacharya distance of all the particles. Using this method we can efficiently generate

large amounts of varied training data. We apply the method togenerate 37050 training examples, for

both head and background. All tracking experiments were conducted withK = 50 particles. The tracking

errors are measured using Root Mean Squared Error (RMSE), calculated as the Euclidean distance from

the 3-D position estimated by the tracker to the 3-D annotated position of the subject’s mouth.

B. Evaluation on Dictionary Learning Based Appearance Modelling

1) Comparison of dictionary versus non-dictionary methods: For the dictionary based method, we first

construct the dictionaries from the Hue and SIFT features, andthen generate the histograms using these

dictionaries (hence denoted as ‘Hue Dict’ and ‘SIFT Dict’) by the SA method described in Section IV-B.

A combined colour and SIFT dictionary was created and tested. The dictionary size was set toU = 64.

The baseline methods that we compare are the non-dictionary methods i.e. using the Hue and SIFT

histograms (hence ‘Hue Hist’ and ‘SIFT Hist’). The results are shown in Table II. It can be seen that for
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all sequences the DL method based histograms provide bettertracking performance as compared with

using the Hue and SIFT feature vectors directly.

Sequence Hue Hist SIFT Hist Hue Dict SIFT Dict Combined Hue and SIFT Dict

Sequence 15 0.11 0.12 0.9 0.10 0.03

Sequence 11 0.13 0.15 0.10 0.10 0.05

Sequence 12 0.22 0.13 0.15 0.10 0.06

TABLE II

RMSE IN METRES OBTAINED BY THE METHODS USINGSIFT AND HUE HISTOGRAM AND BOTH HUE AND SIFT

DICTIONARIES AND COMBINED HUE AND SIFT DICTIONARIES.
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Fig. 8. The tracking results for sequence 11 of the AV16.3 database. This shows the performance of Hue and SIFT dictionaries

and also the combined Hue and SIFT dictionary.

We also ran 50 random tests (randomly initialised dictionaries) to compare the three dictionary methods,

i.e. ‘Hue Dict’, ‘SIFT Dict’ and ‘Combined Hue and SIFT Dict’ respectively, using a different random

initialisation for each one. Figure 8 shows the tracking error for each frame of sequence 11 in the data,

for a single instance of each tracking method. This plot showsthe contribution of each of the modalities,

it can clearly be seen that at the end of the sequence as the subject moves into an area with different

illumination the errors in using the Hue based dictionary increase dramatically, while the ‘Combined

Hue and SIFT Dict’ in which the contribution of the SIFT and Hue aregiven equal weighting shows a

much smaller error. The SIFT based dictionary, on the other hand, performs poorly near the beginning

of the sequence, which corresponds to the section where the subject sits down and moves into an area

with more background clutter which can be seen in Figure 6(b),however the ‘Combined Hue and SIFT

Dict’ with a weighting of 0.5 from the Hue manages to overcomethis problem. The ‘Combined Hue and

SIFT Dict’ method performs robustly regardless of the subject’s location in the room. This can further
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be confirmed by the error maps in Figure 9 which shows the level oferror for different locations within

the room, the thicker the line the larger the error. The area ofthe plots in Figure 9 corresponds to the

shaded area in Figure 7.

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

x distance from origin (in metres)

y 
di

st
an

ce
 fr

om
 o

rig
in

 (
in

 m
et

re
s)

(a) Hue Dict Error Map
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(b) SIFT Dict Error Map
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(c) Combined SIFT and Hue Dict Error

Map

Fig. 9. Error maps for sequence 11 of the AV16.3 dataset. The area shown corresponds to the shaded area in Figure 7. The

thickness of the trajectory shows the average RMSE in that location, the thicker the trajectory of the plot the larger the RMSE.
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(a) Hue, SIFT and combined Hue and SIFT dictionaries using

HA
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(b) SA and LcSA dictionaries

Fig. 10. Plot of RMSE averaged over 50 randomly initialised dictionaries and the three single subject test sequences for various

dictionary sizes. The error bars show one standard deviation of the results from the 50 random tests.

2) Comparison of dictionary size:We then evaluate the performance with respect to the dictionary

size,U . Although in visual object recognition tasks larger dictionary sizes are commonly adopted we

decided for practical purposes to limit the maximum size to 1024 atoms. We testedU from 32, 64, 128,

256, 512, to 1024. For eachU , 50 random tests were performed, and the ‘Combined Hue and SIFTDict’

based SA method was used. The average results of these random tests over the three single-subject test

sequences (shown in Table II) can be seen in Figure 10(a), where the error bars represent the standard
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deviation. It can be observed that for very small dictionarysizes, particularly for ‘Hue Dict’ and ‘SIFT

Dict’, the results become very unstable due to the the small number of dictionary atoms being unable to

represent the face/head of the subject. However using the ‘Combined Hue and SIFT Dict’ the size of the

error bars is much smaller, this may be due to the fact that a combined Hue and SIFT atom can represent

more aspects of the data than a single Hue or SIFT atom. Interestingly, the best performance comes from

the smaller dictionary sizes, this is probably due to the larger histogram size becoming overly sparse and

degrading the head recognition performance.
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Fig. 11. The tracking result for different feature sizes for Sequence 11.

We also compare the performance for different feature vector lengths. In this set of experiments we

set the dictionary size toU = 64 and vary the length of the SIFT and colour histogram feature vectors,

Ms andMc respectively. The values ofMs used are 32, 64, 128, 256 and 512 and the values ofMc used

are 25, 50, 100, 200, 400. These two feature vectors are then concatenated as described in Section III

to form a single combined feature vector of lengthMsc = Ms + Mc. These different length features

were then tested on sequence 11 of the AV16.3 dataset. The results of these experiments can be seen in

Figure 11, this plot shows that our selection ofMs = 128 andMc = 100 is justified in terms of accuracy

and computational feasibility.

3) LcSA vs SA:One drawback of the SA method described in Section IV-B is that the contribution of

all atoms in the dictionary is estimated to generate a histogram. In applications such as tracking this may

cause problems with efficiency. In this set of experiments we test the performance of the LcSA method

described in Section V for histogram generation to investigate whether we can achieve similar or better

results by using a size reduced set of dictionary atoms for histogram generation.

The same set of training sequences used in Section VIII-B are used to create the set of training

histograms using the method described in Section V-A. We use the 50 randomly initialised dictionaries

created in the previous section with the combined Hue and SIFT features to create the LcSA histograms.

The number of NNs,c, and the smoothing factor,σ, used to populate the histograms, according to

equation (7), were determined using cross validation on thetraining sequences. The values ofσ were set

to 0.2 for U = 32 and 64,0.19 for U = 128 and 256, and0.18 for U = 512 and 1024. The number of

NNs c was set to5 for U = 32 and 64,6 for U = 128, and7 for U = 256, 512 and 1024. For dictionary
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sizes larger thanU = 256 we implemented the fast NN search, FHNNS, described in Section V-B. The

number of higher level codewordsH was set to 128 for all dictionary size. The number of lower level

codewordsp̂ was set to 128 forU = 256, and 256 forU = 512 and 1024.

In Figure 10(b) we plot the average error for all 50 randomly initialised dictionaries over the three

single subject test sequences for SA and LcSA for various dictionary sizes. It can clearly be seen that

LcSA also gives a small improvement in the accuracy of the tracking. This could be explained by LcSA

providing a more robust representation by selecting a smaller, but more relevant set of dictionary atoms,

thus avoiding the noise introduced by less relevant atoms when using the entire dictionary. Again we can

see that for small dictionary sizes the standard deviation of the results does increase however this effect

is approximately the same as using LcSA. In order to measure theincrease in tracking speed provided

by the use of LcSA we measured the processing time for an individual frame with a single subject with

a dictionary size ofU = 64. Using the standard SA method the average frame processing time over

100 frames was 0.26 seconds, while using LcSA this processing time is reduced to 0.17 seconds. These

experiments were performed using an Intel dual core 3 GHz desktop with 3.7 GB of memory. So we

can see, our proposed system is capable of processing approximately 6 frames per second (despite the

code not being optimised or fully parallelised).

Additionally, LcSA provides a more sparse representation than SA which may improve the classification

of the linear SVM classifier. We use a common measure of sparsitygiven by τn = ‖~vn‖1

‖~vn‖2

where‖ · ‖1
and ‖ · ‖2 are theℓ1 and ℓ2 norms respectively and~vn is thenth image representation histogram. We

then averaged this measure over all the histograms in the training set for different histogram generation

methods. The results were LcSA (SIFT + Hue)τ = 3.9, SA (SIFT+Hue)τ = 4.2, SA (SIFT) τ = 4.6

and SA (Hue)τ = 6.0, where a smaller value ofτ indicates a sparser vector.

C. Evaluation on Adaptive Identity Modelling on AV16.3 dataset

Here we present results for tracking multiple speakers using the adaptive identity models described

in Section VII. The experimental set up is similar to the singlesubject sequences, described in the

previous section, with the main difference being that the dictionary based methods were automatically

initialised using audio information extracted by the method described in Section VI-A2, as opposed to the

manual initialisation in Section VIII-B. The same images for dictionary building which were extracted

from the four training sequences (see Table I) are used to train our GMM identity model using the EM

algorithm [33]. After cross-validation on the training data we setG = 10, N = 24 in each frame (i.e. the

6× 4 grid as shown in Figure 5), andL = 9 for each image patch. This gives a total ofL×N = 216

feature vectors for training the GMM model for each frame. Both the SA and LcSA methods (based on

the ‘Combined Hue and SIFT Dict’) were tested.

Sequences 18 and 24 (two subjects) and 40 and 45 (three subjects) of AV16.3 were used in this

experiment, whose difficulty can be seen in Figure 12. In sequence 18, the upper series of frames, the
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two subjects bring their heads together very slowly and thenhold them very close for a number of

seconds, this makes it difficult to use the subject’s dynamicsto overcome this type of occlusion. In our

proposed system while we take into account the subject’s motion we do not rely on it in order to be

robust to occlusions. This allows us to track the subjects while the baseline method fails completely. The

middle series of frames is from sequence 24 and shows the subject dressed in similar clothing, white

t-shirts, despite this the identity of the subjects is preserved with our method through the occlusion. In

theory if the subjects were dressed identically, with similar hair and skin colour our identity modelling

could fail, however we could not find such sequences in the AV16.3 dataset to test this, and this could be

addressed in future work. The lower series of frames shows sequence 45 which features three speakers,

all of whom are moving and occluding each other many times.

Fig. 12. Multiple person tracking using adaptive identity models. The imagesin the top row are from sequence 18, the middle

row from sequence 24 and the bottom row from sequence 45.

Table III shows the tracking results in RMSE for using the identity model, as compared with those

without using the identity model. It can be seen that using the identity model, the tracking errors are

considerably reduced. The error maps in Figure 13 show that, asthe subjects’ heads come into close

proximity the methods not using identity modelling fail whereas our proposed method continues to track

both subjects. This can also be seen in Figure 14 where both the SAand LcSA methods not employing

identity modelling fail at the second occlusion. In addition, the tracking errors for the multiple person

sequences are relatively higher as compared with those for single person sequences. The good performance

of sequence 40 is given by the fact that two subjects are seated and stationary whilst the third subject

moves behind them, there are no occlusions between the subjects.
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(a) SA Error Map (no identity)
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(b) LcSA Error Map (no identity)
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(c) SA Error Map (with identity)
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(d) LcSA Error Map (with identity)

Fig. 13. Error maps for sequence 18 of the AV16.3 dataset. The areashown corresponds to the shaded area in Figure 7. One

subject is shown in red and the other in blue. The thickness of the trajectories depends on the average RMSE in that location,

the thicker the trajectory the larger the RMSE.
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Fig. 14. The tracking results for sequence 18 of the AV16.3 database.This shows the performance of SA and LcSA method

with and without identity modelling.

It is worth noting that, after an extensive search of the current literature, we could only find two

publications that reported visual tracking results for multiple subjects on the AV16.3 dataset. Pham et

al. [53] exploit 3-D tracking with multiple cameras to overcome occlusion in sequence 24 and report an
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Sequence SA LcSA SA (with identity) LcSA (with identity)

Sequence 18 0.19 0.17 0.13 0.10

Sequence 24 0.11 0.10 0.09 0.09

Sequence 40 0.12 0.11 0.08 0.07

Sequence 45 0.35 0.34 0.15 0.14

TABLE III

THE RESULTS FOR TRACKING SHOW THERMSE IN METRES BETWEEN EACH MULTIPLE SUBJECT TEST SEQUENCE USING

DL BASED SA AND LCSA METHODS, WITH AND WITHOUT IDENTITY MODELLING .

average accuracy of0.06 metres, which is lower than our reported accuracy. However they do not report

any results on the far more challenging sequence 18 which features slow moving subjects and partial

occlusions. Khan et al. [54] report results for sequence 45 of the AV16.3 dataset, however their method

involves tracking one subject in a multi-person environment and treating the other subjects as noise. So

their results are not comparable with ours.

D. Evaluations of multiple subject tracking on the EPFL and CLEAR datasets

In order to show the ability of the system to generalise to data other than the AV16.3 dataset we selected

sequences from two other indoor multiple subject tracking datasets, the EPFL multi-camera pedestrian

dataset [51] and the CLEAR dataset [52]. In both cases the sequences feature multiple subjects moving

in an indoor environment with multiple occlusions. We use the dictionary, SVM classifier and parameters

trained/optimised on the AV16.3 dataset (dictionary size of U = 64 and K = 50 particles and the

parameters for identity modelling are the same as those usedin the previous section). Figure 15 shows

the results of tracking on the EPFL and CLEAR datasets. The first two rows of Figure 15 show tracking

from two cameras of the EPFL dataset. This shows the system accurately tracking four subjects against a

complex background and through multiple occlusions. The finalrow shows the tracking of five subjects

in a sequence from the CLEAR dataset, while the background is not as complex as the EPFL data there

are still multiple occlusions of the subjects. The results also suggest that it is not necessary to repeat

dictionary training for new data and camera configurations.

In both cases the tracking was manually initialised, for theEPFL data no separate audio signal was

available and for the CLEAR dataset while audio data was provided none of the subjects starts speaking

until they are seated and stationary. Also, no 3D information is available from the multiple cameras, so

each of the tracking results are independent 2D results for each camera. This shows that strict calibration

of the cameras is not necessary for our proposed tracking system to function.

E. Evaluations on Audio-Visual Tracker Initialisation

To start tracking we must first locate the object or person we wish to track. Here we treat the

initialisation of the tracker as essentially a face detection and localisation problem. To test our proposed
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Fig. 15. Multiple person tracking using adaptive identity models. The imagesin the first two rows are from the EPFL dataset

the bottom rows is a sequence from the CLEAR dataset.

method (described in Sections VI-A1 and VI-A2) we take the firstframe in each sequence where the

subjects’ faces are visible and they are talking. In practice this does limit us to only detecting a face when

the subject starts to talk, however this method of face detection demonstrates that the audio DOA can be

useful in this task. The proposed system provides a flexible framework to incorporate other initialisation

methods, such as Viola-Jones, or other state-of-the-art face detection algorithms as a complementary way

for reducing the possibility of the failure of initialisation.

To provide a reasonable amount of data we annotated the initial face position on a total of 20 sequences

from the AV16.3 dataset. These included 9 single and 11 multiple person sequences, giving a total of 84

faces. Each frame was annotated with a rectangle enclosing the subject’s face. The audio was sampled at

16 kHz using a single 8 element circular microphone array with diameter 10 cm. The following parameters

were fixed for all of our audio tracking experiments, time frame windows were 32 ms with an overlap

of 16 ms. For the Fast Fourier Transform the number of sampleswas 512 and the number of histogram

bins was 512. For the SRP-PHAT algorithm the number of sectors was fixed at 18 with each sector

covering 20 degrees and the speed of sound was fixed at 320 m/s. Further details of the implementation

can be found in [45]. We compare our method with one of the mostcommon face detection algorithms

proposed by Viola and Jones [20] implemented using the OpenCV computer vision library [55]. We

used face images from the four training sequences (described in Table I) to set the thresholds for the

Viola-Jones method.

To measure the performance of both methods we use precision and recall, where precision is given by
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Measp =
Numc

Numr
, whereNumc is the number of correct matches andNumr is the number of potential

faces identified by each method and recall is given byMeasr =
Numc

Numa
whereNuma is the number of

faces in the frame. There are many ways to define what constitutes a correct face detection and this is

often linked to the application and dataset being used. Rowley et al. [56] define a correct detection as the

centre of the detected face rectangle being less than four pixels from the centre of the annotated rectangle

and within 1.2 of the scale of the annotated rectangle. We follow a similar scheme in our experiments,

however we adapt the measure to our particular data and application. As we are using the face detection

algorithms to initialise a PF based tracker, in reality we canrelax this measure as our pre-trained face

model will converge to the face after a few iterations of the tracker. So we set the criteria for a face

detection to be less than a Euclidean distance of 10 pixels from the centre of the annotated face rectangle

and a scale within 1.5 of the scale of the annotated rectangle.

Table IV shows the detection results for the 84 faces in the initial frames taken from 20 test sequences in

the AV16.3 dataset. Figure 16 shows the initial frames for each camera for the multiple subject sequences

18 and 24. The lines in the images show the tracks used by our proposed audio-visual face detection

system and the rectangle shows the estimated initial face location. It can be seen from the results that

our proposed method performs significantly better than the baseline method. It seems most of the errors

in the Viola-Jones approach come from an incorrect estimation of the number of speakers in the initial

frame. The low precision of the Viola-Jones method is caused by the return of a number of false positives

due to over estimating the number of faces in the frame. Audioinformation allows us to estimatea priori

the number of speakers present, this information has the advantage of greatly reducing the rate of false

positive detections.

Method Precision (Measp) Recall (Measr)

Viola-Jones 0.6 0.83

Proposed AV method (with estimated DOA) 0.97 0.97

Proposed AV method (with annotated DOA) 0.97 0.97

TABLE IV

COMPARISON BETWEEN OUR PROPOSED AUDIO-VISUAL FACE DETECTION WITH THE V IOLA -JONES METHOD.

It is worth noting that the audio signals used in our experiments were recorded in real room envi-

ronments with the presence of room reverberations ((RT60 = 0.5 seconds) and background noise. As a

consequence, the accuracy of the DOA estimates are also degraded by such adverse acoustic effects. To

see this, we show in Figure 17 the output of the audio tracker for two annotated sequences (sequence 18

with two speakers and sequence 11 with a single speaker). It is interesting to note that, the estimation

noise in DOAs has no adverse impact on the performance of our proposed visual tracking algorithm. To

show this, we also performed the same experiment using the dataset annotations to provide a “perfect”

estimate of the DOA, and the results are also included in Table IV. From this table, we can see that the
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Fig. 16. Initialisation of multi-person tracking sequences. Blue and greenlines show the sampling line for the face detector

the rectangle is the position of the particle with the maximum likelihood of a face. Also shown is the estimated DOA, green

and blue lines, and the annotated DOA, red lines.

0 10 20 30 40 50 60

−150

−100

−50

0

50

time (seconds)

az
im

ut
h 

(d
eg

re
es

)

Filename: seq18−2p−0101 (FAST)

 

 

estimate
ground−truth

(a) Sequence 18 audio azimuths

0 5 10 15 20 25 30

−100

−50

0

50

100

time (seconds)

az
im

ut
h 

(d
eg

re
es

)

Filename: seq11−1p−0100 (FAST)

 

 

estimate
ground−truth

(b) Sequence 11 audio azimuths

Fig. 17. Audio azimuth estimated by the audio tracking algorithm for sequences 18 and 11.

detection result of the proposed algorithm (i.e. using the estimated DOAs for the initialisation of the visual

tracker) is identical to the result obtained by using the ground-truth DOAs for the initialisation of the

visual tracker. This implies that, even though using an up-to-date audio tracking algorithm may improve

the audio tracking results, it does not improve the performance of our visual tracking algorithm. This is

mainly because the estimated DOA is used in our algorithm to provide an estimate of the approximate

speaker location anda piori the number of speakers. The accuracy of tracking is essentially achieved

through the visual tracker. This can be further explained by Figure 16, from which we can see that, even

if there is noise in the estimated DOA (as in the left most subject), the result of the face detection offered

by the audio tracker is sufficiently accurate for the initialisation of visual tracker. For this reason, using

other state-of-the-art audio trackers for the initialisation of the proposed visual tracker is not considered

here, we leave this to our future work.

IX. CONCLUSIONS

We have proposed a tracking system combining a DL approach for appearance modelling with a

PF for dynamic modelling. We exploit the properties of DL to overcome the problems of recognition

in low resolution images and under changing lighting conditions. This proposed method is shown to

be more accurate than the baseline methods on the challenging AV16.3 dataset. We also demonstrate

that the combination of Hue and SIFT features within a DL framework provides more robust tracking.

August 19, 2013 DRAFT



30

The issue of the computational complexity of DL methods was addressed by proposing the use of

LcSA for histogram generation. We show that using LcSA actually improved the performance of the DL

based tracking system. A significant challenge in tracking iscontinuing tracking through occlusions. To

overcome this we have introduced a method of identity modelling, this involves modelling the subject’s

appearance using a GMM and then adapting this model on-line using MAP adaptation controlled by

the proximity of the other subject. We showed that this method combined with a DL based tracker

can effectively track up to five subjects through occlusionswhilst preserving their identity. We also

demonstrated the ability of the system when trained using one dataset (AV16.3) to generalise to other

datasets (EPFL and CLEAR) with no further training. Finally, we proposed an audio-visual face detection

method for automatic tracker initialisation. An audio tracker provides the DOA angle for each speaker

and the number of speakersa priori thus greatly reducing the chances of a false positive face detection.

We compared our proposed method to one of the standard methods for face detection [20], the results

showed our method outperformed this baseline method on the challenging AV16.3 dataset.
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