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Abstract

We investigate the problem of visual tracking of multiplentan speakers in an office environment. In
particular, we propose novel solutions to the followinglt#rages: (1) robust and computationally efficient
modelling and classification of the changing appearanceetpeakers in a variety of different lighting
conditions and camera resolutions; (2) dealing with fulpartial occlusions when multiple speakers cross
or come into very close proximity; (3) automatic initialigen of the trackers, or re-initialisation when
the trackers have lost lock caused by e.g. the limited cawieves. First, we develop new algorithms for
appearance modelling of the moving speakers based onrthcyidearning (DL), using an off-line training
process. In the tracking phase, the histograms (codindicieets) of the image patches derived from
the learned dictionaries are used to generate the likediffooctions based on Support Vector Machine
(SVM) classification. This likelihood function is then uséd the measurement step of the classical
particle filtering (PF) algorithm. To improve the compubaital efficiency of generating the histograms,
a soft voting technique based on approximate Locality-taimed Soft Assignment (LcSA) is proposed
to reduce the number of dictionary atoms (codewords) usedistogram encoding. Second, an adaptive
identity model is proposed to track multiple speakers whdlealing with occlusions. This model is
updated online using Maximum a Posteriori (MAP) adaptatiwhere we control the adaptation rate
using the spatial relationship between the subjects. Thirénable automatic initialisation of the visual
trackers, we exploit audio information, the Direction ofrikal (DOA) angle, derived from microphone
array recordings. Such information providespriori, the number of speakers and constrains the search
space for the speaker’s faces. The proposed system is tastedumber of sequences from three publicly
available and challenging data corpora (AV16.3, EPFL pedesdata set and CLEAR) with up to five
moving subjects.

. INTRODUCTION

The problem of object tracking in computer vision has reativeich interest from researchers in recent
years. Tracking concerns estimating the position of anabpee it a human, an animal, a car or a missile
in space and time. Applications for tracking objects areemidnging, including as diverse sectors as
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security, defence, robotics, sport, wildlife preservatias well as communications. In this paper, we focus
on the tracking of multiple moving speakers in various indeavironments using multiple cameras with
the assistance from microphones. The methods developediteeteowever not confined to this specific
application, and they can be readily applied to track dififierobjects in a variety of environments.

There are several fundamental problems to be solved to ep#fldieent and accurate object tracking.
Firstly, we must address the problem of robustly modelling #ppearance of the object, due to, for
example, the changes in illumination and also object caitgort. Secondly, when tracking multiple objects
occlusions or near occlusions between objects are a mapigon causing loss of tracking of one or
both objects, especially when the objects are of similaeammce. Another challenge, particularly in the
task of tracking people in meeting room applications, is tesprve the identity of the subjects through
occlusions. Lastly, a problem facing most tracking systesrtbe initialisation of object’s positions at the
start of the tracking sequence. Many systems overcome yhisntply manually initialising the object’'s
location before tracking.

There are broadly two approaches to the problem of robusteappee modelling, using either adaptive
models or static models. Adaptive models are updated ashijeets appearance changes over time and
have been used extensively in tracking applications [1], {Zhile these approaches can be effective in
modelling changing appearance, they have the disadvaiitag@ny tracking error will accumulate and
propagate as the model is updated. Therefore, in any on-diaptation method control of the adaptation
is important. This is often done through setting a predefinedidence threshold for adapting to data [2]
or introducing aforgetting functionso newer data is used for adaptation [1]. While these methads
had some success they tend to be tuned for specific applisafldve use of static appearance models
avoids the problem of drift [3], [4], [5], however these m&xlbave difficulty in coping with changes in
object appearance as tracking continues. There are twa@wub this problem: use sufficient training
data to model appearance changes or construct an initted stadel and adapt this online. Liu et al. [6]
propose using a pre-trained model of an object’'s appeardiige model is then updated online based
on the appearance of the object. Multiple instance learhizg been used to update pre-trained initial
appearance models [7], [8]. As with purely adaptive modbbsé approaches still find it difficult to
control the adaptation and avoid drift. We take the appraddhaining a static appearance model offline.
To generate sufficient training data we use a semi-superwiaekler to extract both positive (face) and
negative (background) training examples from sequencetaiting only simple smooth motions and a
single subject. This allows us to construct a model capablmldistly representing the full range of
appearances of the object being tracked. As this appeanandel is not updated online it is not affected
by accumulated errors in the tracking.

Currently, one of the most effective methods for object appece modelling in still images is
dictionary learning (DL) or bag of visual words [9], which haBown state-of-the-art performance in
many object recognition comparisons such as, the PASCALaVi@bject Class challenge [10] and the
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ImageCLEF Visual Concept Detection challenge [11]. DL methbdve also been applied recently to
the problem of tracking [6] where to model changes in appearaa sparse coding histogram of the
distribution of atoms for an image patch is adapted usingdis&ibution of the target image patch.
However, this method uses a learning rate parameter that &wiori, this static learning rate does not
account for changes in the tracking environment such as imitas objects occluding each other. Given
that we can generate large amounts of training data we takaghroach of training a static dictionary
that is capable of representing all the variations in apgeas found in the test set. Thus we avoid the
problem of controlling adaptation in the appearance mdeebt we create a dictionary using K-means
clustering, then use Soft Assignment (SA) methods to genéistegrams or coefficient vectors. These
vectors are then used to train a Support Vector Machine (SVigstfier to discriminate face/head from
background.

One drawback of using dictionary based methods in trackpmi@ations is computational complexity.
Liu et al. [6] propose a method known as K-selection to selesultzset of atoms from the dictionary to
represent an image patch. A gradient descent method is asselect the subset based on the location
within the dictionary space. This method requires a seanduti all atoms in the dictionary to identify
this subset for each feature vector at each time step in #ekifg. For large dictionary sizes this
may become prohibitively expensive. We also present a ssledection based method for improving the
efficiency of histogram assignment using approximate Localinstrained Soft Assignment (LcSA) [12].
The LcSA method has been shown to produce state-of-the-altsésuhe task of object recognition
whilst giving a significant improvement in computational feemance [12]. However, in contrast to K-
selection, we employ a hierarchical dictionary structuveconstrain our search space to a subset of
dictionary codewords, based on Fast Hierarchical Nearegyhibour Search (FHNNS) [12]. The LcSA
method also improves the classification performance dueetsparseness of the histograms being more
likely to render the classes linearly separable [13]. Tlweefve can use the computationally efficient
linear SVM [14], as opposed to more complex non-linear kebreded SVMs. The reason underlying
this observation will also be studied by the sparsity indeeasures for different histogram generation
methods (see Section VIII-B3).

In our application we are tracking multiple speakers mowangund in a meeting room environment.
This leads to the subject’s occluding each other with posditids of tracking or loss of the speaker’s
identity. Many tracking systems include subject identifmatto enable the tracking of multiple peo-
ple [15], [16], [17], [18], however these approaches gelheraquire a high resolution image of the face
to perform well. Li et al. [19] proposed an on-line algorithm adaptively model the identity of the
subject, however they report difficulties in controlling trete of adaptation. In our proposed tracking
system we separate tracking from identification. We use & sippearance model for tracking thereby
avoiding accumulation of errors, and we use an adaptivetitgemodel for the more complex task of
identity recognition. Due to the low resolution of our datie@ditional face detection methods, such as
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those proposed by Viola-Jones [20], do not work, so insteadrain a Gaussian Mixture Model (GMM)
using data from around the subject's head. This data incltisescontext around the subject’s head
such as the clothes and background. We learn this identiynerusing Maximum a Posteriori (MAP)
adaptation [21] to update the parameters of the GMM to adcimumew data. To overcome the problem
of measurements being corrupted by data from another suthjging occlusions, we use the distance
between the subjects to control adaptation. If the subgedar apart then more weight is given to the
contribution of new data in updating the model parametessth® subjects move closer together more
weight is given to the prior distribution of the model paraems and ultimately adaptation is disabled.
This is based on the fact that if the subjects are widely ségéithe data collected in the area of the
subject’s head will be more specific to that subject.

One current problem in most tracking applications is th@ahsation of the tracker. In the majority of
cases the object to be tracked is simply manually selectdokeimitial frame of the sequence [22], [23],
[24], [25], [26], [27]. In some cases a prior template or madeised to search in the initial frame for the
object, for example a prior colour template of a face is usgdB], [2], [29]. Alternatively a common
face detection algorithm such as that proposed by Viola am&s] [20] can be used, as in the case of
Naqgvi et al. [30]. These methods require an exhaustive sedrtite initial frame and also if the number
of objects to be tracked is not knovanpriori they can lead to false positive object detections. We pr@pos
a novel initialisation method by using the audio azimuthlarigr each speaker to constrain the search
area for the visual face detector. We show that even a noidip dtacker, discussed in Section VI-Al,
combined with our general dictionary learning based fadealer can be used for effective initial face
localisation.

The overall structure of this proposed system is outlined icti®e Il. In Section Il we discuss the
visual features used for dictionary construction. In Sectiid we address the problem of appearance
modelling using DL. Section V introduces methods such as LcSAfasdhierarchical clustering for
improving the computational efficiency for dictionary badeacking. We describe how this DL based
appearance modelling is integrated into a PF framework ini@eatl, including our proposed novel
method of audio-visual face detection in Section VI-A. In 8tVIl we enable the tracking of multiple
subjects using our proposed adaptive identity model. Ini@ed#tlll, we show the experiments conducted
and the data used together with the results obtained. Csinokiare given in Section IX.

I[I. THE OVERALL STRUCTURE OF THEPROPOSEDSYSTEM

In this section we present a system for tracking using anaiedd dictionary and SVM classifier within
the PF framework to provide robust and accurate three-diimesistracking using multiple cameras.
Figure 1 shows the training and testing phases of our propwaeking system, where the components
of feature extraction, dictionary building and SVM classifiee standard, and the principal contributions
of this paper are indicated in the shaded components. Mareifggally, in the testing phase we detect
faces at the start of the sequence using our novel audiavigoe detector. Following this initialisation
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Fig. 1. Overall system to generate the 3-D head position, showing trainith@gracking or testing phases.

we use our pre-trained dictionary and SVM classifier in the mesmsent step of the PF algorithm. Finally,
we introduce a novel method of identity modelling and ad@macontrol to overcome occlusions.

Ill. FEATURE EXTRACTION

As shown in Figure 1, feature extraction is needed for botmitrg and testing. A feature vector
f = {f1, f2,..., fu}’ € RM is a vector of transform coefficients for characterising amagm patch,
where M is the feature dimension aridis a transpose. We extract two types of features from eacgéma
patch, the standard grey-scale SIFT and colour histogramrésabf dimensiond/, and M, respectively.
SIFT features [31], which are histograms of gradient oriémtathave been shown to be highly distinctive
and also robust to affine image transformation [32]. Colostdgirams have many advantages in tracking
applications being rotation and partially scale invarianbust to partial occlusions, easy to calculate,
and fairly robust to changes in illumination.

To calculate the SIFT feature vector, we densely sample thgarpatch with, typically, a horizontal
step size ofl,,/3 and a vertical step size df,/3, with the sampling points shown by the white crosses
in Figure 2, wherd,, and I, are the width and height of the image patch respectively.adhesampling
point, we extract an image block of, typically2 x 12 pixels, from which we calculate the SIFT feature
vector,fe RM:In practice, the adjacent image blocks may overlap withesber depending on the
choice ofI,, and I;,. We form the color feature vectq?e RM- simply as a histogram of Hue values
after transforming the image from the RGB colour space to HB&ts. The SIFT and colour features
are either used separately or concatenated to give a cothfgagéure vectorf: {fi, fos ooy far 30,
where M,. = M + M.. In our experiments while we test a number of different valfer M/, and
M., we typically chooseM, = 128, M, = 100 for the majority of our experiments. As a result of the
above calculation methods, for each image patch, we obia@ SIFT, one colour, and nine combined
SIFT and colour vectors. Note that, the combined feature ve¢for each image patch) are obtained by
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concatenating the same colour vector with each of the nine S#elors.

12 pixels

l 12 pixels

f=A{fi,fo,..., fios}

SIFT feature sampling points

! Lo !

Fig. 2. Extraction of SIFT features from image patches. These agkinshe training phase for dictionary construction and
in the test phase for recognition.

IV. DICTIONARY LEARNING BASED TRAINING METHODS
A. Dictionary Construction

Based on the feature vectors extracted from image patchiesSection 1ll, we form the training set
as a matrixy = [fl, ceey fL] € RM*L wherelL is the total number of feature vectors in the training set
FromF, we can learn a dictionard = [d;, ...,dy] € RM*U, using e.g. the GMM algorithm, where
Ju,u =1,...,U, i.e. the so-callediisual codewordgor atomg, andU is the total number of atoms in
the dictionary. Such a dictionary provides a succinct regidion of the feature vectors .

In a GMM, each vector in the training set can be consideredraixtre of U Gaussian functions [33]
with the following parameters to estimate= (61, ..., 0y) = ((w1, M1, 51), ..., (wy, My, dv)), wherew,,
u=1,...,U, are the mixture component weight8,, are the means ang, are vectors of the Gaussian
component standard deviations. The density estimationlgmoltan be addressed by optimising the
likelihood function A(X'; 6):

L U
A(X;0) = szug(.ﬁ; Moy, Ou )y Q)
=1 u=1
whereg(f;; 17, 3,) is denoted as
9 80) = (101 - [Sul] eap(—3 (i — )25 (F — ) @

where|X, | denotes the determinant &f, andX,, is a diagonal co-variance matrix with diagonal entries
o2.,i=1,..,M being the elements af,.

Commonly the parameters of models such as GMMs are estinthtedgh an iterative training
algorithm such as Expectation-Maximisation (EM). In prastibiowever, due to the simplifications

1L is used to distinguish fronf used later to denote the number of feature vectors extracted from eagle ipatch.
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detailed in the next section, we can directly allocate theapaters of the GMM from the parameters
estimated by K-means clustering. Therefore, in our workntleans of the Gaussian mixtures are obtained
from the dictionary codewords produced by the K-means etirsi, m,, = d,. The mixture weightsy,,,

are all set to the same value ofU. The standard deviations are set to the same value such that
oul = Ou2 = ... = oy = o, Whereo is estimated experimentally. As an example, the values of
estimated for different dictionary sizes are described iatiSe VIII.

As there is little previous work using DL for this applicatieve decided to test a number of different
values forU in our experiments in Section VIII, to balance the number strai words in the dictionary
between being able to discriminate the object we wish tokteawd over-fitting on the training set. By
over-fitting we mean that the model becomes over-specified®training set and is unable to generalise
to examples in the test set [34].

Our goal is, based on the dictionaly, to create a compact representation of an image, or image
patch, by using a coding coefficient vector (or histogramy {vy,...,vy} € RY. The elements i/
weight the contributions of each atom B¥ for coding the image, and are populated using a soft voting
technique, as discussed next.

B. Histogram Generation Based on Soft Assignment (SA)

The simplest form of dictionary learning employs a vector riisation method known as Hard
Assignment (HA). For each visual codewodd in the dictionaryD the u*" bin of the histogramv
is assigned according to
L 1 if d, = arg min(E(d, f}))
1 S )
> deD 3)
=1 0 otherwise
whereE(d, f}) is the Euclidean distance from the visual codewato the feature vectof; and each bin
is normalised by/., the number of feature vectors extracted from an individoglge patch. This is the
simplest formulation for DL based classification methodswEler, recent results in object recognition
show that SA provides much better performance over HA [35]6].[Bh SA, the expression of the
membership probabilitygu(ﬁ) of the componentr,, being selected to represeﬁtis given by:
e Wy g f?; My, O
ou(f1) = =77 Siiki - )ﬁ :
Zu/zl wu’g(fH My, Ju’)
The parameters of the model in equation (1) provide a vast pumibdegrees of freedom and therefore

(4)

can be further reduced t® = (61, ...,0y) = ((w,m1,5), ..., (w, My, d)) by fixing all mixing weights
w1 =wy = ... = wy = w # 0 to be equal and having a singeparameter vector such thét = 75 =
... = dy = & # 0. This yields the membership probabilities as follows:

» = - 5
° (fl) 25:1 g(fl;mu’ao_:) ©
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Such a simplification renders a model that is more robust tharotie given by equation (4) [36].
The ! bin of the histogrant representing an individual image patch is now calculated as

1 -
Uy = ZZQu(fl) (6)
=1

The above SA formulation can be shown to be equivalent to theveod uncertainty based SA method
presented in [35].

C. Classifier Training

We have a number of histogram vectors with each being a spapsesentation of an image patch in
the training setV = [v), ¥, ..., Un], WhereN is the total number of image patches in the training set.
These histograms which are produced by the processes aabariBections 1V-B, V-A and V-B are then
used as labelled training data to train an SVM classifier. Dudbeaosparsity of the histograms produced
by these methods the two classes, head and background, aselikedy to be linearly separable in a
high dimensional space. This is confirmed in our experimemsillts in Section VIII where a binary
linear SVM is used for classification.

V. FAST ALGORITHMS FORHISTOGRAM GENERATION FROMDICTIONARY ATOMS
A. Approximate Locality-constrained Soft Assignment (LcSA)

The SA technique described above does not explicitly minirtiigeerror betweery; and its recon-
structed version using the codewords from the dictionarys Thn be addressed using Sparse Coding
(SC) [37], [38] and Locality-constrained Linear Coding (LLC) [3®oth aiming to optimise a cost
function based on such an approximation error. Howeverctitkng process in both SC and SA involves
the whole set of the dictionary atoms, rendering potegtitipensive computations. This can be a problem
especially for a large size of dictionary, or for applicasowvhere computational load is a concern, as is
our case. To address the limitations of SA, we adopt the natidocality in coding, as used in LLC [39]
and other recent methods [37], [38], [40], [41], [42], [4Bly constraining codeword selection to the
most relevant few.

We define the locality arounﬁ, as the region of the dictionary space containingtthearest codewords
to ﬁ determined by the Euclidean distance. Specifically, we caims®A to activate onlyc nearest
codewords to the feature vectors as in [39], [43] when comguhe membership probabilities. We refer
to this variant of SA as approximate Locality-constrained SASAY, i.e. findingc nearest codewords for
reconstruction prior to the computation of assignmentsidde LcSA obtains amapproximatelocality-
constrained solution rather than a fully analytical one][lghd also achieves local smoothness and
sparsity. To span local membership probabilities (as oppds global ones as in equation (5)), one has
to determine the nearest neighbours (NNs) for every featlffeLet us denote a subset of codewords as
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Df = NNp <ﬁ, c) where N Np is a mapping of the: nearest codewords to the feature vegffofrom
all the codewords in the dictional®. Limiting the membership probability in equation (5) to besed
on only this subset of codeword3; yields:

Q(J?;Wﬁuﬁ) |f mu c ch

— —

ou(f)) = 2, epe 9(fi5my,5) (7)
0 otherwise
We can further consider the use of max-pooling for popudatite histogranv, representing an individual
image patch, in the case of LcSA, so equation (6) is replaceuat wit

—

Uu:mlax Qu(fl)a l:]-aaL (8)

B. Fast Hierarchical Nearest Neighbour Search (FHNNS)

In Section V-A, the mapping functioiV Np (fl, c) in LcSA is defined for the: NNs, with the search
space still being the entire dictionaly. The left panel of Figure 3 shows the reconstructiory?loas a
linear combination of the nearest codewords weighted by the coefficients from thedriato vector 7.
This shows a small reconstruction error [12].

However, to improve computational efficiency in the NN seamtitised by LcSA we constrain the
search space of the mapping function. We employ a fast ieicl NN search method by exploiting
hierarchical K-means clustering [12]. First, we cluster fiecodewords of the dictionarD into a
dictionary,D, of H higher level codewordsi;,, h = 1,..., H. We now define a subset pf, codewords
DZ" = N Np (mp, pr,) Which is composed of the, nearest lower level codeword$, to the higher level
codewordmy,. If there is no overlap between the higher level clusterat th, a lower level codeword
can only belong to a single higher level cluster, then we Have fo:l Ph-

During histogram generation we define a new mapping funct®ma= N Nj <fl, 1) which gives
my, i.e. the closest high level codeword to the feature veﬁthe now define our subset efcodewords
as,c < pp, Df = NNp, (fh c) whereDy, is the set ofp,, lower level codewordsi,, within the cluster
centred on the high level codeword;,. In practice,py, h = 1,..., H, can all be chosen identical o
(found empirically in our experiments). The centre panel guFé 3 shows the effect of using hierarchical
K-means to constrain the volume of our NN search. It can be,demvever, that the reconstruction error
can be larger due to the feature being unable to be represkeynteotentially more appropriate codewords
across the boundaries of the selected higher level cluster.

To overcome this problem we propose dilating the boundafi¢éise higher level cluster centred aiy,,
used for the NN mapping, as shown in the right panel of FigurEhs relaxes the assumption that each
lower level codeword can belong to only a single high levektgr, allowing overlap of the higher level
clusters. The number of codewords in each high level clustaow given by wherej > p. The value
of p is adjusted experimentally to achieve a balance betweereeitic and accuracy. The reconstruction
error in this case approaches that of the standard NN se&Bghvjhilst still considerably reducing the
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search volume for the nearest codewords. In practice this means that the histograry v, for the
codewordrmi, will be zero if m,, is not within the set of: nearest codewords. A similar approach to fast
NN search is employed by spill-trees [44].

//— - N X Lower level cluster centren,,
X X B X X B -
- : ‘ Feature vectorf;
X \ ® A\ x 7
/% X X @mx d [ Reconstructed feature vector
* s
X ® 7 X )
\ C ) _ _\_ g _/_<’ ® & High level cluster centra,
X ‘ X \
~ . X Ne = = = High level cluster boundary
\ \
B X \ X \ - Dilated cluster boundary
X X x ® X x ® X
\ -
v \ |=== ' c nearest neighbours tf

Fig. 3. Fast Hierarchical Nearest Neighbour Search. The leftlmsvs the reconstruction of a feature vecﬁ:msing the

¢ nearest dictionary codewords. The centre panel shows the effaxg hierarchical K-means to constrain the volume of the
nearest neighbour search. The right panel shows that the rasodtimstrerror can be reduced by dilating the boundaries of the
higher level cluster centred afiy,.

C. Computational Efficiency Comparison

In this section we take a brief look at theoretical compotal efficacy of HA, SA, LcSA and FHNNS,
based on the results in [12]. HA can be easily described mgaf the NN search which scales linearly
with the number of feature vectors to processand the number of visual words to search through denoted
asU. Thus, the complexity of HA amounts 8 (L x U). SA computes Gaussian-based distances from
every feature vector to all available visual codewords. tN#xomputes the sum of Gaussian distances.
Lastly, it determines the ratio for every visual codewordhe total distance as in equation (5). Therefore,
its complexity isO (L x 3U) ~ O (L x U). LcSA is mainly limited by the NN search. This can be
performed efficiently by the partial sort algorithm with a itygd complexityO (L x U x log c), where
c is a desired number of nearest codewords in searches. Suntisitagces and computing the ratio
of Gaussians in equation (7) becomes an efficient operatitm s@mplexity O (L x 2¢). Therefore, the
total assignment complexity @ (L x U x log ¢ + L x 2¢) =~ O (L x U x log c). Note, for sufficiently
small ¢ < U, LcSA becomes noticeably faster compared to SA. In our dasec < 8. The FHNNS
further reduces the complexity of LcSA to approximaté?y(L X \/U> This reduction in complexity
from SA to LcSA is demonstrated in Section VIII-B3. Given the ioygd efficiency of LCSA, in the
next section we describe how this is integrated into a PF fnaorilefor tracking.

VI. MODIFIED PF ALGORITHM

The widely-used PF algorithm is modified here to incorporate Dhebased histogram generation
method described above. There are essentially four steplsv@w/in a standard PF algorithm: initialisation,

August 19, 2013 DRAFT



11

propagation, measurement and re-sampling. Our new catitits are mainly in the initialisation and
measurement steps: an automatic initialisation methotieisual tracker using audio information; and
a novel method for computing the likelihood function in theasurement step based on LcSA (assisted
by FHNNS) and SVM classification. The details of the proposed ingcilgorithm are described below.

Initialisation

Zo = {ao(1),bo(1),a0(2),b0(2), 80} Modified PF Measurement Step
¢ R
SIR Propagation ‘ - 4 _ Feature Extraction  Histogram Generation Classification |
ke % — ' \
=k _ =k = |
Ty oc {mi} Ty =Ty 4+ § ‘ 9 Dictionary Support |
‘ L Vector |
T L ‘ D =[dy,da, ..., dy] Machine |
A . ‘
|
M t = - - k
Kepy easuremen | F=[f1, o o] T={v1,v2,. .., vy} p(Z¢|1E7) |
p(Z¢|Z1:¢) L _______________________ !
Test for degeneracy s

Fig. 4. Our modified DL based PF showing proposed changes to thaurea@nt step in the shaded box.

We consider a dynamic system consisting of a hidden staieesegX = {7y, Z1,...,Zr}, whereT
is the length of the sequence. This hidden sequence is thigdle¢arough timet of the target speaker we
wish to track where = 1,...,T. In our case each state is the position of a rectangular impaiph centred
on the subject's head:} = {af(1),bF(1),ak(2),bF(2),5F}, whereaf(1),bF(1) andaf(2),bF(2) are the
coordinates of the top left and bottom right corners of thagm patch for thé*" particle respectively
andd? is the velocity derived from the Euclidean distance from thete of the image patch defined by
Z¥ | to the centre of¢f. We also have a sequence of measuremsénts{zy, z1, . .., Zr}. In practiceX
is assumed to be a first order Markov processgsdepends solely on the previous state; and the
current observation;.

The task in tracking is to estimate the posterior probabiistribution p(%;|21..). To this end, we
generate a collection ok particles,X; = {#},...,#X}, each of which can be considered a hypothesis
of the location of the target object;. Each particle also has an associated weight, giving a veftor
particle weightst; = {r},...,7X}. The four steps of the PF algorithm are summarised in Algorithm
and Figure 4. The details for each step are given in the follgwgimbsections.

A. Audio-Assisted Automatic Initialisation

In this section we address the problem of tracker initi#itiéa This is very much an ongoing area
of research in tracking and indeed most tracker systemsamlynanual initialisation. To initialize the
tracker we must detect the initial head positions of theesttbj We did attempt to use one of the standard
methods of face detection [20], however the results frora Wiere disappointing on our dataset. This
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Algorithm 1 Particle Filter for tracking a target state.
Input: Z = {2y, 21,..., 21}
Output: X = {Zy, Z1,..., 27}
Zo = {ao(1),bp(1),a0(2),b0(2), 0} % Initialisation
while ¢t < T do
for k=1to K do

= a:t 1 + 5§ % Propagate particles

Calculatep(z;|ZF) using Algorithm 2
7F = p(Z|2F) + p(zF|zF_|) % Measure particle fitness and update particle weights
end for
Ty ~ Zk L TEZF. % Estimate target position
if (Kepp > Keffthv«esh) then
Resample particles
end if
end while

was possibly due to the small scale of the faces in our dataalsudthe range of different head poses
from each camera. Here we propose to exploit audio infoonaind our general face model to initialise
the tracker. Specifically, we use the direction of the speakengoy the audio tracker described in the
following subsections to find automatically the initial heaolsitions of the speakers in the room. This
gives a collection ofK particles at timet = 0 defined as{z} ... 7%} all with the same image patch
rectangle and the initial velocity af5 = 0.

1) Audio Tracker: To find the approximate initial locations of the speakers, wwley the SAM-
SPARE-MEAN method [45], which is an audio tracking algorithnveleped for a smart meeting room
environment. Other state-of-the-art audio tracking atbors could also be used for this purpose, but are
not considered here for two reasons. First, our focus is orvitheal trackers, where audio tracker is
used only for facilitating the initialisation of the visuahcker. Second, our experiments in Section VII|
indicate that even using a perfect tracker (i.e. annotatedmgl-truth) makes no difference in improving
tracking performance of our proposed system.

The SAM-SPARE-MEAN algorithm is a two-step method. In the first step space around a circular
microphone array is divided into a number of sectors, andsfrectrum of the microphone signals is
also discretised into a number of frequency bins. For eactosand frequency bin, the source activity
(SAM), i.e. the posterior probability that at least one ausliarce, is estimated. In the second step, a
parametric approach [46] is used for the localisation ofgberces (when detected as active in the first
step), with the location parameters optimized with respec cost function such as SRP-PHAT [47].
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2) Initialisation of Visual Tracker:The azimuth angle produced by the audio tracker provides two
very important pieces of prior information: the number okakers and the general direction of each
speaker, which are used here to constrain the number ofer®d& be initialised and the area of the
image to search for the face. To this end, we project a lindiieet dimensions from the centre of the
microphone array to a poirtt, b, z), wherea is equal to the distance from the centre of the microphone
array to the wall of the room in metres, denotedraéwhich is 1.75 meters in our experiment, as shown
on Figure 7 in Section VIIl)z can be estimated as the height of a human speaker, typidaiisea as
1.80 metres in our experiment, aridis calculated as

b = tan(épx —) R (9)
180
where ¢ is the azimuth angle (in degrees) of the speaker with redpettte circular microphone array
shown in Figure 7. The particle filter is initialised at intesralong this line to detect a face. The dispersal
of particles gives a reasonable search area around this\itaghen select the particle with the highest
un-normalised weight as containing the subject’s face. Emepding points and the initial face positions

for the two multi-person sequences can be seen in Figure 16atioSeVIll.

B. Particle Propagation

A particle filter assumes that(z;|Z;) can be measured at a number of points, drawn from a proposal
distribution ¢(.), and so the distributiop(7;|z1.;) can be approximated by sampling these points. This
sampling is performed in the propagation step of the PF asshiowigure 4 and in Algorithm 1. The
particles are updated from time step 1 to ¢, with the k" particle propagated according to the dynamic
model

i =aF | +5 (10)

wheres, the transition noise, is a random variable with 2D Gausdiatribution with zero mean. Hence
the particles are propagated based on their previous vahdea certain amount of additive white Gaussian
noise added to model the uncertainty in the motion involved.

C. Dictionary Learning Based Measurements

For each of thesé particles produced by the propagation step, we generat@atiigsis ofp(z;|z}),
for each of the current particle statgg}, ..., 25 }. To generate this hypothesis we use the SA approach
described in Section IV, and the FHNNS assisted LcSA approach 8ection V. So for each patrticle
an image patch is extracted from the current frame using doedinates{a) (1), bf(1), af(2),05(2)}. A
set of features are extracted from the image patch as deddnbSection Ill. The pre-trained dictionary
D is then used to produce a representation of the image patmrdiicg to equation (8), i.ei* =
{v’f,vé?, e ,v(k]} e RY, which is then classified by the pre-trained linear SVM in Sectié to obtain
the likelihood of a particular particle’s image patch camitag a head ap(z;|zF) = E(o%, 7%, ), where

’ Yman
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E(v*,¢* . ) is the Euclidean distance fromf to * . the nearest point on the decision hyperplane of

the pre-trained SVM. The weight of thé” particle at timet, 7, is given by:
it = p(2|ZF) + p(EF1T 1), (11)

wherep(ZF|F¥_,) is a measure of the difference betwegrandsF , given by1/|5F —6F ;|. The particle
weights are then normalised so thal,. | 7 = 1.
Finally, the position of the speaker can be estimated as:

K
Fr ) o wiay. (12)
k=1

This gives us an updated estimate of the target position.rlgo 2 summarises the proposed DL based
measurement step.

Algorithm 2 Dictionary learning measurement step.
Input: z;, K, L, U
Output: p(Z|ZF)
for k=110 K do
Extract image patch at frameaccording to{a¥(1),bF(1), af(2),bF(2)};
Extract L featuresf[, l=1,...,L from the image patch;

Create image patch representation- {vy, v, ... vy}, Where

Uy = Max gu(ﬁ), l=1,...,L;

Classify each image patch using SVM classifier to produce editiood p(z;|zF).
end for

D. Degeneracy Testing and Particles Resampling

The method described above is knowrsaguential importance samplif§lS). This sampling method
leads to a problem known as degeneracy, where the wefgistconcentrated in a single particle. This has
the effect of dramatically degrading the approximationtd tipdated distribution. An effective measure
of degeneracy is given by [48]: .

et S e -
If all the weights of the sampled particles are equdl,= % thenK. ;s = K. For re-sampling to take
place a threshold is set di. ;s and if it rises above the threshold value the particles asanapled with
probabilities proportional to their weigh® o« {7F},k = 1, ..., K,. This, known as Sampling Importance
Re-sampling (SIR), eliminates particles with low weightsl anakes multiple copies of particles with

high weights.
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VIlI. M ULTI-SPEAKER TRACKING VIA ADAPTIVE IDENTITY MODELLING

The general pre-trained head model as described in Sectiog sdpable of differentiating head/face
from background but not differentiating between faces. Tbds to tracking errors when subjects
approach and occlude each other. To overcome this problepreymse an adaptive model to recognise
individual speakers, based on a GMM that is updated onlimeguse MAP principle.

In a GMM the likelihood of the feature vect(ﬁ,l =1,...,L is given by

G
p(f) =Y wig(fisi, ) (14)
=1
Whereg(fl; m;, d;) IS a Gaussian distribution g; defined in equation (2); is the number of Gaussian
mixtures, w;, m;, and o; are the weights, means, and standard deviations of the f@aussxture,
respectively. Hence the GMM is fully parameterised by the &se= {W, m,c}, where W = {w;},

m = {ny;}, ando = {7;}.

In online learning, as some data may not correspond to threatdabel, prior knowledge is necessary
to constrain the space of solutions fér= {1V, m,c}. This can be achieved using MAP adaptation,
where prior knowledge is given by a prior distribution ovenp(6). Using the MAP principle we select
# such that it maximizes tha posteriorilog likelihood,

>s

= argmax p(0|F) = arg max p(F|0) + p(6), (15)

whereF = {fi,..., fuxn} is the set of data vectors. The contributions of the datailiked, p(F|6),
and the prior distributionp(6), can be balanced by introducing a weighting factarjn equation (15).
So, we maximisex - p(F|0) + (1 — «) - p(f), wherea is a weighting factor on the prior parameters.
The parameters of thé" mixture of the GMM are adapted using the following set of updequa-
tions [21] [49]
i =a- W+ (1—a) ™ (16)

V]
iy = a -l 4+ (1—a) - mn, (17)
G = a- (" + Diag((m; — m?") (i — m")T))
) ) (18)
+(1 = @) - (3" + Diag((m; — mi"™) (m; — m™)")),

7 7

—

wherew?”, m?" and 5" are the prior weight, mean and standard deviatioft!, ™, 77 are the
parameters estimated by the maximum likelihood on the ntidata, andy;, m; and&; are the updated
parameters estimated by the MAP adaptation. The fundbiésy(.) selects the diagonal elements of a
matrix to form a single vector.

We use a GMM to model the head features of each subject. Atnilial iframe we extract a set of
features from the automatically located head positionsriteed in Section VI-A. A set of. = 9 feature
vectors, described in Section lll, are extracted frdm= 24 image patches taken from the subject’s face

and body as shown in Figure 5, these form a sef.of N = 216 feature vectors. In the case of two
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subjects we have two sets of featud®$ and F}, where the subscrigt denotes the time index of the
initial frame and the superscriptsand 1 represent the first and second subject respectively. These two
feature sets are used to train two GMMs with parameérand 6} respectively. At each subsequent
frame a set of features are extracted from the subject’s peaition estimated by each of the trackers.
So we haveFY and F} at each time step. We then estimate the likelihood of each of these sets of
features given each of our GMMs, we select the subject'stitjeaccording toarg mjax p(F{|9?) for

subject one andrg max p(F?|6}) for the second subject, wheje= 0, 1. The dataf? andF}, are also
used to update the pjarameters of each identity model at #aetstep, according to equations (16), (17)
and (18). Methods for controling this adaptation are disedsin the following paragraph.

A key problem in MAP adaptation is the choice @fe [0, 1], which controls the contribution of the
prior parameters and the new parameters estimated fromuthent data. Instead of settingat a fixed
value as done usually, we adaptaccording to the locations of the subjects being trackedbmnfs

=1 Ii\/ (a2(0) — a9(0))2 + (b}(0) — b}(0))? (19)

where (a?(0),6?(0)) and (a; (0), b (0)) are the head positions of the first and second subject at ftame
respectively,/,, is the width of the image, an@d in the bracket denotes the centre of the image patch at
the estimated head position. This formulation fégrmeans that when the subjects are further apart we

are more certain that the data collected relates only toghbject and so more weight is given to the
new parameters estimated on the current data. The newlyatstinparameters then become the prior
parameters of the GMM.

Due to the low resolution of the video data used in our expenis, focusing solely on the subject’s
head was insufficient for identification. To overcome this weaet the features (as described in Sec-
tion IIl) from a wider area around the head, including theteghof the subject’s clothing and background
as shown in Figure 5. Note that the balls in Figure 5 were addeddt@nnotation but not used in our
tracking systems. Due to the coloured balls on the subjeetals we use the location of the grid on the
lower half of the face instead of the centre of the face. Thiainprior distribution is trained using the
initial head location which is found using the method ddsmliin Section VI-A2.

Fig. 5. Feature extraction for subject identification. Note: The grids elibetately shifted to avoid the coloured balls on the
subjects’ heads which were used in annotation, instead of our trackitgnsy
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Essentially, when a subject is no longer recognised therrdio&ing in that camera does not contribute
to the three-dimensional head position, however the mositiontinues to be updated using the three-
dimensional estimate of the head position produced by theratameras. The identity of the subject
continues to be tested using the three-dimensional poditam the other trackers. Therefore, when the
subjects move out of occlusion and the subject is again résed, the tracker is turned on again.

VIIl. EXPERIMENTS AND RESULTS

To demonstrate the performance of our proposed approackemmducted three sets of experiments
for tracking in a real meeting room environment. Firstly, walaate the tracking performance of the
DL based appearance modelling methods using HA, SA, and LcSA RHNNS (based on equation
(7)) respectively. The DL based histogram generation is @t with the baseline methods based on
commonly used histograms of colour or texture. The effectifiér@nt dictionary and feature sizes on
the performance is also studied. The measurement step of tlig tiypically the distance between the
histogram generated by image patch being tested and an karemgiogram, typically the Bhattacharyya
distance. The standard SA method proposed by van Gemert 8bhls[used as a baseline in comparison
with our proposed LcSA. We show that our system outperfornsethaseline methods and is particularly
robust to changing lighting conditions and large scale gkan

Secondly, we show the performance of our adaptive identitpgrition method described in Sec-
tion VII for tracking multiple subjects through occlusiong/e show that having a pre-trained general
face/head model combined with an adaptive identity modé&d possible to track accurately multiple
occluding subjects. We produce quantitative results fay amd three subject tracking on the AV16.3
dataset [50]. In order to demonstrate that our proposed odetian generalise to similar datasets we
also present qualitative tracking results on the EPFL muliera pedestrian dataset [51] for three and
four subjects and also a sequence from the CLEAR dataset [52fjvi® subjects. Finally, we show
the performance of our proposed audio-visual face deteatiethod described in Section VI-A2 for
automatically and accurately detecting faces in the initeme of the video sequence to be tracked. We
demonstrate that our method outperforms the common bas®lola-Jones face detection method [20]
for tracker initialisation.

A. Experimental Set-up

The data used in our experiments consist of eleven annotatpeesces from the AV16.3 dataset and
also sequences from the EPFL pedestrian dataset and the CLEAdetd&tihthe datasets feature multiple
subjects recorded on multiple cameras in an indoor office atimg room environment.

The AV16.3 dataset was recorded at the IDIAP research itestitu2004, in a smart meeting room
environment using three calibrated cameras and two eigimezit omnidirectional circular microphone
arrays. The data set was collected to specifically addresssthees of large scale changes, natural
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(a) Camera 1 (b) Camera 2 (c) Camera 3

Fig. 6. Three images from sequence 11 from cameras 1, 2, angpé&ctaely.

illumination changes and partial and full occlusions. With single sequence the scale of the face/head
may vary from approximatelyp0 x 70 pixels to 8 x 12 pixels, this can be seen from Figure 6(a) to
Figure 6(c). The illumination changes within the meeting rocen also be seen in Figure 6. There are
two main types of sequences in the AV16.3 dataset, meetingtgins (two subjects seated at the table)
and motion situations (subjects moving in the corner of thenr). The position of the cameras was a
compromise between these two situations [50], so cameravaresituated to capture the faces of seated
subjects and cameras two and three positioned to give anadlgoestimate of the 3-D position when
the subjects are moving. We feel that the current challefigdsacking multiple people in an office
environment are well represented in the AV16.3 dataset.

8 element microphone array

. . 1.75m

3D co-ordinate origin (0, 0, 0)
|

=y,

Camera3

3.0m

Camera 1 Camera 2|

Fig. 7. Layout of room used for audio-visual recordings. The sHaatea indicates the performance area for the subjects.

The data were annotated by using a simple colour tracker thatmanually corrected by a human
observer. In a number of sequences coloured balls weredlacdahe subjects’ head to facilitate this
process. However, we must stress that these coloured bBayledono part in our system, indeed we had
to take particular pains to avoid them in the identity madgllexperiments.

The layout of the smart meeting room with the locations of tireé cameras and microphone array can
be seen in Figure 7. The sequences feature subjects movinig Withfield of view of the three cameras
and speaking continuously. The shaded area in Figure 7 iedidhe area within which the speakers
move. The sequences vary in difficulty from the subject simpbvimg around a set of positions in the
room with relatively constant direction and velocity, to ltiple subjects moving freely around the room
and making abrupt changes in direction. A summary of the gatmences used for training and testing
can be found in Table I.
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Training Sequences Description
Sequence 02 Single subject standing in predefined positions
Sequence 03 Single subject standing in predefined positions
Sequence 05 Single subject standing in predefined positions with various head poses
Sequence 06 Single subject standing in predefined positions with various head poses
Testing Sequences Description
Sequence 11 Single subject, moving randomly, sitting and standing, abrupt head nesmtem
Sequence 12 Single subject, moving randomly, sitting and standing, abrupt head nemtsm
Sequence 15 Single subject, traversing the room, smooth head movements
Sequence 18 Two subjects, moving heads very close with partial occlusions, sitting tamdliag
Sequence 24 Two subjects, moving smoothly around the room with occlusions
Sequence 40 Three subjects, two subjects seated and stationary while single subjees foelind them
Sequence 45 Three subjects, all subjects moving with multiple occlusions
TABLE |

A SUMMARY OF THE DATA SEQUENCES USED FOR TRAINING AND TESTINGTHE SEQUENCE NUMBERS CORRESPOND TO
THE NUMBERING IN THE AV16.3 DATASET.

Each sequence is between 1000 and 3500 frames long with a fedenef 25 frames per second and
each video frame is a colour image of 288x360 pixels. Frometlaemotated sequences we selected four
for training and five for testing. The variability of appeatanin the training data was maximised by
combining data from all three cameras to train a single model

We take the approach of training a model of the subject todmkéd, in this case a person’s head. An
initial exemplar patch of the face is taken for each cameththe Battacharya distance is then calculated
for each particle to determine its weight. This method isatiife for tracking simple sequences and can be
re-initialised by hand when it does fail. The background deda collected using the same frames as the
head data. A single background image patch is extracted éawoh frame, this patch is selected as having
the maximum Battacharya distance of all the particles. ¢¢imis method we can efficiently generate
large amounts of varied training data. We apply the methodeioerate 37050 training examples, for
both head and background. All tracking experiments werelgoted with/ X' = 50 particles. The tracking
errors are measured using Root Mean Squared Error (RMSE), @@duhs the Euclidean distance from
the 3-D position estimated by the tracker to the 3-D anndtatsition of the subject's mouth.

B. Evaluation on Dictionary Learning Based Appearance Modelling

1) Comparison of dictionary versus non-dictionary metholesr the dictionary based method, we first
construct the dictionaries from the Hue and SIFT features,ted generate the histograms using these
dictionaries (hence denoted as ‘Hue Dict’ and ‘SIFT Dict’) bg tSA method described in Section IV-B.
A combined colour and SIFT dictionary was created and testee.dIttionary size was set 10 = 64.
The baseline methods that we compare are the non-dictionatiioas i.e. using the Hue and SIFT
histograms (hence ‘Hue Hist’ and ‘SIFT Hist’). The results drevegn in Table II. It can be seen that for
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all sequences the DL method based histograms provide hedttking performance as compared with
using the Hue and SIFT feature vectors directly.

Sequence | Hue Hist | SIFT Hist | Hue Dict | SIFT Dict | Combined Hue and SIFT Dict
Sequence 1§ 0.11 0.12 0.9 0.10 0.03
Sequence 11  0.13 0.15 0.10 0.10 0.05
Sequence 12 0.22 0.13 0.15 0.10 0.06
TABLE I

RMSEIN METRES OBTAINED BY THE METHODS USINGSIFT AND HUE HISTOGRAM AND BOTHHUE AND SIFT
DICTIONARIES AND COMBINED HUE AND SIFT DICTIONARIES.

Error Plot for Sequence 11
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Fig. 8. The tracking results for sequence 11 of the AV16.3 databdwse sfiows the performance of Hue and SIFT dictionaries
and also the combined Hue and SIFT dictionary.

We also ran 50 random tests (randomly initialised dicti@srto compare the three dictionary methods,
i.e. ‘Hue Dict’, ‘SIFT Dict’ and ‘Combined Hue and SIFT Dict’ resgtively, using a different random
initialisation for each one. Figure 8 shows the tracking refoo each frame of sequence 11 in the data,
for a single instance of each tracking method. This plot shibscontribution of each of the modalities,
it can clearly be seen that at the end of the sequence as tfectsuipves into an area with different
illumination the errors in using the Hue based dictionargré@se dramatically, while the ‘Combined
Hue and SIFT Dict’ in which the contribution of the SIFT and Hue gien equal weighting shows a
much smaller error. The SIFT based dictionary, on the other ha@dorms poorly near the beginning
of the sequence, which corresponds to the section whereuthjecs sits down and moves into an area
with more background clutter which can be seen in Figure G{ever the ‘Combined Hue and SIFT
Dict’ with a weighting of 0.5 from the Hue manages to overcdinie problem. The ‘Combined Hue and
SIFT Dict’ method performs robustly regardless of the subg§dotation in the room. This can further
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be confirmed by the error maps in Figure 9 which shows the levelmir for different locations within
the room, the thicker the line the larger the error. The areth@®fplots in Figure 9 corresponds to the

shaded area in Figure 7.
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Error maps for sequence 11 of the AV16.3 dataset. The Amanscorresponds to the shaded area in Figure 7. The

thickness of the trajectory shows the average RMSE in that location, thettitok trajectory of the plot the larger the RMSE.
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Fig. 10. Plot of RMSE averaged over 50 randomly initialised dictionarielstiaa three single subject test sequences for various
dictionary sizes. The error bars show one standard deviation of thisré®m the 50 random tests.

2) Comparison of dictionary sizeWe then evaluate the performance with respect to the ditjon
size, U. Although in visual object recognition tasks larger diotoy sizes are commonly adopted we
decided for practical purposes to limit the maximum size @@4Latoms. We testeld from 32, 64, 128,
256, 512, to 1024. For eadh, 50 random tests were performed, and the ‘Combined Hue and SilgtT
based SA method was used. The average results of these ranstsnover the three single-subject test
sequences (shown in Table Il) can be seen in Figure 10(a),ewthererror bars represent the standard
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deviation. It can be observed that for very small dictionsiges, particularly for ‘Hue Dict’ and ‘SIFT
Dict’, the results become very unstable due to the the smeiber of dictionary atoms being unable to
represent the face/head of the subject. However using tbetihed Hue and SIFT Dict’ the size of the
error bars is much smaller, this may be due to the fact thatrebsed Hue and SIFT atom can represent
more aspects of the data than a single Hue or SIFT atom. Iriteglysthe best performance comes from
the smaller dictionary sizes, this is probably due to thgdahistogram size becoming overly sparse and
degrading the head recognition performance.

Tracking performance on Sequence 11 for different feature sizes
0.15

005\¥/

Q
32:25 64:50 128:100 256:200 512:400
Feature sizes used (SIFT:Hue) for dictionary construction

o
[
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Fig. 11. The tracking result for different feature sizes for Seqeetic

We also compare the performance for different feature vdetrgths. In this set of experiments we
set the dictionary size t&/ = 64 and vary the length of the SIFT and colour histogram featur¢ovec
M, and M, respectively. The values df/; used are 32, 64, 128, 256 and 512 and the valuéd ofised
are 25, 50, 100, 200, 400. These two feature vectors are thesatmated as described in Section Il
to form a single combined feature vector of length, = M, + M.. These different length features
were then tested on sequence 11 of the AV16.3 dataset. Thitesrebthese experiments can be seen in
Figure 11, this plot shows that our selectionMdf = 128 and M. = 100 is justified in terms of accuracy
and computational feasibility.

3) LcSA vs SAOne drawback of the SA method described in Section 1V-B is tmatcontribution of
all atoms in the dictionary is estimated to generate a hiatagIn applications such as tracking this may
cause problems with efficiency. In this set of experiments &gt the performance of the LcSA method
described in Section V for histogram generation to investigehether we can achieve similar or better
results by using a size reduced set of dictionary atoms f&togram generation.

The same set of training sequences used in Section VIII-B agd ts create the set of training
histograms using the method described in Section V-A. We liseéb0 randomly initialised dictionaries
created in the previous section with the combined Hue and S#Biufes to create the LcSA histograms.
The number of NNs¢, and the smoothing factor, used to populate the histograms, according to
equation (7), were determined using cross validation oririring sequences. The valuescofvere set
t0 0.2 for U = 32 and 640.19 for U = 128 and 256, an@.18 for U = 512 and 1024. The number of
NNs c was set tdh for U = 32 and 646 for U = 128, and7 for U = 256, 512 and 1024. For dictionary
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sizes larger tha/ = 256 we implemented the fast NN search, FHNNS, described in SectiBn Mhe
number of higher level codewords was set to 128 for all dictionary size. The number of lower lleve
codewordsp was set to 128 fol/ = 256, and 256 forU = 512 and 1024.

In Figure 10(b) we plot the average error for all 50 randomiiatised dictionaries over the three
single subject test sequences for SA and LcSA for various digtiosizes. It can clearly be seen that
LcSA also gives a small improvement in the accuracy of the ingckThis could be explained by LcSA
providing a more robust representation by selecting a smalut more relevant set of dictionary atoms,
thus avoiding the noise introduced by less relevant atomenwising the entire dictionary. Again we can
see that for small dictionary sizes the standard deviatfahe results does increase however this effect
is approximately the same as using LcSA. In order to measuritnease in tracking speed provided
by the use of LcSA we measured the processing time for an indiViflame with a single subject with
a dictionary size ofl = 64. Using the standard SA method the average frame processiregdver
100 frames was 0.26 seconds, while using LcSA this proceswsimgis reduced to 0.17 seconds. These
experiments were performed using an Intel dual core 3 GHktdpswith 3.7 GB of memory. So we
can see, our proposed system is capable of processing appteky 6 frames per second (despite the
code not being optimised or fully parallelised).

Additionally, LcSA provides a more sparse representation 8@ which may improve the classification

_ [l
15,112

and| - ||» are the/; and ¢, norms respectively and, is the n* image representation histogram. We

of the linear SVM classifier. We use a common measure of spagsign by 7, where|| - |1
then averaged this measure over all the histograms in theéngaset for different histogram generation
methods. The results were LcSA (SIFT + Hue}x 3.9, SA (SIFT+Hue)r = 4.2, SA (SIFT) T = 4.6
and SA (Hue)r = 6.0, where a smaller value af indicates a sparser vector.

C. Evaluation on Adaptive Identity Modelling on AV16.3 dataset

Here we present results for tracking multiple speakersgutiie adaptive identity models described
in Section VII. The experimental set up is similar to the singléject sequences, described in the
previous section, with the main difference being that theialary based methods were automatically
initialised using audio information extracted by the metld@scribed in Section VI-A2, as opposed to the
manual initialisation in Section VIII-B. The same images factidnary building which were extracted
from the four training sequences (see Table I) are used ito o GMM identity model using the EM
algorithm [33]. After cross-validation on the training dave setG = 10, N = 24 in each frame (i.e. the
6 x 4 grid as shown in Figure 5), and = 9 for each image patch. This gives a total lofx N = 216
feature vectors for training the GMM model for each frametBine SA and LcSA methods (based on
the ‘Combined Hue and SIFT Dict’) were tested.

Sequences 18 and 24 (two subjects) and 40 and 45 (three sybjéchV16.3 were used in this
experiment, whose difficulty can be seen in Figure 12. In setpid®, the upper series of frames, the

August 19, 2013 DRAFT



24

two subjects bring their heads together very slowly and theld them very close for a number of
seconds, this makes it difficult to use the subject’s dynartosvercome this type of occlusion. In our
proposed system while we take into account the subject'somate do not rely on it in order to be
robust to occlusions. This allows us to track the subjectdenthe baseline method fails completely. The
middle series of frames is from sequence 24 and shows theauthljessed in similar clothing, white
t-shirts, despite this the identity of the subjects is presg with our method through the occlusion. In
theory if the subjects were dressed identically, with simhair and skin colour our identity modelling
could fail, however we could not find such sequences in the A¥tladtaset to test this, and this could be
addressed in future work. The lower series of frames showseseg 45 which features three speakers,
all of whom are moving and occluding each other many times.

Fig. 12. Multiple person tracking using adaptive identity models. The imagts top row are from sequence 18, the middle
row from sequence 24 and the bottom row from sequence 45.

Table 1ll shows the tracking results in RMSE for using the titgnmodel, as compared with those
without using the identity model. It can be seen that usirg ittentity model, the tracking errors are
considerably reduced. The error maps in Figure 13 show thaheasubjects’ heads come into close
proximity the methods not using identity modelling fail whas our proposed method continues to track
both subjects. This can also be seen in Figure 14 where both then8AcSA methods not employing
identity modelling fail at the second occlusion. In additicdhe tracking errors for the multiple person
sequences are relatively higher as compared with thoséfglesperson sequences. The good performance
of sequence 40 is given by the fact that two subjects are deatd stationary whilst the third subject
moves behind them, there are no occlusions between thectsibje
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Fig. 13. Error maps for sequence 18 of the AV16.3 dataset. Theshi@an corresponds to the shaded area in Figure 7. One
subject is shown in red and the other in blue. The thickness of the trajectigjends on the average RMSE in that location,
the thicker the trajectory the larger the RMSE.
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Fig. 14. The tracking results for sequence 18 of the AV16.3 datafidée shows the performance of SA and LcSA method
with and without identity modelling.

It is worth noting that, after an extensive search of the enirfiterature, we could only find two
publications that reported visual tracking results for tipleé subjects on the AV16.3 dataset. Pham et
al. [53] exploit 3-D tracking with multiple cameras to ovenge occlusion in sequence 24 and report an
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Sequence | SA | LcSA | SA (with identity) | LcSA (with identity)
Sequence 18 0.19 | 0.17 0.13 0.10
Sequence 24 0.11 | 0.10 0.09 0.09
Sequence 4Q 0.12 | 0.11 0.08 0.07
Sequence 45 0.35 | 0.34 0.15 0.14

TABLE 11l

THE RESULTS FOR TRACKING SHOW THERMSEIN METRES BETWEEN EACH MULTIPLE SUBJECT TEST SEQUENCE USING
DL BASED SA AND LCSA METHODS, WITH AND WITHOUT IDENTITY MODELLING .

average accuracy of06 metres, which is lower than our reported accuracy. Howdwey to not report
any results on the far more challenging sequence 18 whidiarE=saslow moving subjects and partial
occlusions. Khan et al. [54] report results for sequence f4the AV16.3 dataset, however their method
involves tracking one subject in a multi-person environtremd treating the other subjects as noise. So
their results are not comparable with ours.

D. Evaluations of multiple subject tracking on the EPFL and CLEARskis

In order to show the ability of the system to generalise ta d#ter than the AV16.3 dataset we selected
sequences from two other indoor multiple subject trackiatasets, the EPFL multi-camera pedestrian
dataset [51] and the CLEAR dataset [52]. In both cases the segsideature multiple subjects moving
in an indoor environment with multiple occlusions. We use dictionary, SVM classifier and parameters
trained/optimised on the AV16.3 dataset (dictionary sitello= 64 and K = 50 particles and the
parameters for identity modelling are the same as those instgd previous section). Figure 15 shows
the results of tracking on the EPFL and CLEAR datasets. The first twe ob Figure 15 show tracking
from two cameras of the EPFL dataset. This shows the system &alguracking four subjects against a
complex background and through multiple occlusions. The fioal shows the tracking of five subjects
in a sequence from the CLEAR dataset, while the backgroundtiasioomplex as the EPFL data there
are still multiple occlusions of the subjects. The resulsoauggest that it is not necessary to repeat
dictionary training for new data and camera configurations.

In both cases the tracking was manually initialised, for BRFL data no separate audio signal was
available and for the CLEAR dataset while audio data was pealitbne of the subjects starts speaking
until they are seated and stationary. Also, no 3D infornmat®available from the multiple cameras, so
each of the tracking results are independent 2D resultsatin eamera. This shows that strict calibration
of the cameras is not necessary for our proposed trackirtgmmyt® function.

E. Evaluations on Audio-Visual Tracker Initialisation

To start tracking we must first locate the object or person wehwb track. Here we treat the
initialisation of the tracker as essentially a face detectind localisation problem. To test our proposed
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Fig. 15. Multiple person tracking using adaptive identity models. The imag#® first two rows are from the EPFL dataset
the bottom rows is a sequence from the CLEAR dataset.

method (described in Sections VI-Al and VI-A2) we take the firatme in each sequence where the
subjects’ faces are visible and they are talking. In pradiiis does limit us to only detecting a face when
the subject starts to talk, however this method of face tierecdemonstrates that the audio DOA can be
useful in this task. The proposed system provides a flexibladreork to incorporate other initialisation
methods, such as Viola-Jones, or other state-of-the-egtdatection algorithms as a complementary way
for reducing the possibility of the failure of initialisati.

To provide a reasonable amount of data we annotated thal ifasitie position on a total of 20 sequences
from the AV16.3 dataset. These included 9 single and 11 nheliprson sequences, giving a total of 84
faces. Each frame was annotated with a rectangle enclosingutbject's face. The audio was sampled at
16 kHz using a single 8 element circular microphone arraf didmeter 10 cm. The following parameters
were fixed for all of our audio tracking experiments, time feamindows were 32 ms with an overlap
of 16 ms. For the Fast Fourier Transform the number of sampéss512 and the number of histogram
bins was 512. For the SRP-PHAT algorithm the number of sectossfixad at 18 with each sector
covering 20 degrees and the speed of sound was fixed at 320 mitsefdetails of the implementation
can be found in [45]. We compare our method with one of the mostmon face detection algorithms
proposed by Viola and Jones [20] implemented using the Opeo@nputer vision library [55]. We
used face images from the four training sequences (dedciib&able 1) to set the thresholds for the
Viola-Jones method.

To measure the performance of both methods we use precistbreaall, where precision is given by
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Meas, = %“’”C, where Num, is the number of correct matches ahtdim, is the number of potential

UM,

faces identified by each method and recall is givenMyas, = Y%= where Num, is the number of

Numg

faces in the frame. There are many ways to define what constitut®orrect face detection and this is
often linked to the application and dataset being used. Bpet al. [56] define a correct detection as the
centre of the detected face rectangle being less than faalsgrom the centre of the annotated rectangle
and within 1.2 of the scale of the annotated rectangle. Wevioa similar scheme in our experiments,
however we adapt the measure to our particular data andcapiph. As we are using the face detection
algorithms to initialise a PF based tracker, in reality we oalax this measure as our pre-trained face
model will converge to the face after a few iterations of trecker. So we set the criteria for a face
detection to be less than a Euclidean distance of 10 pixefs fhe centre of the annotated face rectangle
and a scale within 1.5 of the scale of the annotated rectangle

Table IV shows the detection results for the 84 faces in thiaiframes taken from 20 test sequences in
the AV16.3 dataset. Figure 16 shows the initial frames fohemnera for the multiple subject sequences
18 and 24. The lines in the images show the tracks used by opoged audio-visual face detection
system and the rectangle shows the estimated initial facatit;. It can be seen from the results that
our proposed method performs significantly better than tiselbvee method. It seems most of the errors
in the Viola-Jones approach come from an incorrect estonadf the number of speakers in the initial
frame. The low precision of the Viola-Jones method is causetthd return of a number of false positives
due to over estimating the number of faces in the frame. Airdamation allows us to estimate priori
the number of speakers present, this information has tharsage of greatly reducing the rate of false
positive detections.

Method Precision {eas,) | Recall (Meas,)
Viola-Jones 0.6 0.83
Proposed AV method (with estimated DOA) 0.97 0.97
Proposed AV method (with annotated DOA) 0.97 0.97
TABLE IV

COMPARISON BETWEEN OUR PROPOSED AUDKYISUAL FACE DETECTION WITH THE VIOLA-JONES METHOD.

It is worth noting that the audio signals used in our expenisevere recorded in real room envi-
ronments with the presence of room reverberatiof{( = 0.5 seconds) and background noise. As a
consequence, the accuracy of the DOA estimates are alsad#ehby such adverse acoustic effects. To
see this, we show in Figure 17 the output of the audio tracketwio annotated sequences (sequence 18
with two speakers and sequence 11 with a single speakes.iitéresting to note that, the estimation
noise in DOAs has no adverse impact on the performance of rmpoped visual tracking algorithm. To
show this, we also performed the same experiment using ttasetaannotations to provide a “perfect”
estimate of the DOA, and the results are also included ineT&ll From this table, we can see that the
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Fig. 16. Initialisation of multi-person tracking sequences. Blue and diinea show the sampling line for the face detector
the rectangle is the position of the particle with the maximum likelihood of a fatsn shown is the estimated DOA, green
and blue lines, and the annotated DOA, red lines.

Filename: seq18-2p-0101 (FAST) Filename: seq11-1p-0100 (FAST)
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(a) Sequence 18 audio azimuths (b) Sequence 11 audio azimuths
Fig. 17. Audio azimuth estimated by the audio tracking algorithm for seqseh8 and 11.

detection result of the proposed algorithm (i.e. using gtereated DOAs for the initialisation of the visual
tracker) is identical to the result obtained by using theugdtruth DOAs for the initialisation of the
visual tracker. This implies that, even though using an ugéate audio tracking algorithm may improve
the audio tracking results, it does not improve the perforceaof our visual tracking algorithm. This is
mainly because the estimated DOA is used in our algorithmréwige an estimate of the approximate
speaker location and piori the number of speakers. The accuracy of tracking is esdgndiehieved
through the visual tracker. This can be further explained Igyfe 16, from which we can see that, even
if there is noise in the estimated DOA (as in the left most sci)j the result of the face detection offered
by the audio tracker is sufficiently accurate for the iniiation of visual tracker. For this reason, using
other state-of-the-art audio trackers for the initializatof the proposed visual tracker is not considered
here, we leave this to our future work.

IX. CONCLUSIONS

We have proposed a tracking system combining a DL approaclagpearance modelling with a
PF for dynamic modelling. We exploit the properties of DL tcemome the problems of recognition
in low resolution images and under changing lighting cdod&. This proposed method is shown to
be more accurate than the baseline methods on the challeyih6.3 dataset. We also demonstrate
that the combination of Hue and SIFT features within a DL framdwprovides more robust tracking.
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The issue of the computational complexity of DL methods wadresked by proposing the use of
LcSA for histogram generation. We show that using LcSA actuatlgroved the performance of the DL
based tracking system. A significant challenge in trackingoistinuing tracking through occlusions. To
overcome this we have introduced a method of identity moudglthis involves modelling the subject’s
appearance using a GMM and then adapting this model on-kimgUMAP adaptation controlled by
the proximity of the other subject. We showed that this métikcombined with a DL based tracker
can effectively track up to five subjects through occlusiisist preserving their identity. We also
demonstrated the ability of the system when trained usirgy dataset (AV16.3) to generalise to other
datasets (EPFL and CLEAR) with no further training. Finally, weposed an audio-visual face detection
method for automatic tracker initialisation. An audio ac provides the DOA angle for each speaker
and the number of speakeaspriori thus greatly reducing the chances of a false positive fatectien.
We compared our proposed method to one of the standard nsetbodiace detection [20], the results

showed our method outperformed this baseline method onhthkkeaging AV16.3 dataset.
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