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Abstract—A key task in many applications such as tracking
or face recognition is the detection and localisation of a subject’s
face in an image. This can still prove to be a challenging
task particularly in low resolution or noisy images. Here we
propose a robust method for face detection using both audio
and visual information. We construct a dictionary learning based
face detector using a set of distinctive and robust image features.
We then train a support vector machine classifier using sparse
image representations produced by this dictionary to classify face
versus background. This is combined with the azimuth angle of
the speaker produced by an audio localisation system to constrain
the search space for the subject’s face. This increases the efficiency
of the detection and localisation process by limiting the search
area. However, more importantly, the audio information allows
us to know a priori the number of subjects in the image. This
greatly reduces the possibility of false positive face detections.
We demonstrate the advantage of this proposed approach over
traditional face detection methods on the challenging AV16.3
dataset.

I. INTRODUCTION

A crucial step in any automatic tracking system is the de-
tection and localisation of the object to be tracked in the initial
frame. In speaker tracking this can be seen as a face detection
problem. Face detection has been extensively researched over
the last 20 years and a number of comprehensive reviews have
been published [1], [2]. Here we focus on the task of face
detection as the initialisation step in a system for tracking
people in an indoor meeting room environment.

The initialisation of visual tracking systems through au-
tomatic face detection is still very much an open problem.
In the majority of cases the object to be tracked is simply
manually selected in the initial frame of the sequence [3], [4],
[5], [6], [7], [8]. In some cases a prior template or model is
used to search in the initial frame for the object, for example
a prior colour template of a face is used by [9], [10], [11].
Alternatively, a common face detection algorithm such as that
proposed by Viola and Jones [12] can be used, as in the
case of Naqvi et al. [13]. However, these methods require an
exhaustive search of the initial frame and also if the number
of objects to be tracked is not known a priori they can lead
to false positive object detections.

Currently, one of the most effective methods of object
recognition in still images is dictionary learning or bag of
visual words. Dictionary learning [14] has shown state-of-the-
art performance in many object recognition comparisons such

as the PASCAL Visual Object Class challenge [15] and the
ImageCLEF Visual Concept Detection challenge 2010 [16].
Recently, dictionary learning methods have also been applied
to the problem of face recognition, with success under varying
conditions [17], [18], [19]. In this work we propose the use of
the dictionary based face model. First we create a dictionary
using K-means clustering, then use Soft Assignment (SA)
methods [20] to generate histograms or coefficient vectors.
While this method of SA for histogram generation improves
results it can be computationally expensive, so we further
use a method of limiting the number of dictionary codewords
used for histogram generation, so-called Locality constrained
Soft Assignment (LcSA) [21]. These sparse histograms are
then used to train a linear Support Vector Machine (SVM)
classifier to discriminate face/head from background. Here we
demonstrate the use of this dictionary based face model in the
task of face detection.

A small number of publications have proposed the fusion
of audio and video information for face detection. Zhang et
al. [22] present an audio-visual speaker detection method using
feature level audio-visual fusion and boosting to select the
most distinctive features. In the feature level fusion potentially
any small error in the audio tracker will seriously degrade the
performance of the tracker. We propose a novel initialisation
method by using the audio Direction of Arrival (DOA) angle
for each speaker to constrain the search area for the visual
tracker. This high level fusion of audio and visual information
helps reduce the effect of noise.

We show that even the DOA from a noisy audio tracker
combined with our general dictionary learning based classifier
can be used for effective initial face localisation in a tracking
system. Our primary method of face detection is a visual de-
tector based on dictionary learning and a discriminative SVM
classifier. To improve the robustness of the visual detection
audio DOA is used to constrain the search area for the visual
face detection. In addition to constraining the search area audio
information also provides us a priori with the number of
speakers in the room, thus greatly reducing the number of
false positive face detections.

In the following section we discuss the extraction of a set of
distinctive and robust features for face detection. In Section III
and Section IV we explain our method of dictionary construc-
tion and classifier training for visual face detection. Section V
presents the audio tracking method used for estimating the
speaker’s DOA. The fusion of audio and visual information to



constrain the search area for the face is described in Section VI.
In Section VII we present a set of face detection experiments
on the challenging AV16.3 database. Finally, we present our
conclusions in Section VIII.

II. FEATURE EXTRACTION

We define a feature vector as, f = {f1, f2, . . . , fM}T ∈
R

M , where M is the feature dimension and T is a transpose. In
order to train and test our visual face detection model we need
to extract a set of distinctive and robust features. We extract
two common types of visual features, SIFT and colour his-
togram features, respectively. SIFT descriptors, introduced by
Lowe [23], are histograms of gradient orientation, which have
been shown to be highly distinctive and also robust to affine
image transformation in the task of object recognition [24].
We extract a set of standard grey-scale SIFT descriptors each
of dimension Ms, densely sampled with a horizontal step size
of Iw/3 and a vertical step size of Ih/3 from each image
patch as shown in Figure 1, where Iw and Ih are the image
patch width and height respectively. Specifically, we extract a
series of 12 × 12 pixel squares from the image patch, each
of which, centred at a sampling point, is then divided into
16 regions with 8 gradient orientations quantisation in each
region. This gives us a 128 dimensional SIFT feature vector,
f = {f1, f2, . . . , fMs}

T ∈ R
Ms where Ms = 128. We extract

nine SIFT feature vectors for each image patch as shown by
the white crosses, in the image patch in Figure 1.

We also extract a colour histogram of each image patch.
Colour histograms have many advantages in tracking appli-
cations being rotation and partially scale invariant, robust to
partial occlusions and easy to calculate. We transform the
image from the RGB colour space to HSV space and form
typically a Mc = 100 bin histogram of Hue values, and this
provides a degree of robustness to changes in illumination.
This produces a 100 dimensional vector of colour histogram
features f = {f1, f2, . . . , fMc}

T ∈ R
Mc where Mc = 100.

These features are then concatenated to give a combined
feature vector of both SIFT and Hue histogram feature vectors,
f = {f1, f2, . . . , fMsc}

T , where Msc = Ms+Mc = 228.

f = {f1, f2, . . . , f128}

12 pixels

12 pixels

Ih

Iw

SIFT descriptor sampling points

Fig. 1. Extraction of densely sampled SIFT features from an image patch.

III. DICTIONARY CONSTRUCTION AND CLASSIFIER

TRAINING

In this section we discuss the construction of a dictionary
using the combined feature vector described in the previous
section. This is followed by a description of how this dic-
tionary can be used to generate compact and sparse image

representations and using these representations to train the
SVM classifier. An outline of this training procedure can be
seen in Figure 2.
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Fig. 2. Training an SVM classifier using labelled histogram representations
generated from a dictionary.

The method described in Section II provides us with a
number of feature vectors. These form the column vectors of a
matrix F defined as F = [f1, f2, . . . , fL̄] ∈ R

M×L̄ where each
vector fl, l = 1, . . . , L̄ is an M dimensional feature vector
from the training set and L̄ is the number of vectors in the
training set.

A dictionary D is defined as a matrix, D =
[d1,d2, . . . ,dU ] ∈ R

M×U where U is the total number of
visual words in the dictionary. This set of vectors is capable
of providing a succinct representation of the feature vectors
in F and are often described as visual codewords or atoms.
In order to construct a dictionary from the training data in F

we use the K-means clustering algorithm. The visual words
du, u = 1, . . . , U in the dictionary D are the cluster centres
produced by the K-means algorithm. We need to balance the
number of visual words in the dictionary between being able
to discriminate the object we wish to recognise and becoming
over-specified on the training set, i.e. so-called over-fitting.

Our goal in constructing the dictionary D is to create a
compact representation of an image, or image patch. In order to
achieve this we define a vector v as, v = {v1, . . . , vU} ∈ R

U .
This vector is a histogram or coefficient vector representing an
image patch in the training set based on the visual codewords
in the dictionary, which is populated using a soft voting
technique, as discussed next.

A. Histogram Generation Based on Soft Assignment (SA)

One of the simplest forms of histogram generation for
image representation employs a vector quantisation method
known as Hard Assignment (HA). For each visual codeword
du in the dictionary D the uth bin of the histogram v is simply
assigned according to

vu =
1

L

L
∑

l=1

{

1 if du = argmin
d∈D

(E(d, fl))

0 otherwise
(1)



where E(d, fl) is the Euclidean distance from the visual
codeword d to the feature vector fl and L is the number of
feature vectors extracted from an individual image patch.

Although this simple histogram generation method can
generate sparse and compact image representations, recent
results in object recognition show that histogram generation
methods based on SA provide much better performance over
the HA [20], [25]. SA uses the codeword uncertainty method
presented in [20] where the entry in the histogram v for the
uth visual codeword d is given by

vu =
1

L

L
∑

l=1

Gσ(K(du, fl))
∑U

j=1 Gσ(K(dj , fl))
, (2)

where L is the number of descriptors in the image, K(du, fl) is
the Euclidean distance between the uth dictionary atom (du)
and the lth feature vector fl. G is a Gaussian kernel centred on
the visual codeword du with smoothing factor σ. The variance
of the Gaussian kernel G is given by σ2 and so the value of σ
can be seen as a control on the sparsity of the histogram vu.

B. Approximate Locality-constrained Soft Assignment (LcSA)

One drawback of the SA method described in the previous
section is the high degree of complexity involved in histogram
generation. The histogram generation process in SA based
methods involves the whole set of the dictionary codewords,
as can be seen in equation (2). This can render the recognition
process very expensive particularly for dictionaries with large
numbers of visual codewords. To address this limitation of
SA, we adopt the notion of locality in coding by constraining
codeword activations to the most relevant few.

We define the locality around the feature vector fl, as
the region of the dictionary space containing the c nearest
codewords to the feature vector fl, determined by the Eu-
clidean distance. Specifically, we constrain SA to activate only
the c nearest codewords of feature vectors as in [26], [27]
when computing the histogram bin assignments. We refer to
this variant of SA as approximate Locality-constrained SA
(LcSA) [21]. Hence, LcSA obtains an approximate locality-
constrained solution rather than a fully analytical one [21],
and also achieves local smoothness and sparsity. Limiting the
histogram generation in equation (2) to be based on only this
subset of, c, codewords D

c
l yields:

vu =

{

1
L

∑L

l=1
Gσ(K(du,fl))∑
U
j=1

Gσ(K(dj ,fl))
, if du ∈ D

c
l

0 otherwise
(3)

IV. CLASSIFIER TRAINING

We have a number of histogram vectors with each being
a sparse representation of an image patch in the training
set, V = [v1,v2, . . . ,vN ], where N is the total number of
image patches in the training set. These histograms which are
produced by the processes described in Section III-B are then
used as labelled training data to train an SVM classifier. Due
to the sparsity of the histograms produced by these methods
the two classes, face/head and background, are more likely
to be linearly separable in a high dimensional space. This is

confirmed in our experimental results where a binary linear
SVM is used for classification.

V. AUDIO TRACKER

We use an audio tracker for audio source detection and
localisation, and this tracker was developed and tested on
multi-party speech in a smart meeting room environment [28].
Audio tracking is performed in a two-step process known as
the SAM-SPARE-MEAN method. The first step consists of a
sector based combined detection and localization. In this step
the space around a circular microphone array is divided into a
number of sectors. The frequency spectrum is also discretised
into a number of frequency bins and for each sector and
frequency bin it is determined whether there is at least one
active audio source present.

At each time frame for each sector and frequency bin a
sector activity measure, SAM, is estimated, this is the posterior
probability that at least one audio source is active within that
sector and frequency bin. This measure of activeness is then
compared to a threshold to determine whether there is an active
source in that sector. In the second step a point based search is
conducted in each of the sectors labelled as having at least one
active source. The localization uses a parametric approach [29],
the location parameters are optimized with respect to a cost
function such as SRP-PHAT [30]. While this method does
perform reasonably well the output of the DOA of the audio
source can be very noisy at times.

VI. AUDIO-VISUAL FACE DETECTION

Here we propose exploiting the audio DOA information
and our general face model in order to detect faces in video
frames. Specifically, we use the direction of the speaker given
by the audio tracker described in Section V in order to
automatically detect the location of the faces of the speakers
in the room. While the DOA angle produced by the tracker
can be noisy we can use it for two very important pieces
of prior information: the number of speakers and the general
direction of each speaker. This prior information can be used to
constrain the number of faces to be recognised and the area of
the image to search for these faces. We project a line in three
dimensions from the centre of the microphone array to a point
(a, b, z), where a is equal to the distance from the centre of the
microphone array to the wall of the room in metres, denoted
as R (which is 1.75 meters in our experiment, as shown on
Figure 3), z can be estimated as the height of a human speaker,
typically chosen as 1.80 metres in our experiment, and b is
calculated according to

b = tan(φ×
π

180
) ·R (4)

where φ is the azimuth angle (in degrees) of the speaker with
respect to the circular microphone array shown in Figure 3.

The image is sampled at intervals along this line, as shown
in Figure 4 in order to detect a face. To account for noise in
the DOA angle we sample a distribution of image patches at a
number of sampling points along the line, as shown in Figure 4.
We define the initial image patch as I0 = {x1

0, y
1
0 , x

2
0, y

2
0}

where x1
0, y

1
0 and x2

0, y
2
0 are the coordinates of the top left

and bottom right corners of the image patch centred on the
sampling point. We then generate a number of image patches



in order to sample the area around the sampling point, we
define this collection of T points as I = {I0, I1 . . . IT }. The
tth image patch is propagated according to the dynamic model

It = I0 + s, (5)

where s, is a random variable with 2D Gaussian distribution
with zero mean. Hence the image patches are propagated based
on the value of I0 and a certain amount of additive white
Gaussian noise added in order to model the uncertainty of the
DOA estimation.

Camera 1

Camera3

Camera 2

8 element microphone array

3D co−ordinate origin (0, 0, 0)
1.75 m

3.0 m

Fig. 3. Layout of room used for audio-visual recordings. The shaded area
indicates the performance area for the subjects.

So for each sampling point on the line estimated using the
audio DOA we distribute a number of image patches each
of which is tested with our discriminative SVM classifier.
We then select the image patch with the highest likelihood
from the SVM classifier as containing the subject’s face. The
sampling points and the initial face positions for a single
person sequence can be seen in Figure 4.

Fig. 4. Face detection process using audio DOA to constrain the search space
for the subject’s face.

VII. EXPERIMENTS

A. Experimental Set-up

The data used in our experiments consists of sequences
from the AV16.3 dataset [31]. This data was recorded at
the IDIAP research institute in 2004, in a smart meeting
room environment using three calibrated cameras and a single

eight element omnidirectional circular microphone array. The
AV16.3 dataset contains 10 annotated sequences; we selected
four of these annotated sequences to form the training set
(sequences 2, 3, 5 and 6). The variability of appearance in
the training data was maximised by combining data from all
three cameras to train a single model. Examples of selected
face and background image patches can be seen in Figure 5.

Fig. 5. The selection of positive, red rectangle, and negative, green rectangle,
training examples.

The layout of the smart meeting room with the locations
of the three cameras and audio microphone array can be seen
in Figure 3. The sequences feature subjects moving within the
field of view of the three cameras and speaking continuously.
The shaded area in Figure 3 indicates the area within which
the speakers move. Each video frame is a colour image of
288x360 pixels. Within the data the scale of the face/head
may vary from approximately 50× 70 pixels to 8× 12 pixels,
this can be seen in Figure 6. The illumination changes within
the meeting room can also be seen in Figure 6.

We set the number of sampling points to be 12 and these
are spaced evenly along the line generated from the audio DOA
as shown in Figure 4. We also set the number of image patches
to be sampled at each sampling point to be 20, this gives a
reasonable sampling around the line (note Figure 4 shows less
image patches for clarity).

To test our proposed face detection method we take the first
frame from a number of sequences where the subject’s faces
are visible and they are talking. In order to provide a reasonable
amount of data we annotated the initial face position on a total
of 20 sequences from the AV16.3 dataset, 9 single person and
11 multiple person sequences. Each frame was annotated with
a rectangle enclosing the subject’s face, this gives us a total
of 84 faces in the test set. We compare our method with one
of the most common face detection algorithms proposed by
Viola and Jones [12] implemented using the OpenCV computer
vision library [32]. We used face images from the four training
sequences in order to set the thresholds for the Viola-Jones
method.

The audio was sampled at 16 kHz using an 8 element

(a) Camera 1 (b) Camera 2 (c) Camera 3

Fig. 6. Three images from sequence 11 from cameras 1, 2, and 3 respectively.



circular microphone array with diameter 10 cm. The following
parameters were fixed for all of our audio tracking experi-
ments, time frame windows were 32 ms with an overlap of 16
ms. For the Fast Fourier Transform the number of samples was
512 and the number of histogram bins was 512. For the SRP-
PHAT algorithm the number of sectors was fixed at 18 with
each sector covering 20 degrees and the speed of sound was
fixed at 320 m/s. Further details of the implementation can be
found in [28]. The output of the audio tracker for two annotated
sequences (sequences 18 and 11) can be seen in Figure 7 this
shows that while the azimuth estimation is noisy it can still
prove useful in providing an estimate of the DOA for each
subject. More importantly it can be seen that it also provides
a piori an estimate of the number of speakers. Figure 7(a)
shows a sequence with two speakers and Figure 7(b) shows a
sequence with a single speaker.

To measure the performance of both methods we use preci-
sion and recall, where precision is given by Measp = Numc

Numr
,

where Numc is the number of correct matches and Numr

is the number of potential faces identified by each method
and recall is given by Measr = Numc

Numa
where Numa is the

number of faces in the frame. There are many ways to define
what constitutes a correct face detection and this is often linked
to the application and dataset being used. Rowley et al. [33]
define a correct detection as the centre of the detected face
rectangle being less than four pixels from the centre of the
annotated rectangle and within 1.2 of the scale of the annotated
rectangle. We follow a similar scheme in our experiments,
however, we adapt the measure to our particular data and
application. We set the criteria for a face detection to be less
than a Euclidean distance of 10 pixels from the centre of the
annotated face rectangle and a scale within 1.5 of the scale of
the annotated rectangle.

The results of this can be seen in Table I, this shows the
results in terms of precision and recall for the 84 faces in
the initial frames taken from 20 test sequences in the AV16.3
dataset. Figure 8 shows the initial frames for each camera for
the multiple subject sequences 18 and 24. The line in the
images shows the track used by our proposed audio-visual
face detection system and the rectangles show the estimated
face location. Figure 8 also demonstrates the robustness of our
method to noise in the audio information. In the lower set of
images the blue line for the subject is not passing directly
through the face, this is due to the subject being taller than
average and standing close to the microphone array. Despite
this the distribution of the images patches manages to detect
the face.

It can be seen from the results that our proposed method
performs significantly better than the baseline method. It seems
most of the errors in the Viola-Jones approach come from an
incorrect estimation of the number of speakers in the initial
frame. The low precision of the Viola-Jones method caused the
return of a number of false positives due to the overestimate
of the number of faces in the frame. Audio information allows
us to estimate a priori the number of speakers present, this
information has the advantage of greatly reducing the rate of
false positive detections.
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(b) Sequence 11 audio azimuths

Fig. 7. Audio azimuth estimated by the audio tracking algorithm for
sequences 18 and 11.

Method Precision (Measp) Recall (Measr)

Viola-Jones 0.6 0.83
Propose AV method 0.97 0.97

TABLE I. COMPARISON BETWEEN OUR PROPOSED AUDIO-VISUAL

FACE DETECTION WITH THE VIOLA-JONES METHOD.

VIII. CONCLUSION

We have presented a novel method of combining audio and
visual information for robust face detection in a meeting room
environment. We have demonstrated that using the audio DOA
to constrain the search space can increase the accuracy of our
visual face detector. Additionally, the audio tracker provides
us with the number of speakers a priori thus greatly reducing
the chances of a false positive face detection. We compared
our proposed method to one of the standard methods for face
detection [12], the results showed our method outperformed
this baseline method on the challenging AV16.3 dataset.
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Fig. 8. Images from the testing set featuring multiple people. Blue and
green lines show the sampling line for each subject and the rectangles are the
position of the image patch with the maximum likelihood of a face for each
subject.
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