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Abstract

Underdetermined reverberant speech separation is a challenging problem in source sep-
aration that has received considerable attention in both computational auditory scene
analysis (CASA) and blind source separation (BSS). Recent studies suggest that, in
general, the performance of frequency domain BSS methods suffer from the permuta-
tion problem across frequencies which degrades in high reverberation, meanwhile, CASA
methods perform less effectively for closely spaced sources. This paper presents a method
to address these limitations, based on the combination of monaural, binaural and BSS
cues for the automatic classification of time-frequency (T-F) units of the speech mixture
spectrogram. By modeling the interaural phase difference, the interaural level difference
and frequency-bin mixing vectors, we integrate the coherence information for each source
within a probabilistic framework. The Expectation-Maximization (EM) algorithm is then
used iteratively to refine the soft assignment of TF regions to sources and re-estimate
their model parameters. It is observed that the reliability of the cues affects the accu-
racy of the estimates and varies with respect to cue type and frequency. As such, the
contribution of each cue to the assignment decision is adjusted by weighting the log-
likelihoods of the cues empirically, which significantly improves the performance. Results
are reported for binaural speech mixtures in five rooms covering a range of reverberation
times and direct-to-reverberant ratios. The proposed method compares favorably with
state-of-the-art baseline algorithms by Mandel et al. and Sawada et al., in terms of signal-
to-distortion ratio (SDR) of the separated source signals. The paper also investigates the
effect of introducing spectral cues for integration within the same framework. Analysis
of the experimental outcomes will include a comparison of the contribution of individual
cues under varying conditions and discussion of the implications for system optimization.

1. Introduction

Hearing aids, automatic speech recognition (ASR) and many other communication sys-
tems work well when there is just one source with almost no echo, but their performance
degrades in situations where there are more speakers talking simultaneously or the re-
verberation is high. Therefore, it is highly desirable to localize and separate the source
signals as an auditory front-end. Many different solutions have been suggested to solve
this problem which can be grouped into two major approaches known as blind source
separation (BSS) (Makino, Lee & Sawada (2007) and Hyvarianen & Oja (2000)) and
computational auditory scene analysis (CASA) (Wang & Brown (2006)). The former is
based on the statistical properties of the signals whereas the latter is inspired by human
auditory processes, and exploits various properties of the speech signals.
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Since the convolutive mixing models are usually considered for real speech mixtures,
applying the BSS techniques directly to the mixtures in the time domain such as ICA
introduced by Hyvarianen & Oja (2000) would involve high computational cost. A com-
putationally more efficient solution is to decompose the signal into its frequency com-
ponents and separate the sources at frequency bins independently. However, as the BSS
algorithms do not preserve the order of the sources, the recovered sources are not neces-
sarily aligned over all the frequency channels, introducing a new challenge, known as the
permutation problem. On the other hand, the performance of CASA techniques which are
based on binaural cues such as interaural level difference (ILD) and interaural phase dif-
ference (IPD) degrades when the sources are close to each other. In this paper, the BSS,
IPD and ILD cues are modeled and then combined to compensate for the limitations of
each of them (Alinaghi, Wang & Jackson (2011)).
Moreover, to reduce the effect of reverberation we exploit the coherence between the

left and right microphones to detect the T-F units containing more energy from the direct
signals which show a high coherence and give more weights to those T-F regions. This
approach resembles the precedence effect in the human auditory system which mainly
considers the binaural cues of the first wave front as in Jeub et al. (2010).
The cues are extracted from the left and right recordings in the T-F domain and

then employed to calculate the probability of each source at each T-F unit. Once the
likelihood of the cues has been maximized, the results can be used to estimate a soft mask
to extract the source signals from the mixtures. In this method, we also eliminate the
permutation problem by an appropriate initialization using binaural information about
the sources. We also reduce the effect of reverberation by weighting the TF units based
on coherence information. Finally, it is shown that the proposed technique outperforms
the two baselines by Mandel et al. (2010), and Sawada et al. (2011).

2. Methods

In stereo recordings there are two microphones representing right and left ears, and so two
mixtures are available, l(n) and r(n), where n is the discrete time index. Each recording
is the combination of filtered source signals with additive or reverberant noise. It is found
Mandel, Weiss & Ellis (2010) that a reverberant noise model works for both cases:

l(n) =

N∑
i=1

si(n) ∗ hil(n) ∗ nl(n),

r(n) =

N∑
i=1

si(n) ∗ hir(n) ∗ nr(n), (2.1)

where N , known a priori, is the number of sources, si(n), hil(n) and hir(n) are the ith
source signal and the room impulse responses from source i to the left and right ears,
respectively. The signals nl(n) and nr(n) represent the effect of the background noise.
The spectrogram of each signal can be computed using the short time Fourier transform
(STFT). The main idea is to partition the T-F regions belonging to different sources
exploiting various information at each T-F units. To extract the binaural features of the
signal the interaural spectrogram is calculated by dividing the left and right spectrograms
at each T-F unit. In addition, the left and right signal values are concatenated at each
T-F unit to produce a 2 dimensional observation vector X as follows:

L(ω, t)

R(ω, t)
= 10α(ω,t)/20ejφ(ω,t),X(ω, t) = [L(ω, t)R(ω, t)]T (2.2)
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where L(ω, t) and R(ω, t) are the transformed left and right signals at each frequency ω
and time frame t, respectively.
At each T-F point (ω, t), three features are available, α(ω, t), i.e. the ILD, φ(ω, t), i.e.

the IPD, and X(ω, t), i.e. the observation vector. The mixing vector ai gives a fit to the
set of X(ω, t) over time for each source i. Each feature can be modeled by a Normal
distribution with parameters that maximize the likelihood of the measured values, as
described in:

L(Θ̂) = max
θ

∑
ω,t

log p(φ(ω, t), α(ω, t),x(ω, t)|Θ) (2.3)

where

Θ̂ = {ξi(ω), σi(ω), µi(ω), ηi(ω),ai(ω), γi(ω), ψi(ω)}

and ξi, σ
2
i , µi, η

2
i , ai, and γ

2
i are the mean and variance of the IPDs, the ILDs and the

mixing vectors, respectively. Once the underlying parameters are estimated using the
Expectation maximization (EM) algorithm, the probability of each TF unit belonging to
each source can be calculated as described in Alinaghi, Wang & Jackson (2011).
We also introduced some weights to the cues to adjust their contribution:

log(ν) ∝WP · logψp(φ̂|ξ, σ2) +WL· log p(α|µ, η2) +
WB · log p(x|a, γ2) (2.4)

where WP , WL and WB control the influence of IPD, ILD and basis vector cues, respec-
tively.
In addition, as mentioned in Jeub, Schafer, Esch & Vary (2010), the precedence effect

can be modeled by Interaural Coherence (IC). It is shown that the recordings correspond-
ing to the direct sound are coherent over all microphones. The idea is to give more weight
to the T-F units containing more energy from direct sound which can be performed by
a Wiener filter.

Gcoh(ω, t) =
Φ̂ss(ω, t)

0.5(Φ̂s̃r s̃r (ω, t) + Φ̂s̃ls̃l(ω, t))
(2.5)

where Φ̂ss is the auto-power spectral density (APSD) of the original signal which can be
estimated using the correlation of the observed signals and a binaural coherence model
as explained in Jeub, Schafer, Esch & Vary (2010). Φ̂s̃r s̃r and Φ̂s̃ls̃l are the (APSD)
of the left and right ear recordings, respectively which can be calculated by recursive
periodogram approach. The Wiener coefficients, Gcoh are calculated in the first step and
then multiplied by mixture spectrogram at each T-F unit. The signals should be time
aligned for calculating the coefficients, so that it can be applied for sources at different
azimuth. For start we only considered the target source at zero azimuth.

3. Experiments and Results

For each T60 and configuration, 15 pairs from those 15 selected utterances from Garofalo
et al. (1993) were chosen in such a way that no signal would be mixed with itself. They
were then convolved by the room impulse responses measured in Hummersone (2011).
The mixtures were then generated by simply adding the reverberant target and inter-
ferer signals which is equivalent to assuming the superposition of their respective sound
fields. The target source was always located at the zero azimuth while the interferer’s
azimuth varied from 10◦ to 90◦ with steps of 5◦, 1.5 m away from the head (this defines 6
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Case Methods X A B C D Mean

2-Src

Sawada 12.52 9.11 6.19 8.63 4.36 7.07
Mandel 13.27 10.14 7.10 9.51 5.42 8.04

Unweighted 14.57 10.65 7.27 9.79 5.93 8.41
Weighted 14.03 10.80 7.61 10.05 6.31 8.69
Dereverb - 10.90 7.70 10.15 6.41 8.70

3-Src

Sawada 4.95 6.43 4.13 6.03 3.30 4.97
Mandel 8.78 7.81 4.93 7.40 3.97 6.03

Unweighted 9.58 8.31 5.21 7.69 4.20 6.35
Weighted 9.61 8.49 5.52 8.03 4.73 6.69
Dereverb - 8.49 5.52 8.03 4.73 6.69

Table 1. Results of baseline methods and proposed method without (WP = WL = WB = 1)
and with weighting (WP = 0.8,WL = 0.1,WB = 0.5) for anechoic, X, and reverberant mixtures
with the average over A (T60 = 0.32s), B (0.47s), C (0.68s) and D (0.89s) in SDR [dB].

different configurations). Table 1. shows improvement for 2-src mixtures, while for 3-src
mixtures dereverberation has not been effective. However, the dereverberation algorithm
contains some parameters that can be adjusted for various conditions to achieve better
performance which can be investigated in our future work.
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