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ABSTRACT

This paper presents a new method for reverberant speech sep-

aration, based on the combination of binaural cues and blind

source separation (BSS) for the automatic classification of

the time-frequency (T-F) units of the speech mixture spec-

trogram. The main idea is to model interaural phase dif-

ference, interaural level difference and frequency bin-wise

mixing vectors by Gaussian mixture models for each source

and then evaluate that model at each T-F point and assign

the units with high probability to that source. The model

parameters and the assigned regions are refined iteratively

using the Expectation-Maximization (EM) algorithm. The

proposed method also addresses the permutation problem of

the frequency domain BSS by initializing the mixing vectors

for each frequency channel. The EM algorithm starts with

binaural cues and after a few iterations the estimated prob-

abilistic mask is used to initialize and re-estimate the mix-

ing vector model parameters. We performed experiments on

speech mixtures, and showed an average of about 0.8 dB im-

provement in signal-to-distortion (SDR) over the binaural-

only baseline.

Index Terms— EM algorithm, interaural phase differ-

ence, interaural level difference, blind source separation, mix-

ing vectors

1. INTRODUCTION

In real environments, speech signals are usually collected

together with other speakers’ voice and background noise

which can degrade the performance of automatic speech

recognition (ASR) systems. Therefore, it is important to

separate speech signals in recorded mixtures prior to further

processing. One approach is blind source separation meth-

ods (BSS), such as independent component analysis (ICA)

[1]. Although they show promising results in acoustically

dry (anechoic) and overdetermined situations, their perfor-

mance is limited in reverberant environments, especially for

Thanks to CVSSP for funding A. Alinaghi, and to B. Shinn-Cunningham

for providing us with BRIRs. Special thanks to Michael Mandel for sharing

his code and helping with its related issues.

under-determined cases. One solution is to work in the fre-

quency domain where the reverberant convolutive mixtures

are transformed to the complex weighted product of the

source spectrograms in each frequency bin [2]. However, the

permutation alignment of the sources across frequency bins

is still an issue in spite of different proposed solutions [3].

Another approach to solve the cocktail party problem, where

speech signals are mixed, is Computational Auditory Scene

Analysis (CASA) [4] which is inspired by the human audi-

tory system and exploits monaural and binaural cues such as

pitch, interaural level difference (ILD) and interaural phase

difference (IPD). An important advantage of this method is

that the number of sources can equal or exceed the number of

microphones, which is usually two.

In this paper, we propose a new method for separating re-

verberant speech mixtures by classifying the T-F units of their

spectrograms into different sources, basd on the integration of

the ILD and IPD cues as in [5], and the mixing vectors esti-

mated by a BSS algorithm in e.g. [6]. In both methods proba-

bility distribution functions are applied to model the ILD, IPD

and h statistically which can be evaluated at each T-F point of

the spectrogram. Then the parameters of each source model

are re-estimated according to the T-F regions that are most

likely to be dominated by that source. Once the model pa-

rameters have been updated, the probability of each T-F point

dominated by a specific source will be refined by the EM al-

gorithm to improve the results.

In section 2, the binaural cues are modeled. Bin-wise clas-

sification using the mixing vectors estimated by BSS is dis-

cussed in section 3. Section 4 explains the EM algorithm to

maximize the combined log likelihood and estimate the model

parameters of all the three cues, while solving the permuta-

tion problem of the frequency domain BSS . The experimen-

tal setup and results are in section 5, and finally section 6

contains the conclusions.

2. CLASSIFICATION OF TIME-FREQUENCY UNITS
BASED ON BINAURAL CUES

In stereo recordings there are two microphones representing

right and left ears, and so two mixtures are available, l(n) and

r(n), where n is the discrete time index. Each recording is the
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combination of filtered source signals with additive or rever-

berant noise. It is found [5] that a reverberant noise model

works for both cases:

l(n) =
N∑
i=1

si(n) ∗ hil(n) ∗ nl(n),

r(n) =
N∑
i=1

si(n) ∗ hir(n) ∗ nr(n), (1)

where N , known as a priori, is the number of sources, si(n),
hil(n) and hir(n) are the ith source signal and the room im-

pulse responses from source i to the left and right ears, re-

spectively. nl(n) and nr(n) are the background noise. The

spectrogram of each signal can be computed using the short

time Fourier transform (STFT). The interaural spectrogram,

i.e. the ratio of the left and right spectrograms, is formed:

L(ω, t)

R(ω, t)
= 10α(ω,t)/20ejφ(ω,t) (2)

where L(ω, t) and R(ω, t) are the transformed left and right

signals at each frequency ω and time frame t, respectively. At

each T-F point (ω, t), two observations are available, α(ω, t),
i.e. the ILD, and φ(ω, t), i.e. the IPD. Since all the mea-

sured phases are wrapped to the range (−π, π], they cannot

be mapped to their corresponding interaural time differences

(ITD) uniquely. In other words the targets with greater az-

imuths may be considered as being from smaller angles due to

spatial aliasing. In order to avoid this ambiguity, a top-down

process is suggested in [5] where the equally spaced ITDs cor-

responding to azimuths from −90o to 90o are mapped to the

corresponding IPDs without ambiguity. Then the difference

between the observed IPDs and the predicted IPDs gives the

phase residuals φ̂(ω, t; τ) = arg(ejφ(ω,t)e−jωτ(ω)) that can

be modeled by a normal distribution for each candidate ITD,

τ . The ILDs are modeled by a Gaussian distribution.

Therefore, the main task is to find the model parameters,

i.e. the mean and variances, that best fit the observations (α

and φ̂). The parameters that maximize the log likelihood for

the given observation, can be estimated using the EM algo-

rithm:

L(Θ) =
∑
ω,t

log p(φ̂(ω, t; τ), α(ω, t)|Θ) (3)

=
∑
ω,t

log
∑
i,τ

[ψi,τ .N (φ̂(ω, t; τ)|ξi,τ (ω), σ2
i,τ (ω))

.N (α(ω, t)|μi(ω), η
2
i (ω))] (4)

where ξi,τ , σ
2
i,τ , μi and η2i are the mean and variance of the

IPD residuals and the ILDs, respectively. Equation (4) rep-

resents the Gaussian mixture model with one Gaussian dis-

tribution for each source i and each azimuth (corresponding

to each τ ). Therefore, there are N (number of sources)×Nτ

(number of equally spaced ITDs) Gaussian distributions be-

ing mixed by the mixing weight ψi,τ which can be initialized

by the PHAT histogram [7].

3. BIN-WISE CLASSIFICATION BY MIXING
VECTORS ESTIMATION

In this method, instead of taking the ratio of the left and right

spectrograms, the two measured signals are put together to

form a new data whose elements are 2 dimensional vectors

(the number of sensors). Moreover, assuming the sparseness

of audio signals, at each T-F unit only one source is dominant

and hence the STFT of observations at each T-F unit can be

represented as:

x(ω, t) =

N∑
j=1

hjsj(ω, t) ≈ hjsj(ω, t) (5)

where x(ω, t) = [L(ω, t), R(ω, t)]T and hj = [hjl, hjr]
T .

Then each observation vector is normalized to remove the ef-

fect of the source amplitude. The filter coefficients, hk, also

known as the mixing matrices in BSS methods, are modeled

as a complex Gaussian density function, evaluated for each

observation [6].

p(x|ai, γi) = 1

(πγ2
i )

2
exp

(
−||x− (aHi x).ai||2

γ2
i

)
(6)

where ai is the centroid with unit norm ||ai||2 = 1, and γ2
i

is the variance. The orthogonal projection of each obser-

vation x onto the subspace spanned by ai can be estimated

by (aHi x).ai. Therefore, the minimum distance between the

point x and the subspace is ||x − (aHi x).ai|| which repre-

sents the probability of that point belonging to the ith class.

In other words, the probability of each T-F unit coming from

source i can be estimated for i = 1...N to find out which

source is dominant in that unit. Since the order of the recov-

ered sources at each frequency bin is not necessarily the same

as others, the permutation alignment is needed before trans-

forming the signals to the time domain [6].

4. INTEGRATION OF BINAURAL CUES AND
MODELED ROOM IMPULSE RESPONSE WITH EM

ALGORITHM

To improve the reliability of allocating each T-F unit to a

specific source, we propose to combine the above two ap-

proaches. Accordingly, three different observations are ex-

ploited {φ̂(ω, t; τ), α(ω, t) and x(ω, t)} with parameters Θ̂:

Θ̂ = {ξi,τ (ω), σi,τ (ω), μi(ω), ηi(ω),

ak(ω), γk(ω), ψi,τ (ω)} (7)

where ξi,τ , σ
2
i,τ , μi, η

2
i , ai, and γ2

i are the mean and variance

of the IPDs, the ILDs and the mixing vectors, respectively.

However, the probabilistic classification in this BSS method

is performed for each frequency bin separately and therefore

the permutation alignment over the frequency bins is still a

problem, as shown by different source index k in parameters

(7). Although [6] introduced a method based on a posteriori
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probability and showed that it works well, it is computation-

ally expensive. Therefore, we propose an alternative approach

using the information from the binaural cues.

4.1. Solving the permutation problem
As mentioned in section 4, the three different features of each

T-F point can be combined to give more reliable information

about the dominant source at each unit. However, the per-

mutation problem of bin-wise classification should be solved

before estimating overall probabilties:

L(Θ̂) = max
θ

∑
ω,t

log p(φ(ω, t; τ), α(ω, t),x(ω, t)|Θ) (8)

Since the EM algorithm can be initialized either from the E-

step or the M-step and also there is usually no prior infor-

mation about the mixing filters, we propose to initialize the

mask first and then estimate the initial values of ai(ω) and

γi(ω) based on the masked spectrogram. In order to initialize

the mask properly, we applied IPD and/or ILD cues with ini-

tialized parameters to estimate the mask and let the program

run for one iteration with no BSS contribution.

4.2. EM Algorithm
In the E-step, given the estimated parameters, Θs at M-step

and the observations, assuming the statistical independence

[5], the probability that each T-F unit, (ω, t), is dominated by

source i at time delay τ is calculated as:

νi,τ (ω, t) ∝ ψi,τ (ω).N (φ̂(ω, t; τ)|ξi,τ (ω), σ2
i,τ (ω)).

N (α(ω, t)|μi(ω), η
2
i (ω)).

N (x(ω, t)|ai(ω), γ2
i (ω)) (9)

where νi,τ (ω, t) is the occupation likelihood. In the M-step,

the IPD residual parameters (ξi,τ (ω), σ
2
i,τ (ω)), and the ILD

parameters (μi(ω), η
2
i (ω)) are re-estimated for each source

and the time delay using the estimated occupation likelihood

νi,τ (ω, t) in the E-step and the observations, as explained in

[5]. For the first iteration, we set N (x(ω, t)|ai(ω), γ2
i (ω)) =

1 in equation (9) to remove the effect of the BSS contribution.

Once the masking Mi(ω, t) ≡ ∑
τ νi,τ is obtained after one

iteration based on only the information of binaural cues, the

parameters of the mixing vectors, (ai(ω), γ
2
i (ω)), can be esti-

mated from the next M-step without the permutation problem

akin to [6].

Ri(ω) =
∑
t,τ

νi,τ (ω, t).x(ω, t)x
H(ω, t) (10)

γ2
i (ω) =

∑
t,τ νi,τ (ω, t).||x− (aHi x).ai||2∑

t,τ νi,τ (ω, t)
(11)

ψi,τ (ω) =
1

T

∑
t

νi,τ (ω, t) (12)

where T is the number of all time frames and optimum ai is

the eigenvector corresponding to the maximum eigenvalue of

Ri. Since the source order is known in νi,τ , the permutation

problem is circumvented.

Fig. 1. Set-up configuration: source 1 is placed in front of the

microphones and source 2 at θo clockwise to the central line

of microphones pair.

5. EXPERIMENTS AND RESULTS

Similar to [5], 15 utterances with the length of approximately

3 s were chosen randomly from the TIMIT dataset and then

shortened to 2.5 s for consistency with the silence at the end

of the signals being removed. Moreover, all of them were nor-

malized to have the same root mean square (RMS) amplitude

before convolving with the room impulse responses (RIRs).

The binaural RIRs (BRIRs) include a head related transfer

function (HRTF) [8] with reverberation time of T60 = 565
ms. Since it was desirable to test the effect of reverberation

time on the improvement of the proposed method, different

RIRs were simulated with a similar configuration to [8] but

without HRTFs as those applied by [5] were no longer avail-

able. Different T60 and different azimuths from 30o to 75o

with step of 15o were chosen for each set up. The two mi-

crophones were positioned 17 cm apart (similar to the size of

human head diameter) at the center of the room. To generate

the mixtures, 15 pairs from those 15 selected utterances were

chosen. The target source was placed at 0o and the interferer

at 60o, both of them at 1 m from the microphones.

The complexity of each model in [5] is represented by the

mode, which ranges from the simplest mode where no ILD

cues are used, Θ00, to the most complicated one where the

parameters of binaural cues are frequency dependent, ΘΩ,Ω.

The concept of a garbage source is introduced to reduce

the effect of reverberation. We studied the performance of

our proposed method under all these modes. We also stud-

ied a novel mode ΘG
11 with frequency independent cues and

garbage source (denoted by the superscript G).

The performance of binaural cues without and with

the BSS contribution is evaluated based on the signal-to-

distortion ratio (SDR) [9]. We applied an FIR Wiener filter

to the estimated signal with the target signal as reference.

Therefore, any energy in the estimated signal that could

be explained by a filtered version of the target signal was

considered as the target signal. Any remaining energy was

considered as distortion.
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Fig. 2. The SDR improvement by the proposed method

(bina+BSS) denothed by solid lines, over the method in [5]

denothed by dot-dashed lines at different T60s for (a) Θ00,

θ = 60o, (b) ΘG
11, θ = 60o, (c) ΘG

Ω,Ω, θ = 30o, and (d) ΘG
Ω,Ω,

θ = 60o.

As shown in figure 2 and table 1, the performance of the

proposed algorithm (bina+BSS) is consistently better than the

algorithm in [5] in which only the binaural cues are used. It

can be seen that the improvement is quite considerable at sim-

pler modes, but still exists even for the most complex mode

ΘG
ΩΩ. Figure 2 also illustrates that the improvement becomes

more significant as the reverberation time, T60 increases. This

can be explained by the fact that the ILD and so its contribu-

tion reduces at higher reverberation and so the mixing vectors

provide more distinct information, having more effect on the

results.

6. CONCLUSION

This paper has presented a method to combine binaural cues

and BSS approaches to classify the T-F units in the spectro-

gram of the mixtures. The proposed method improves the

SDR of the separated signals consistently compared to a sim-

ilar method with only binaural cues. Although the results are

for the mixtures of two speakers, future work can be extended

for more sources with only two microphones.
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