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Abstract—In this paper the mixing vector (MV) in the statistical
mixing model is compared to the binaural cues represented by in-
teraural level and phase differences (ILD and IPD). It is shown
that the MV distributions are quite distinct while binaural models
overlap when the sources are close to each other. On the other
hand, the binaural cues are more robust to high reverberation than
MV models. According to this complementary behavior we intro-
duce a new robust algorithm for stereo speech separation which
considers both additive and convolutive noise signals to model the
MV and binaural cues in parallel and estimate probabilistic time-
frequency masks. The contribution of each cue to the final decision
is also adjusted by weighting the log-likelihoods of the cues em-
pirically. Furthermore, the permutation problem of the frequency
domain blind source separation (BSS) is addressed by initializing
the MVs based on binaural cues. Experiments are performed sys-
tematically on determined and underdetermined speech mixtures
in five rooms with various acoustic properties including anechoic,
highly reverberant, and spatially-diffuse noise conditions. The re-
sults in terms of signal-to-distortion-ratio (SDR) confirm the ben-
efits of integrating the MV and binaural cues, as compared with
two state-of-the-art baseline algorithms which only use MV or the
binaural cues.

Index Terms—Blind source separation, computational auditory
scene analysis, reverberation, time-frequency masking.

I. INTRODUCTION

H EARING aids, automatic speech recognition (ASR) and
many other communication systems work reasonably

well when there is just one source with almost no echo, but
their performance degrades in situations where there are more
speakers talking simultaneously or the reverberation is high.
Therefore, it is highly desirable to localize and separate the
source signals as an auditory front-end especially when the
source signals and the mixing process are unknown, introducing
a blind estimation problem.
There have been various methods suggested to perform blind

source separation (BSS) such as independent component anal-
ysis (ICA) [1]–[3] and beamforming [4] which need as many
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mixtures available as the number of sources. To deal with under-
determined cases, when the number of mixtures is smaller than
that of sources, the signals are transformed into the time-fre-
quency (T-F) domain where the signals become sparse and the
sources can be segregated using T-F masks [5].
In [6], probabilistic (soft) masks are generated based on the

posterior probability of each source at each T-F unit. The al-
gorithm starts with the statistical model of the mixture signals
with additive noise. For T-F units, dominated by one source, the
mixing matrix can be replaced with a mixing vector. Both the
mixing vector and the active source are latent variables which
are estimated by clustering the observation vectors at each fre-
quency bin. Although this BSS technique offers good perfor-
mance based on SiSEC 2008 Data [7], it degrades as the rever-
beration time increases.
On the other hand, the human auditory system with just two

ears has shown great performance in source separation [8],
[9], which has been studied and modelled under the name of
computational auditory scene analysis (CASA) [10], [11]. In
CASA, there are two groups of monaural and binaural cues
associated with the features extracted from one or a pair of
mixtures, respectively. Among monaural cues, fundamental
frequency is the most studied feature which is only effective for
voiced speech [12]. In some approaches such as [13] and [14],
pitch information is integrated with spatial cues to improve the
results. However, their performance depends on accurate pitch
estimation which is difficult when there are multiple sources
with overlapping frequency components. Here, we focus on
binaural cues which contain spatial information.
In [15], the two main binaural cues, namely interaural level

difference (ILD) and interaural phase difference (IPD), are
applied in a probabilistic context which shows significant
improvement over existing algorithms including [5] and [16].
However, it performs poorly when the sources are close to each
other with small angular displacement. In [17] the monaural
cues are integrated with binaural cues for reverberant speech
segregation. Albeit they reported better results compared to
[15], they exploited a large training set with known azimuth
of the sources which is not always available. Moreover, their
method only recovers one (the target) source, while in [15] all
the sources can be estimated.
In this paper, we study the method based on mixing vector

(MV) estimation [6] and the technique using binaural cues [15]
to investigate the strengths and weaknesses of these two ap-
proaches. We found that the MV models seem to be more dis-
tinct compared to ILD and IPD models for sources that are
close to each other. On the other hand, for spatially separated
sources the binaural cues become easily distinguishable while
MV models may overlap. Moreover, we examined the effect of
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Fig. 1. Block diagram of the proposed algorithm. The two recorded mixtures,
, and , are transformed to the time-frequency domain and three different

features, ILD, IPD and MV are extracted from each T-F unit. The likelihood
of each source being dominant based on each cue is estimated and weighted
to contribute to the final soft mask. The mask is then applied to the mixture
spectrograms to extract the sources.

two different types of noise on these models and found that MV
models deviate due to convolutive noise but are robust to ad-
ditive noise. On the contrary, the binaural cues, and especially
IPD, are robust to convolutive noise introduced by reverbera-
tion and degrade in the presence of additive noise. These ob-
servations confirm the complementary role of spatial cues in
statistical and binaural models under various conditions which
motivated us to combine the models, introducing a new robust
algorithm.
In our proposed algorithm, soft T-F masks are estimated to

recover the source signals from stereo recordings considering
additive and convolutive noise models. This technique also pre-
vents the permutation problem by initializing the T-F masks
based on binaural cues. The model parameters and posterior
probability of the sources are estimated iteratively using the ex-
pectation-maximization (EM) algorithm. The final score of each
source being active at each T-F unit is calculated based on a
weighted combination of three source models, i.e., ILD, IPD
andMV, according to the reliability of each cue. An overview of
our method is represented in Fig. 1. Instead of omnidirectional
microphone recordings, binaural recordings, are considered in
this paper, as often encountered in applications such as hearing
aids, robotics and spatial audio.
We examined the performance of our proposed method and

the two state-of-the-art algorithms by Mandel et al. [15], and
Sawada et al. [6] in rooms with a typical range of acoustic prop-
erties. It is shown that the proposed technique outperforms the
two baselines especially under challenging conditions when the
sources are close to each other or the reverberation is high.
This paper is organized as follows. Section II discusses the

extraction of the cues from the binaural signals in the time and
frequency domains with some simplifications. Section III ex-
plains the source models and the proposed source separation
algorithm in detail. Comparison between the statistical and bin-
aural models is covered in Section IV. Implementation details of
the proposed algorithm are discussed in Section V. Experiments
are reported in Section VI, followed by Section VII discussing
the results. Section VIII summarizes the results and envisages
future work.

II. STATISTICAL AND BINAURAL MIXTURE MODELS

As mentioned in Section I, we consider both additive and
convolutive noise signals associatedwith statistical and binaural

models. Accordingly, theMVs and binaural cues for each source
are estimated based on different noise models, as discussed in
the following section.

A. Observations in the Time and Frequency Domain

We suppose that there are sources and microphones
where in the case of binaural recordings . It is also
assumed that the number of sources, , is known a priori. The
recorded signals in a room with reverberation are filtered ver-
sions of the source signals added together at each microphone.
If is the signal recorded by the th microphone in the time
domain and the th source, then (1) holds where is the
room impulse response (RIR) from source to microphone
with and representing the additive and the convolutive
noise signals, respectively:

(1)

where is the discrete time index, denotes convolution, and
the superscripts and represent the additive and convolutive
noise terms respectively.
The RIRs become longer with the increase of reverberation,

making the process of separation computationally expensive
in the time domain [18]. Therefore, using short-time Fourier
transform (STFT), the signals are mapped into the T-F domain,
where the speech signals are more sparse. Another motivation
to work in the T-F domain is that, as suggested by CASA theory,
the human auditory system also performs a short-time spectral
analysis.
The mixture model (1) can also be represented in T-F domain

by replacing the convolution with multiplication based on STFT
(assuming a time-invariant mixing system):

(2)
where , ,

, ,
, and denotes the STFT, with

and representing the time frame and frequency
channel, respectively. The above model is essentially an inte-
grated model of the two in [6] and [15] used respectively for
calculating the mixing vector cue and binaural cues.
For the convenience of analysis in Section IV, we define the

contribution of source to the mixture at each T-F unit
using the subscript as follows

(3)

For the remaining of the paper, the commonly used assump-
tion that speech signals are sparse in the T-F domain is adopted,
as in [5], [6] and [15]. More specifically, we assume that only
one source (say, the th source) is dominant at each T-F unit of
the mixture, resulting in a simpler model in the complex T-F
domain:

(4)
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B. MV based Classification

With the sparsity assumption in the T-F domain (i.e. that at
most one source is active at each T-F point within the mix-
ture), all the columns of the mixing matrix at each T-F point are
multiplied by zeros except the one corresponding to the active
source. As a result, each observation vector can be considered
as a basis vector multiplying the dominant source magnitude.
Accordingly, for , and , a vector represen-
tation of equation (4) can be represented as follows (omitting the
convolutive noise terms, , and also referring to equation (3)):

(5)

where , is the com-
plex 2D observation vector at each T-F unit,

the MV for the th source and
is the additive noise that contains

background noise and energy from other sources that are not
dominant at that T-F unit. To eliminate the effect of source
amplitude variation, the observation vectors are normalized
with respect to their magnitudes at each T-F unit, as in [6],

(6)

(7)

where is Frobenius norm, ,

, , and takes the absolute
value of its argument. The normalized observation vectors

are then whitened and normalized again as follows:

(8)

where is a whitening matrix, with each row
being one eigen vector of , and

.
We then apply centroid-based clustering, for each fre-

quency bin, to group into clusters, in which each
cluster is represented by a centroid, denoted as , where

. The aim is to minimize the Mahalanobis distance
between the vectors in each cluster and the centroid of that
cluster. In [6] a complex Gaussian density function is employed
to do this at each frequency bin with frequency-dependent
mean and variance:

(9)

where is the centroid with a unit norm ,
and is the variance. For notational convenience, we
denote as . The distance

is the minimum distance
between and the subspace spanned by because

is the orthogonal projection of
onto the subspace, where the superscript is Hermitian (con-
jugate) transpose. In other words, it shows how probable it is
that belongs to the th source. Note that, in terms of the

above discussions, we can see that the estimated mixing vector
, which is obtained from , is related to by

(10)

C. IPD and ILD Based Classification

Considering as in (4) for a pair of recordings,
, two different ratio cues can be calculated (omitting the ad-

ditive noise terms, ):

(11)

(12)

where denotes and finds the phase angle.
Therefore, the level difference related to each source,

, and the phase difference corresponding

to that source, , can be estimated as the mean
value of the noisy observations, , and , respec-
tively, as long as the T-F units dominated by each source (say
th) are identified.
Assuming that has a normal distribution with

variance of for th source, the probability of each T-F
unit being dominated by that source based on level differences
can be estimated as in [15]:

(13)

where is the mean value and can be esti-
mated based on maximum likelihood (ML), which is explained
in more detail in Section III. Similar to the MV, we denote

as .
Due to the fact that all the measured phases are wrapped to

the range , they cannot bemapped to their corresponding
interaural time difference (ITD) uniquely. To avoid this ambi-
guity, a top-down process is suggested in [15] where the equally
spaced ITDs corresponding to azimuths from to 90 are
mapped to the corresponding IPDs without ambiguity. Then the
difference between the observed and the predicted IPDs gives
the phase residuals that
can be modelled by a normal distribution for each candidate
ITD, , as explained in [15]:

(14)

where is the mean and the standard deviation. Similar
to MV and ILD, we denote as . The
Gaussian distributions are summed over with some coeffi-
cients in a Gaussian mixture model (GMM) framework to give
the marginal distribution for source at each T-F unit. This for-
mulation has the capability to integrate strong early reflections
with the direct sound from the source.
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D. Differences between MV and IPD/ILD Cues

Despite the fact that both the MV cue and the IPD/ILD cue
are derived from the mixtures (i.e. the same information), we
found that there are considerable differences in the behavior of
these cues, due to the use of different processing methods (with
versus without normalization and whitening) and noise models
(additive versus convolutive). Such differences will be analyzed
in detail in Section IV, based on both the theoretical models
and numerical comparisons, where we can see that these cues
present complementary properties in various conditions (e.g. for
closely spaced sources and/or for highly reverberant mixtures).
This motivates us to integrate the cues for improving the estima-
tion of the T-F masks under the same probabilistic framework
as discussed in the above subsections. For enhancing the read-
ability of Section IV and for notational convenience, we first in-
troduce how the cues can be integrated in the source models and
how the model parameters are estimated by EM, as discussed
in the next section. We then explain in Section IV why these
cues are complementary to each other and therefore why it is
beneficial to combine them for T-F mask estimation and source
separation.

III. SOURCE MODELING AND SEPARATION

A. Model Parameter Estimation from the Mixtures

The parameters of the models described in Sections II-B and
II-C can be estimated for each source based on the T-F units
dominated by that source. However, the dominant source at each
T-F unit is a latent variable, , which is not directly observed but
can be inferred from the observed cues and estimated models.
On the other hand, the parameters are also unknown, leading
us to apply the EM algorithm which is an iterative method for
obtaining ML or maximum a posterior (MAP) estimates of the
parameters in statistical models, where the model depends on
the expectation of latent variables. We also consider another la-
tent variable which is the time delay, , between the left and
right recordings corresponding to the dominant source at each
T-F unit.
Two probabilities need to be estimated and updated during it-

eration of the EM algorithm. The first one is which is
the occupation likelihood that source dominates at the
unit in the mixture. Hence . The second
one is , which is the joint probability of any T-F unit ac-
tivated by source at time delay , and can be considered as
the mixing weights in the GMM, as in [15]. Note that

, where and are the number of time
frames and frequency bins, respectively.
The parameters are that

maximize the log-likelihood of the observations:

(15)

(16)

where , , , , , and are the mean and variance
of the IPDs, the ILDs and the MVs, respectively, for source
and time delay . Equation (16) represents a GMM with

one Gaussian distribution for each source and each azimuth
(corresponding to each ). Therefore, there are (number
of sources) (number of equally spaced ITDs) Gaussian
distributions being mixed by the mixing weight .
We should emphasize here that, in (16), we have followed

the original work of Mandel et al. in [15] and assumed that the
IPD/ILD cues are independent. As a result, the mutual (joint)
probability is written as the product of individual probabilities.
Such an assumption may not hold in practice, but it provides a
convenient way for dealing with the issues related to the opti-
mization of the log-likelihood function, as well as the parameter
estimation of the probabilistic model. Due to the independence
assumption, when both cues are contaminated by independent
noise, they should still be independent. A further study about
this assumption can be found in Mandel et al. [19].
With the above log-likelihood function, the aim is therefore

to estimate the model parameters given the observations of IPD,
ILD andMV. This can be achieved by the well-known EM algo-
rithm, based on the units allocated to each source in the mixture
spectrograms, and then both the units and the parameters are re-
fined alternately, as discussed next.

B. Expectation-Maximization Algorithm

The EM algorithm is employed to estimate the model param-
eters and the probability at each T-F point, iteratively. In the
Expectation step (E step), it calculates the expected value of
the log-likelihood function with respect to the observations
and , under the current estimate of the parameters . In other
words, given the estimated parameters, , and the observations,
and assuming the statistical independence of the cues [15], the
probability of the source at time delay being dominant at T-F
unit is calculated as:

(17)

where is the occupation likelihood of source with
delay . Coefficient can be determined in such a way that

adds up to 1 over all sources and time delays at each
T-F unit, while the mixing coefficient is initialized by the
PHAT histogram [20]. Other elements of (17), i.e. ,

, and can be estimated via (14), (13), and
(9), respectively.
The ILD parameters ( ) and the IPD residual pa-

rameters ( ), are re-estimated for each source and
time delay using the estimated occupation likelihood
that was calculated in the E-step. The M-step of the algorithm
can be defined as follows where the model distributions are
Gaussian:
Similar to [15], the ILD parameters are updated as:

(18)

(19)

IPD residual parameters are updated:

(20)

(21)



1438 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 22, NO. 9, SEPTEMBER 2014

Frequency-independent parameters can be estimated by
taking the average along the frequency bins. For example,
the frequency independent mean of ILD can be calculated
as , and likewise for the other ILD/IPD
parameters. Such averaging can be used to control the model
complexity, as will be discussed in Section VI. However, the
MVs are estimated at each frequency independently [6]. There-
fore the permutation alignment over frequency bins is still a
problem. In addition, it is well-known that the EM algorithm
only guarantees a local optimum and, in practice, it is important
to set the initial values appropriately to achieve the global
optimum. Both issues will be addressed in Section V.
To update the parameters of the mixing vectors, the correla-

tion matrix of weighted samples is required. Since the orien-
tation of a linear subspace (i.e., the basis vector related to each
source) can be thought of as its greatest variance [21], the eigen-
vector corresponding to the maximum eigenvalue, , of
the correlation matrix is assumed as the optimum , as in [6]:

(22)

(23)

(24)

(25)

where and are the number of time frames and frequency
bins, respectively.
Equipped with clear definitions of symbols and descriptions

of the proposed algorithm discussed above, we are now able to
provide a detailed analysis of the properties of the MV cue in
contrast with the IPD/ILD cues, and show that they can comple-
ment each other in various acoustic conditions for the improve-
ment of T-F mask estimation, which is our focus in next section.

IV. COMPARING THE CUES AT DIFFERENT CONDITIONS

A. Complex Mixing Vector Representation

First, we show that the operations of normalization (6) and
whitening (8) in the T-F domain have reduced the degrees
of freedom of the model (5) when represented by the mixing
vector. To see this, we represent the model in (5) with complex

vectors containing amplitude and phase information as
follows (neglecting any effects of noise on the estimates):

(26)

where source is the dominant source. Therefore at each fre-
quency bin , we have:

(27)

(28)

(29)

where and
have uniform and normal distributions, respectively. As shown

in (28), is time-variant since the phase
of the source signal changes with respect to time. As a result,
it is uninformative and cannot be used to estimate the time-
invariant mixing vectors blindly. Instead, the MVs

can be evaluated as the main eigenvectors of
the covariance matrices as defined in (22) where we
take , according to the aforementioned spar-
sity assumption that only one source, i.e. , is active at
each . Consequently, the MVs will have two degrees of
freedom: relative amplitude and relative phase, since
and or .
This result is consistent with the fact that the covariance ma-

trices are positive-semidefinite and symmetric [22] and so Her-
mitian in the complex domain with all the eigenvalues being real
and simple [23]. Hence, the eigenvectors (mixing vectors) will
be like where and , with relative phase and
amplitude containing the whole information.
On the other hand, as illustrated in Section II-B, the MV

related to each source at a given frequency can be consid-
ered as the centroid of that source’s (whitened and normalized)
observation vectors where

at that frequency. Therefore, the MV of the
source at a given frequency, , can be represented by the
observation vectors of that given source (assuming all
other sources to be inactive). To show this, similar to the nota-
tion used in equation (4), we define the contributions of source
to as , where ,

, and likewise, its contributions to as
. When only source is active, ac-

cording to (26), we have .
We now present an example to demonstrate the relationship

between and the MVs with a scatter plot. To this end,
we generate the observed signals by convolving two random
utterances from the TIMIT dataset [24] with binaural RIRs
(BRIRs) of room A [25] (as listed in Table II in Section VI)
for sources at 0 and 10 azimuths, one at a time. For ex-
ample, we can allow one utterance to be active (e.g., source
placed at 0 azimuth), by switching off the other (e.g.

source placed at 10 ). In this way, the observed signals ,
, would contain only the contributions from source

. Then the signals are transformed to T-F domain and
concatenated to produce complex observation vectors at each
T-F unit, in this case , which are further
processed in terms of (6) and (8) to produce the normalized
and whitened observation signals . The
observation vector, , with corresponding MV
as its centroid, is represented by ,
and , which are associated
to the phase and level differences of source , respec-
tively. The observation vectors at the frequency band
of 3.85 kHz are the circles plotted in Fig. 2(a). When only
source is active (by switching off source ),
we can similarly visualize , and

as the triangles in Fig. 2(a).
It can be seen that all the points are confined to a quadrant
of a unit cylinder shell due to the normalization which can
be unwrapped to a 2D plane as shown in Fig. 2(b). Now,
this seems to suggest that the MV does not provide extra
information compared to IPD and ILD. However, as will be
clear in the following sections, the scatter plots and probability
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Fig. 2. 2D representation of the observation vectors in frequency channel
kHz after normalization and whitening on a (a) unit cylinder wall, and

(b) unwrapped 2D plane, for two different sources at 0 and 10 azimuths.

distributions of MV and binaural cues are different and they
introduce different behavior under various conditions.

B. Closely Spaced Sources

In this section we compare the behavior of the MV and bin-
aural cue (ILD/IPD) distributions and show that MV distribu-
tions are more distinct compared to the joint probability of ILD
and IPD, when the sources are close to each other. Equal prob-
ability contours are used to illustrate the multivariate distribu-
tions in 2D space [26]. We consider the same example as shown
in Fig. 2 in Section IV-A, where the observed signals (whitened
and normalized) and were obtained in the same way by
placing respectively source 1 at 0 azimuth and source 2 at 10
azimuth, one at a time.
To calculate the equal probability contours based

on the MV, the (mean and variance) model parame-
ters, , and , were estimated for each source

based on the whitened observation signals
using (22)-(24).

For example, for the estimation of , and , source 1
alone was active when capturing the observation signals .
As a result, , and equation (22) can be
simplified as . Hence for the
frequency band at kHz, the MV parameters
and were estimated according to (22)–(24). The same
procedure was followed when calculating and
assuming that only source 2 was active in that band. We then
plotted the equal probability contours of two MV probabilities
under the two sets of MV parameters calculated above, as
shown by dashed lines in Fig. 3(a), as follows. First, two sets
of MV probabilities were calculated using
(9) for , with taking discrete values from

and from dB to 20 dB. This corresponds

to changing from approximately 0.1 to . Then,
Matlab’s contour function was employed to draw the equal
probability contours in dashed lines based on these two sets of
calculated probabilities.
To show how distinguishable the sources are, the variables

in 2D space should be divided into two
(or more) groups, which are associated with the samples
from each source. The decision boundaries, or the borders
between these regions, are drawn with a solid line where
the two sets of MV probabilities are equal. In other words,
when . We also

Fig. 3. Scatter plots and probability contours (dashed lines) for sources in room
A at 0 in and 10 in with decision boundaries shown by solid lines based
on (a) mixing vectors and (b) binaural cues in frequency kHz.

show the scatter plots based on the whitened observations
from the clean source signals, and at

kHz, i.e. by plotting the quantities
versus , for both sources .
Note that, each scatter point corresponds to a time frame ,
as has been fixed to kHz in this plot. Since the model
parameters were estimated with the same observation vectors,
the equal probability contours and the scattered samples are
consistent.
For binaural cues, the level and phase differences of

each source with no interference at the same frequency
( kHz) were calculated based directly on
and using (11) and (12), by replacing
in these equations with for (again due
to the assumption that only source is active). The scattered
samples in Fig. 3(b) were obtained based on the observa-
tions and of each source . Then the
model parameters, and , were
estimated according to (18)–(21) using the observed
and values for each source. In this case was set
to a normal distribution over , whose mean was estimated via
the PHAT-histogram [20] and variance is fixed to 1. Then the
probability, given that source is active, of any phase differ-
ence from to was calculated
as based on the GMM of source
using (14), with as observations. The
relative amplitude, , was also varied from 0.1
to and the probability of any relative amplitude belonging
to each source, , i.e. , was computed based on (13),
with as observation. The equal probability
contours in Fig. 3(b) were estimated from a set of variables

similarly to that used in
Fig. 3(a). Also, ranges from ,
and ranges from dB to 20 dB. However, in
contrast to the MV probability defined in (9), the binaural prob-
ability is calculated as the product of (14) and (13). Note that,
in the above analysis, we have used the frequency-independent
mode in the EM algorithm as discussed in Section VI.
Now we can see that the two MV based clusters in Fig. 3(a)

are more distinct compared to the binaural based clusters and
probability contours in Fig. 3(b) when the sources are close to
each other. This suggests that MVs with the statistical model
perform better than the binaural cues for closely spaced sources.
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Fig. 4. Scatter plots and probability contours (dashed lines) for sources in room
A at 0 in and 80 in with decision boundaries shown by solid lines based
on (a) mixing vectors and (b) binaural cues in frequency kHz.

Fig. 5. The difference between the KL divergences obtained respectively from
the MV and binaural models is shown here. The KL divergence between the
two source models is calculated based on binaural cues and mixing vectors in
room A with s where one source is at 0 and the second source is
at (a) 10 and (b) 80 .

Fig. 4 displays the scatter plots, the equal probability contours
and decision boundaries for sources at 0 and 80 in room A
obtained similarly. It can be seen that when the sources are well
away from each other with 80 difference in azimuth, binaural
cue source models are quite distinct whereas the observation
vectors have more overlap, which is opposite to what has been
observed for closely spaced sources.
We have also examined how distinct the source models

are over frequency based on the Kullback–Leibler (KL)
divergence [27] between the source models for two sources at
0 and 10 or 80 azimuths. The KL divergence ( ) for MV
and binaural models are defined respectively as follows1 :

(30)

where the probability density function ,
has already been defined in (9), and

(31)

1Note that, the discrete model probability is normalized over such that
. This rule also applies to the

calculation of other KL divergence in this paper.

TABLE I
KL-DIVERGENCE BETWEEN THE CLEAN AND NOISY SIGNAL MODELS FOR THREE
DIFFERENT CUES AND TWO TYPES OF NOISE AVERAGED OVER ALL FREQUENCIES

where , and the calculation
of and based on (13) and (14), respectively,
has been described earlier in this section.
We evaluate the difference between the KL divergences ob-

tained fromMV and binaural models2, i.e.
. When , the MV cue is more discrim-

inative as compared with the binaural cues, and vice versa. As
shown in Fig. 5(a), MV based source models are well separated
even when the sources are close to each other (10 azimuth) es-
pecially in the frequency range kHz where ILD and IPD
are not very reliable [9]. On the other hand, when the sources
are positioned away from each other (80 azimuthal displace-
ment) the IPD/ILD source models become more distinct com-
pared to those based on MVs (see Fig. 5(b)). This suggests that
MV and binaural models play complementary roles for different
source positioning which motivated us to combine the statis-
tical and binaural models and introduce a new algorithm that,
as we will show in Section VI, works better than the methods
using the individual cues for various source configurations and
conditions.

C. High Reverberation

Next, we examined the effect of two types of noise on the
cues. First, speech shaped noise was generated by averaging the
spectra of the anechoic recordings of 15 utterances used in the
experiments (see Section VI-A). Then the generated noise was
added to a clean signal to produce a corrupted signal, similar
to [28]. The clean signal was one of the utterances convolved
with anechoic BRIR (see Section VI-A). The same utterance
was also convolved with the BRIR of the reverberant roomD (as
in Table II) to introduce convolutive noise. To measure the rel-
ative level of this convolutive noise we divided room D’s BRIR
at 32 ms, which is also half of the window length (64 ms), and
zero-padded each remaining part to have two RIRs representing
the direct sound with desired early reflections and late reverber-
ation noise. The two parts were then convolved with the original
utterance and the relative energy of the signals was measured to
be approximately 5 dB for room D. Accordingly, the level of
speech shaped noise was set to yield an SNR of 5 dB in the ane-
choic room.
The model parameters of the source, ,

were estimated under three different conditions: anechoic
room, anechoic room with additive noise, and rever-
berant room, to investigate the effect of additive and convolu-
tive noise. The degradation from the original models is mea-
sured based on the KL divergence [27] between the pdfs of the
noisy observations and those corresponding to the clean ane-
choic signal.

2Note that, was calculated over the following range of values for the param-
eters: , dB, ,

and dB.
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Unlike the KL divergence defined earlier that measures
the distance of the pdfs obtained from different sources at
different positions in the same environment in Section IV.B,
the KL divergence here measures the distance of the pdfs
obtained from the same source under different conditions,
either between the noiseless anechoic environment and the
additive-noise-corrupted anechoic environment, or between the
noiseless anechoic environment and the convolutive-noise-cor-
rupted reverberant environment. Take the KL divergence
based on MV cues, for example. Suppose the parameter set

is obtained from a source in the noiseless ane-
choic situation, and is estimated from the same
source at the same input angle in a noisy environment, then the
KL divergence here is calculated as:

(32)

In a similar way, the KL divergences based on IPD cues and
ILD cues, i.e. and , can also be obtained.
The results are given in Table I, which demonstrate that the

MV model is more affected by high reverberation with higher
KL divergence ( ) compared to the same level of
additive noise ( ). On the other hand, binaural cues are
more robust to reverberation especially IPD with ,
but more sensitive to additive noise with , which
confirms that MV and binaural cues play complementary roles
for dealing with different types of noise. This provides further
evidence that combing the cues can lead to a method that is more
robust to both additive and convolutive noise. Moreover, we can
see that MV and IPD are more reliable as compared to ILD with
less deviation from the original models, exhibiting a smaller KL
divergence. This observation motivated us to assign different
weights for each cue (as explained in Section V-C).

V. PRACTICAL IMPLEMENTATION ISSUES
OF THE PROPOSED ALGORITHM

A. Dealing with the Permutation Problem and Initialization

Since the EM algorithm can be initialized either from the
E-step or the M-step and also there is commonly no prior in-
formation about the mixing vectors, we propose to initialize the
probabilistic mask first and then estimate the initial values of

and based on the masked spectrogram.More specif-
ically, we initialize the mask based on the IPD and ILD cues de-
rived from the binaural model, and let the program run for two
iterations without any MV contribution.
For the first iteration, we set for all time

frames and frequencies in (17) to remove the effect of the
MV contribution. Once the mask
is obtained after two iterations based on only the information
in the binaural cues, the parameters of the MV distributions,

, are estimated from the next M-step to prevent
the permutation problem, as explained in [29].
Similar to [15], we initialize with one Gaussian distribu-

tion for each source, say , over with mean values corre-
sponding to the direct sound estimated by PHAT-histogram [20].
It is important to set an appropriate window length for
the PHAT-histogram approach. As the window length in-

creases, the number of segments available to generate the
histogram of time delays decreases, making the estimated pdfs
unreliable [20]. We examined various windows and achieved
the best result with .
Initial ILD parameters are set to zero mean and 10 dB stan-

dard deviation with phase residuals’ means and variances being
set to zero and one, respectively. After two iterations the proba-
bilistic mask is applied to initialize the MV parameters. There-
after, the occupation likelihoods are re-estimated and used to
update all model parameters in subsequent iterations.
To deal with the T-F units dominated by reverberation which

do not fit into the source models and degrade the parameter
estimation, [15] considers a garbage source. Assuming a dif-
fuse sound field due to reverberation, the ILD and IPD of the
garbage source should have broad distributions as the energy
comes from all directions with equal probability. Here the
garbage source is treated as another sound source with large
initial variance.

B. Weighted Cue Likelihoods

In the first stage of combining the binaural and statistical cues,
we assumed that each cue is as influential as the others, so we
simply added their log-likelihoods to estimate the joint proba-
bility of each source being active at each T-F unit. However, as
explained in IV-C, the cues are not equally reliable especially in
the presence of reverberation. For example, the IPD cue seems
to be more robust in reverberant conditions compared to the ILD
cue. Therefore, it is more appropriate to adjust the contribution
of the cues by giving a different weight to each of them before
combining them.
The idea of cue weighting is related to that of [30] in which

different distributions are weighted and combined to achieve
a model that fits the real data better. In the absence of com-
pelling statistical counter evidence, a natural choice of the pdf
for modelling the cues is the normal distribution for which no
further assumption is needed. The Gaussian (normal) distribu-
tion was employed here for consistency with Mandel et al. [15]
and Sawada et al. [6]. It is also simple, with minimized entropy,
and fast efficient parameter re-estimation via a straightforward
EM algorithm. Moreover, the possibility of extension to GMMs
provides potential for greater flexibility and precision in mod-
eling the underlying statistics of sample data.
Another motivation for cue weighting is to make

the algorithm more comprehensive compared to that of
Mandel et al. [15] where the cues are weighted equally with
different modes introducing various degrees of freedom for
parameters. We decided to make the modes more general by
substituting the coefficients with adjustable weights:

(33)

where , and control the influence of IPD, ILD and
MV cues, respectively, at each T-F point .
Here, we investigated weights that are fixed over time and

frequency. However, based on Duplex theory [31], human per-
ception treats ILD as more reliable at high frequencies, as op-
posed to IPD which is favoured at low frequencies. Therefore,
further investigations are justified to assign weights for each
cue accordingly. In our work, the weights are found empiri-
cally based on a brute force grid search approach as detailed
in Section VII-D.



1442 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 22, NO. 9, SEPTEMBER 2014

C. Pseudocode of the Proposed Algorithm

The whole algorithm is summarized in Algorithm 1.

Algorithm 1 Soft mask generation to recover speech sources

1: Task: Binaural speech source separation

2: Input: , , , ,

3: Output: the estimate of the th source

4: Initialization: , , , dB,
.

5:
(11)
(12)

Normalization (6)
Pre - whitening and normalizing ( ) (8)

6: for do

7: (14)
(13)

8: if then

9:

10: else

11: (9)
{after 2 iterations the BSS parameters are
initialized}

12: end if

13:

14: (33)

15: (16)

16:

17: (17)

18: Update (18)–(21)
{For frequency independent mode, the average of the
parameters along is used, e.g.,

, and likewise for ,
, .}

19: if then

20: Update (22)–(24)

21: end if

22: Update (25)

23: end for

24:

25:

VI. EXPERIMENTS

This section explains how we selected utterances and con-
volved them with BRIRs with various acoustic properties to
generate the virtual microphone signals including realistic room
effects. Mixtures of 2 and 3 speakers with different relative posi-
tions were created to examine the effect of source configuration
on the performance of the algorithms. These provide tests for de-
termined (2-source) and underdetermined (3-source) cases. The
Mandel et al. [15], Sawada et al. [6] and our proposed algo-
rithms were then applied to the mixtures to recover the source
signals. The quality of the recovered signals was evaluated both
in terms of signal distortion and perceptual speech quality.

A. Data Source Selection

Similar to [15], we chose the TIMIT data set which is a
continuous speech corpus containing 6300 utterances spoken
by 630 native American English speakers [24]. 15 utterances,
spoken by both male and female speakers, with approximately
the same length (about 3 s), were selected randomly and then
shortened to 2.5 s for consistency. The two common sentences
spoken by all speakers (sa1 and sa2) were removed from the
selection set to avoid mixtures containing identical word se-
quences, which would violate the assumption of sparsity and be
unlikely from a practical perspective. All the utterances were
also normalized to have equal root mean square amplitude.
Several RIR data sets were investigated to find the most

appropriate one for our aim which was evaluating the ef-
fects of source configuration and room reverberation on the
performance of the algorithms. The BRIRs measured by
Hummersone [32] were selected. These were recorded using a
dummy head and torso in 5 different types of room, named as X,
A, B, C and D at the University of Surrey. One advantage of this
database over other datasets, such as [33], is its higher angular
resolution which enabled us to evaluate the performance of the
algorithms over different configurations with finer resolution.
The other positive aspect of this dataset is that the BRIRs
were measured in rooms with different acoustical properties,
which facilitates comparison of the algorithms over a range
of conditions. Table II shows the acoustical properties of the
rooms in which the signals were recorded. For the anechoic
condition, X, the impulse responses were recorded in a very
large room and the reflections were then truncated. The head
related transfer function (HRTF) is incorporated in the BRIR
which makes the signals similar to what a person would hear
in that position.
For each and angular configuration, 15 pairs from those

15 selected utterances were chosen in such a way that no signal
would be mixed with itself. The mixtures were then generated
by simply adding the reverberant target and interferer signals
which is equivalent to assuming superposition of their respec-
tive sound fields. Even though the time-frequency masks to re-
cover all the sources at different azimuths are calculated in our
proposed algorithm, the algorithms’ performance is reported
based on the quality of the recovered target source located at
the 0 azimuth, while the interferer’s azimuth varied from 10
to 90 with steps of 5 . All sources were 1.5 m away from the
head (this defines 17 different configurations). This is an eco-
logically valid approach to investigating the effect of target-in-
terferer angular displacement on the system performance, given
that we typically turn to face the target [34]. In the case of
2-source mixtures, the interferer was located on the right of the
target, whereas for 3-source mixtures, the two interferers were
located symmetrically on the right and left of the target source,
as in [15].
Since there were 5 different rooms and 17 different configura-

tions, 85 sets of mixtures were created each of which contained
15 different mixtures (1275 mixtures in total). Mandel’s algo-
rithm (based on only binaural cues), Sawada’s algorithm (based
on the MVs) and our proposed algorithm were used to separate
the source signals.
For our proposed algorithm we examined various window

lengths and found the optimum 1024 sample Hann window
(64 ms with kHz) with overlap. To recover the
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target signal, as shown in line 25 in Algorithm 1, the average
of the separated signals at the left and right microphones is
calculated. Although this summation favors frontal sources, we
have applied the same routine as in the two baselines [6], [15]
to facilitate a fair comparison. Each recovered signal was then
compared to the original utterance to measure the performance
of the algorithm. This evaluation will be explained in more
detail below.

B. Evaluation

We considered two measures of the speech separation accu-
racy: signal-to-distortion ratio (SDR) [35] and Perceptual Eval-
uation of Speech Quality (PESQ) [36]. The performance of the
algorithms was primarily evaluated based on the SDR. The SDR
is the ratio of the energy in the recovered signal resembling
the original signal to the remaining energy related to interfer-
ence from other signals and unexplained artefacts. Since sound
coloration by room reflections is acceptable to some extent by
human listeners, it can be counted towards the target energy.
Accordingly, the recovered signals were not compared with the
original signals but a filtered version of them which was also
normalized for any delays or scaling. Therefore, we applied an
FIR Wiener filter (up to 32 ms) to the original signal with the
recovered target signal as the reference signal, as in [15]. Thus,
any energy in the estimated signal corresponding to a filtered
version of the original utterance was considered as an accept-
able representation of the target signal. Any remaining energy
was assumed as distortion [15].
Although SDR is an objective evaluation method based

on physical signal characteristics and is widely used, it may
not always correlate well with perceived sound quality. Con-
sequently, we also applied PESQ to evaluate the algorithms
for human applications. PESQ is highly correlated with the
mean opinion score (MOS) of human listeners, and provides
an objective measure of the most perceptually relevant signal
characteristics. PESQ provides a score in the range of 1 to 5
where 1 is bad and 5 is great.

VII. RESULTS

In this section we first examine the performance of Mandel’s
algorithm and the proposed algorithm with different source
model complexities (known as modes in [15]) to choose the one
that gives the best results. Once the model complexity is set,
the Sawada, Mandel and proposed algorithms are employed to
separate the mixtures under various acoustic conditions for both
the determined and underdetermined cases, i.e., for 2 sources
and 3 sources with just 2 microphones. The detailed results for
diverse configurations are reported to study and compare the
methods thoroughly. All the results in the following sections
were obtained for equal weight , except
those in Section VII-D where different weights are applied to
the cues in order to assess the potential performance improve-
ment by cue weighting. Finally, we present separation results
for the mixtures corrupted by spatially diffuse noise.

A. Model Complexity

As explained in Section III, model parameters can be fre-
quency-dependent or wrapped up over all frequency bins to be
frequency-independent. There are different modes representing

Fig. 6. Performance of the Mandel method [15] (solid bar), and proposed
algorithm (white bar) with all possible model complexities averaged over 15
different mixtures in 4 rooms (except anechoic) and 6 different configurations
( ), 360 mixtures, for the determined (2-source)
case.

different types of source model from having frequency-depen-
dent parameters, where the mean and variance for ILD and
IPD distributions are different for each frequency bin, ,
to being frequency-independent where the parameters of each
source model are the same for all frequency bins, . The
superscript stands for using the garbage source. For the
simplest mode, , the means for residual IPD and ILD are
set to zero and do not get updated, with ILD variance also set
to . In mode the degree of freedom is increased and
so the IPD parameters get updated but remain constant across
frequency. Mode represents updating ILD cues and fixed
IPD parameters. In summary, the indexes 0,1 and stand for
‘fixed,’ ‘frequency-independent’ and ‘frequency-dependent’
parameters for ILD and IPD cues, respectively (see Table I
in [15]).
A pilot study with simulated data [37] and no HRTF showed

that the moderate mode of with frequency-independent
IPD and ILD cues that incorporated a garbage source gave
the best performance for our proposed algorithm, in which the
MV-based technique is combined with the binaural cues [38].
Although [15] showed that the most complex model with the
garbage source gave the best performance (both ILD and IPD
cues being frequency-dependent), they did not examine all of
the modes with frequency-independent parameters. In addition,
we incorporated the garbage source for all possible modes to
have a comprehensive comparison.
Fig. 6 shows that the Mandel algorithm with fixed ILD pa-

rameters ( , , ) results in lower SDRs. It is due to
the fact that the PHAT-based initialization provides some infor-
mation about ITD of the sources for all the modes whereas ILD
information is only incorporated to the modes when updating
ILD parameters. Another interesting observation is that by ex-
ploiting the garbage source, not only the most complex mode,

, but also simplermodes such as give high SDRs. Thus,
it is more efficient to apply with less computational expense
for very similar results.
In the case of our proposed method, all the modes gave com-

parable results with (i.e., frequency dependent ILD and fre-
quency-independent IPD) having slightly better performance.
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Fig. 7. SDR of the recovered target source averaged over 15 mixtures with
mode , at each angular displacement in anechoic
conditions, (a) 2-source and, (b) 3-source case.

However, as shown in Section IV-C, ILD models are sensitive
to noise and so it is safer to set this cue as frequency independent
as in mode which gives similar results. In this way the bin-
aural model parameters will be fixed for all frequency bins, pre-
venting the permutation problem introduced by bin-wise clus-
tering and reducing the model complexity.

B. Anechoic Conditions

This section investigates the performance of the algorithms
under anechoic conditions, to examine their behavior without
the effects of room reflections and reverberation. For these ane-
choic experiments, pilot tests confirmed our expectation that the
garbage source was unnecessary, as there was no reverberation
for it to model. Indeed, use of the garbage model produced a
slight degradation, so this feature was disabled for these tests,
whose results are plotted in Fig. 7 with error bars.
For the determined case in Fig. 7(a) with 2-source mixtures,

the proposed method gave an average 3.5 dB SDR improve-
ment over Mandel’s approach when the sources were close (15
or less). The advantage reduced to 1.0 dB when the interferer
was positioned at 45 or more. The average enhancement over
Sawada’s approach was approximately 2.0 dB for all target-in-
terferer configurations.
For the underdetermined case, a considerable difference

of almost 5.0 dB is seen in Fig. 7(b) between the proposed
method over Sawada’s but, compared with Mandel’s, this large
difference only occurs at 10 and is otherwise much more
modest. The overall average separation performance for the
3-source case was dB for the proposed method, dB
for Mandel’s and dB for Sawada’s, which is consistent
with the anechoic results reported in [15].

C. Reverberation Effect

For any practical system, it is vital to test its performance
in typical acoustical conditions including room reflections and
reverberation. To study the effect of reverberation on the per-
formance of the algorithms, all the configurations were tested
across a range of environmental conditions, as in Table II in
Section VI.
Fig. 8 presents the SDRs of the recovered signals with the in-

terfering source positioned at different azimuths. It can be seen
that with different s and DRRs in all 4 reverberant envi-
ronments the proposed algorithm shows the best performance.
It is also evident that the proposed method outperforms the two

TABLE II
ROOM ACOUSTICAL PROPERTIES IN INITIAL TIME DELAY GAP

(ITDG), DIRECT-TO-REVERBERANT RATIO IN TERMS OF (DRR)
AND REVERBERATION TIME [32]

Fig. 8. SDR of the recovered target source averaged over 15 mixtures with
mode , at each angular displacement in 2-source
case under different rooms: room A with s, room B with

s, room C with s and room D with s.

baselines especially when the angle between the target and the
other source is less than 45 . For example, the average improve-
ment for room A with angles less than 35 over Mandel’s is
about dB, which decreases for larger angular displacements.
The Mandel algorithm works well when the sources are well
away from each other. Therefore, the average results over all
rooms (A, B, C, D) and configurations show a smaller but statis-
tically significant improvement of dB with critical p-value
of ( number of mixtures=1020). In case of PESQ,
an improvement of 0.026 is shown to be significant with p-value
of .
The improvement over Sawada is consistent for all the

various interferer positions, but varies with environmental
conditions. For example, it is especially high in room D with

s. A summary of the results is represented in
Tables III and IV.
Fig. 9 presents the results for the underdetermined case with

two interfering sources on the right and left hand sides of the
target, respectively. It is clear that the proposed method gen-
erally outperforms the two baselines. However, there are some
weak results at larger azimuths due to poor initialization in room
D with its high reverberation. Overall, an average improvement
of 0.33 dB over 4 reverberant rooms is achieved, which is signif-
icant with p-value ( number of mixtures=1020).
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TABLE III
RESULTS OF THE BASELINE METHODS AND PROPOSED METHOD

WITHOUT ( ) AND WITH WEIGHTING

( ) FOR ANECHOIC, X, AND REVERBERANT
MIXTURES WITH THE AVERAGE OVER ROOMS A, B, C AND D, IN SDR [DB]

TABLE IV
RESULTS OF THE BASELINE METHODS AND PROPOSED METHOD

WITHOUT ( ) AND WITH WEIGHTING

( ) FOR ANECHOIC, X, AND REVERBERANT
MIXTURES WITH THE AVERAGE OVER A, B, C AND D IN PESQ

Fig. 9. SDR of the recovered target source averaged over 15 mixtures with
mode , at each angular displacement in 3-source
case under different rooms: room A with s, room B with

s, room C with s and room D with s.

In case of PESQ, an improvement of 0.014 is shown to be sig-
nificant with p-value of .
Furthermore, from Figs. 8 and 9 we see that the performance

not only depends on the but also the DRR. For example,
although the of room C is higher than that of room B, the
SDRs of the recovered signals are higher in room C due to the

higher direct-to-reverberant ratio ( dB) compared
to that of room B ( dB). Therefore, it is important
to consider other acoustical factors such as DRR of the rooms
to examine and report the performance of an algorithm. The
reverberation time ( ) is not the only acoustic parameter that
affects the source separation.

D. Cue Weighting

Up to this point, the cues were applied with equal weighting
in our experiments (equal to 1), which is not necessarily the best
way to model the data and estimate the parameters most reliably,
as discussed in Section V-C. Therefore, we decided to adjust the
weights of each cue to try to improve the performance with our
proposed algorithm.
We first started by adjusting just one cue at a time and

keeping the other weights at 1 to discover the general effect
of weighting on each cue. As a pilot experiment, mixtures
were selected with room A for the sources that were close to
each other ( ). We found that values of
greater than one increased the SDR of the recovered signals,
suggesting that the IPD cue is more reliable than the other two
cues which is consistent with our observation in IV-C. Then,
we varied ( ) and observed that giving less
weight to ILD increased the quality of the results. This finding
also supports the results in IV-C where ILD is degraded due to
reverberation. Finally, we examined and discovered that it
did not affect the result considerably. Moreover, we observed
that the variation of the results over , and was
smooth, enabling us to reduce the search resolution to identify
the optimum combination. Overall, weighting the MV cue
did not change the performance of the algorithm significantly.
Weighting the IPD improved the results slightly while ILD
weighting had the most influence on the outcome.
Although and gave the optimum values

while the other two cues were fixed at 1, the combination of
and was not optimal. A coarse

search (testing many combinations on all four rooms and var-
ious source positions) led us to the optimum set of ,

and . It confirms that the relative weights
of the cues are more important than the actual coefficients.
We compared the proposed algorithm with no weighting and

this optimum weighting of with a t-test which
showed that the averaged improvement of 0.32 dB over 240
mixtures was highly significant ( ).
Although this set of weightings gives the optimum results for

binaural mixtures, it should be adjusted for mixtures recorded
by alternative configurations, e.g., spaced omnidirectional mi-
crophones. Comparing the results in [38] with those represented
in Section VII-C, one can see that the improvement (between
Mandel’s and the unweighted proposed method) based on mix-
tures without HRTF is higher than that based on binaural record-
ings. This suggests that the MV contribution is more effective
for mixtures without HRTF. Therefore, a different set of weights
with higher and lower would improve the performance
of the algorithm under those conditions.
In reverberant and anechoic conditions with two and three

speakers, the proposed algorithm with weighted cues produced
SDRs 0.69 dB and 1.96 dB higher than Mandel’s and Sawada’s
algorithm, respectively. Overall, the proposed method is more
robust as compared to the baselines whose performance depends
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on the type of recording. For example, Mandel’s method works
better for binaural recordings as it is mainly based on binaural
cues, whereas Sawada’s method performs better for microphone
recordings without HRTF.

E. Spatially Diffuse Noise

We have also evaluated the performance of the proposed
algorithm, in comparison with the two baseline algorithms,
for separating the mixtures corrupted by spatially diffuse
noise. Diffuse noise has the property of sound energy arriving
at a sensor from every direction with equal probability. For
two sensors sufficiently separated in space (as in our case),
we approximately simulate these conditions by adding two
independent white noise sequences to the left-channel and
right-channel mixture respectively. We have performed two
sets of experiments. In the first set of experiments, we repeat
the experiments performed in Section VII-B by adding spatially
diffuse noise to each of the mixtures used. All the other set-ups
(including the parameters set-up, the mode for the IPD/ILD
model and the weights for integrating the cues) were exactly
the same as those in Section VII-B. In the second set of ex-
periments, we repeat the experiments for reverberant rooms
as performed in Section VII-C, where we followed the same
set-ups except that we added spatially diffuse noise to each of
the mixtures in these new tests. Due to the space constraint, we
only report results for room C here (similar performance trends
are observed for other rooms). In both sets of experiments,
two different levels of noise in terms of signal-to-noise-ratios
(SNRs), were tested, 10 dB and 20 dB, respectively. We will
only show the results for dB (again, due to space
constraint).
For the anechoic mixtures, the average SDR results are shown

in Fig. 10 for dB. From Fig. 10, it can be observed in
the anechoic case that, the proposed algorithm performs better
than the MV algorithm (i.e. Sawada’s algorithm), especially for
the angles between 20 and 60 in diffuse noise. It also out-
performs the binaural cue based algorithm (i.e. Mandel’s algo-
rithm) for nearly all the angles. By comparing Fig. 10(a) and
Fig. 10(b), we can further observe that the performance ad-
vantage of the MV cue over the binaural cues in diffuse noise
tends to drop considerably with the increase of the number of
sources. In the three-source case, our proposed algorithm also
performs better than Sawada’s algorithm for angles between
and , and gives comparable results to Sawada’s algorithm
for the other angles. We observed in our experiments that when
the noise level was not very high, e.g. 20 dB SNR, the binaural
cues performed well (results not shown), similar to the case of
noise-free conditions (shown in Fig. 7). Yet our proposed algo-
rithm gave consistently better performance as compared with
both baseline algorithms, for both two source and three source
situations.
For the reverberant case (i.e. room C), the average SDR re-

sults are shown in Fig. 11 for dB. From Fig. 11 with
10 dB noise corruption, it can be observed that, similar to the
anechoic case, Mandel’s method is greatly affected by the dif-
fuse noise, while Sawada’s method is less affected. In this case,
Sawada’s method exhibits advantages over our proposed algo-
rithm as well as Mandel’s method. The reason that the proposed
algorithm does not show benefit over Sawada’s algorithm in dif-
fuse noise is related to the combination of these cues. However,

Fig. 10. SDR of the recovered target source averaged over 15 mixtures with
mode , at each angular displacement in ane-
choic conditions, with 10 dB spatially diffuse noise corruption, (a) 2-source
and, (b) 3-source case.

Fig. 11. SDR of the recovered target source averaged over 15 mixtures with
mode , at each angular displacement in room
C, with 10 dB spatially diffuse noise corruption, (a) 2-source and, (b) 3-source
case.

the results further confirm that the MV cue can be complemen-
tary to the IPD/ILD cues since the proposed algorithm improves
Mandel’s algorithm in diffuse noise. We also observed in our
experiments that, when the noise level is not as high, e.g. with
20 dB diffuse noise (results omitted), our proposed algorithm
outperforms the two baseline methods, for both two source and
three source conditions. Overall, the results are very consistent
with the SDR evaluations in the noise-free conditions for room
C, as shown previously in Figs. 8 and 9. We would like to note
that incorporating a precedence model would be expected to im-
prove the performance of binaural method in reverberation as
suggested by our preliminary work in [39].

VIII. CONCLUSION

We have studied stereo speech mixtures and analyzed the dif-
ference between the MV and the binaural cues. We have shown
that the MV cue tends to be more distinct when the sources are
close to each other, while the binaural cues, and specially IPD,
are more robust to high reverberation for which the MV models
degrade. This has led us to combine the cues to compensate for
their limitations. We have presented a new algorithm for sepa-
rating speech mixtures under challenging conditions by consid-
ering both additive and convolutive noise models in parallel. It
has been shown that this approach improves the quality of the
recovered signals in comparison with the two baseline state-of-
the-art algorithms named as Mandel [15] and Sawada [6]. We
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have shown the potential benefits by weighting each cue to ad-
just their contributions for the T-F unit classification.
Another interesting point is the difference in the performance

of the algorithms in four different rooms. We observed that
is not the only important factor affecting the performance of the
algorithms. Other acoustic properties of the recording environ-
ment such as DRR also have a great influence on the results.
Tests on mixtures corrupted by spatially-diffuse noise also con-
firmed these findings.
Here the cue weights are fixed over all frequencies whereas

frequency-dependent coefficients may yield additional gains in
performance. We observed that, the initialization fails at high
reverberation, which should be addressed in further work. Fi-
nally, as we have concentrated on SDR enhancement, the PESQ
results have not changed considerably. This could be achieved
by cepstral smoothing to improve the perceptual quality of the
signals.
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