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Talk Details
Talk 1:

Title:
Challenges and Requirements in the field of Audio from Huawei
Abstract:

Introduction of the Consumer Business Group in Huawei and also the Audio Dept., then the
challenges and our requirements in the field of Audio from Huawei CBG. Finally, some student
technology competitions co-organized by Huawei in China will be showcased.

Speaker Bio:

Mengyao Zhu received the B.S. and Ph.D. degrees in communication and information system from
Zhejiang University, Hangzhou, China, in 2004 and 2009, respectively. Since 2019, he has been a
Technical Expert with Audio Department, Huawei CBG on sabbatical leave from Shanghai University,
Shanghai, China. He is currently in charge the Spatial audio in Huawei. His research interests include
sound field capture and reproduction, audio and speech signal processing, and circuits and system
design of multimedia systems. In 2020 and 2021, he was the TPC Co-Chair of CSMT (Conference on
Sound and Music Technology). In 2024, he was Vise-Director of Committee on Sound and Music
Technology in China Audio Industry Association, and In 2025, he was Vise-Chair of Audio Standard of
UHD World Association.
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Talk 2:

Title:

Emerging Sequence Models for Audio Representation Learning and Speech Enhancement
Abstract:

While Transformer architectures have played a central role in audio and speech modeling, their
guadratic complexity and limited scalability have driven the development for more efficient
alternatives. Among these, Mamba and xLSTM stand out for their linear scalability and ability to



model long-range dependencies effectively. In this talk, we present our recent work leveraging these
architectures to learn general-purpose audio representations from masked spectrogram patchesin a
self-supervised manner. Both models consistently outperform Transformer-based baselines across
ten diverse downstream tasks. Additionally, we explore their applications to speech enhancement,
introducing a hybrid architecture that combines Mamba with multi-head attention mechanisms. This
approach achieves superior generalization performance on challenging out-of-domain datasets. Our
findings demonstrate the potential of these emerging sequence models to advance the state of the
art in audio representation learning and speech enhancement.

Speaker Bio:

Zheng-Hua Tan is currently a Professor in the Department of Electronic Systems and a Co-Head of the
Centre for Acoustic Signal Processing Research at Aalborg University, Aalborg, Denmark. He is also a
Co-Lead of the Pioneer Centre for Al, Denmark. He was a Visiting Scientist at the Computer Science
and Artificial Intelligence Laboratory, MIT, Cambridge, USA, an Associate Professor at the Department
of Electronic Engineering, SJTU, Shanghai, China, and a postdoctoral fellow at the Al Laboratory,
KAIST, Daejeon, Korea. His research interests include machine learning, deep learning, noise-robust
speech processing, and multimodal signal processing. He has (co)-authored over 280 refereed
publications. His works have been recognized by the prestigious IEEE Signal Processing Society 2022
Best Paper Award and International Speech Communication Association 2022 Best Research Paper
Award. He was the elected Chair of the IEEE Signal Processing Society Machine Learning for Signal
Processing Technical Committee (MLSP TC) from 2021-2022. He is a Member of Speech and Language
Processing TC. He is the Lead Editor for IEEE Journal of Selected Topics in Signal Processing Inaugural
Special Series on Al in Signal and Data Science. He served as an Associate Editor for IEEE/ACM
Transactions on Audio, Speech and Language Processing, Computer Speech and Language, Digital
Signal Processing, and Computers and Electrical Engineering. He is the General Chair for ICASSP 2029
and a TPC Co-Chair for ICASSP 2028. He was a TPC Vice-Chair for ICASSP 2024, the General Chair for
IEEE MLSP 2018 and a TPC Co-Chair for IEEE SLT 2016.
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Talk 3:
Title:
LLMs for Audio Intelligence: From Understanding to Generation

Abstract:



Recent advances in large language models (LLMs) have shown their potential beyond text, enabling
new paradigms for reasoning and content creation across modalities. This talk will present our efforts
in extending LLMs to audio understanding and generation. It will first introduce our work on Acoustic
Prompt Tuning (APT), which adapts LLMs for audio perception tasks. This talk will then discuss
WavCraft, an open-source agent for controllable and expressive audio editing and synthesis.
Together, these works highlight a unified perspective on how LLMs can be leveraged for audio
intelligence, paving the way toward foundational models that can understand, reason about, and
generate audio content by following user instructions.

Speaker Bio:

Jinhua Liang is a PhD researcher at Queen Mary University of London, advised by Dr. Emmanouil
Benetos, Dr. Huy Phan, and Prof. Mark Sandler. His research focuses on multimodal learning for audio
intelligence, with the mission of enabling machines to “hear” real-world sounds by integrating audio
signals with knowledge from other modalities, and to “create” audio in a controllable and expressive
way. He is an active member of the Detection and Classification of Acoustic Scenes and Events
(DCASE) community and co-organized DCASE Task 5, Few-shot Bioacoustic Event Detection, in 2024.
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Talk 4:

Title:

Language Queried Audio Source Separation
Abstract:

Language-queried audio source separation (LASS) is a paradigm that we proposed recently for
separating sound sources of interest from an audio mixture using a natural language query. The
development of LASS systems offers intuitive and scalable interface tools that are potentially useful
for digital audio applications, such as automated audio editing, remixing, and rendering. In this talk,
we will introduce present our two newly developed LASS algorithms, AudioSep and FlowSep.
AudioSep is a foundational model for open-domain audio source separation driven by natural
language queries. It employs a query network and a separation network to predict time-frequency
masks, enabling the extraction of target sounds based on text prompts. The model was trained on
large-scale multimodal datasets and evaluated extensively on numerous tasks including audio event
separation, musical instrument separation, and speech enhancement. FlowSep is a new generative
model for LASS based on rectified flow matching (RFM), which models linear flow trajectories from
noise to target source features within the latent space of a variational autoencoder (VAE). During
inference, the RFM-generated latent features are used to reconstruct a mel-spectrogram through the



pre-trained VAE decoder, which is then passed to a pre-trained vocoder to synthesize the waveform.
After this, we will discuss the datasets and performance metrics we developed for evaluating the
LASS systems, and the organisation of Task 8 of DCASE 2024 international challenge, building on the
AudioSep model. Finally, we conclude the talk by outlining potential future research directions in this
area.

Speaker Bio:

Wenwu Wang is a Professor in Signal Processing and Machine Learning, Associate Head of External
Engagement, School of Computer Science and Electronic Engineering, University of Surrey, UK. He is
also an Al Fellow at the Surrey Institute for People Centred Artificial Intelligence. His current research
interests include signal processing, machine learning and perception, artificial intelligence, machine
audition (listening), and statistical anomaly detection. He has (co)-authored over 300 papers in these
areas. His work has been recognized with more than 15 accolades, including the 2022 IEEE Signal
Processing Society Young Author Best Paper Award, ICAUS 2021 Best Paper Award, DCASE 2020 and
2023 Judge’s Award, DCASE 2019 and 2020 Reproducible System Award, and LVA/ICA 2018 Best
Student Paper Award. He is a Senior Area Editor (2025-2027) of IEEE Open Journal of Signal
Processing and an Associate Editor (2024-2026) for IEEE Transactions on Multimedia. He was a Senior
Area Editor (2019-2023) and Associate Editor (2014-2018) for IEEE Transactions on Signal Processing,
and an Associate Editor (2020-2025) for IEEE/ACM Transactions on Audio Speech and Language
Processing. He is Chair (2025-2027) of the EURASIP Technical Area Committee on Acoustic Speech
and Music Signal Processing, an elected Member (2021-2026) of the IEEE SPS Signal Processing
Theory and Methods Technical Committee. He was the elected Chair (2023-2024) of IEEE Signal
Processing Society (SPS) Machine Learning for Signal Processing Technical Committee, and a Board
Member (2023-2024) of IEEE SPS Technical Directions Board. He has been on the organising
committee of INTERSPEECH 2022, IEEE ICASSP 2019 & 2024, IEEE MLSP 2013 & 2024, and SSP 2009.
He is Technical Program Co-Chair of IEEE MLSP 2025. He has been an invited Keynote or Plenary
Speaker on more than 20 international conferences and workshops.
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Talk 5:

Title:

Producing Listenable Explanations for Audio Models
Abstract:

| will talk about our recent works on producing explanations for Audio Models. Deep Learning
Models are good when it comes to getting good performance out of them, but they are typically
black-box models. Our goal in this line of work is to develop listenable explanation methods for



black-box audio models, without compromising any performance from our original black-box. We
show through several metrics that the produced explanations through our methods remain faithful
to the original model and we also show that they are indeed listenable and understandable.

Speaker Bio:

Cem Subakan is an assistant professor in Laval University, Computer Science and Software
Engineering Department, an affiliate assistant Professor in Concordia University and an associate
academic member in Mila-Québec Al Institute. He completed his PhD (in University of lllinois at
Urbana-Champaign (UIUC), and later did a postdoc in Mila. He has extensive research experience in
speech and audio and is the leader of source separation part of the highly popular (>9k stars on
GitHub) Speech toolkit SpeechBrain. He is an associate member of IEEE Machine Learning for Signal
Processing Technical Committee, and he is general chair of 35th IEEE Machine Learning for Signal
Processing conference in 2025. He has published papers in venues such as ICML, NeurlPS, ICASSP,
Interspeech, TASL, WASPAA, and MLSP. He won the best student paper in the 2017 version of MLSP
conference, and was nominated for a best paper award in 2023 in Interspeech.
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Emerging Sequence Models for Audio
Representation Learning and Speech Enhancement

@Industrial-Academic Joint Workshop on Emerging Problems and
Methods in Audio, Speech and Language Processing at MLSP 2025
31.08.2025

Prof. Zheng-Hua Tan

Department of Electronic Systems

Aalborg University, Denmark

with Sarthak Yadav and Nikolai Lund Kuhne



Mamba (a.k.a. S6: : Selective Structured State Space Sequence models

with a Scan)

«

AALBORG UNIVERSITY
DENMARK

« Mamba dynamically adjusts its internal parameters, A, 4, B, C, based on the input at each time
step t, i.e., the model doesn’t use fixed weights for all inputs but selectively adapts them.

» |t uses a fully recurrent architecture, processing sequences step-by-step but still retaining the

ability to model long-term dependencies.

* Achieves high performance through a hardware aware parallel scan.
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Gu, A, & Dao, T. (2023). Mamba: Linear-time sequence modeling with selective state spaces. arXiv preprint arXiv:2312.00752.

31.08.2025
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Self-supervised audio spectrogram transformer (SSAST)
» Autoencoder with masked input. = a=s] i mn
Masked
pgtih:s | I [T
. . - it | L IE
Encoder: th cont(?xtual N _-_J —am B
representations using a Vision Reconstruction
Transformer (VIT). | e s mss sms s e s ss s
« Decoder: Reconstruct the masked ,i_i‘
patches usually using MLP (can be ey il 7
a transformer). NN — gy | Encoder — Decoder | = |
— |
- - o : : : :
» Loss: MSE between patches that Input :
. i ¥
were masked and corresponding
reconstructions from the decoder. Visible + Masked
patches

Gong, Y, Lai, C. I, Chung, Y. A., & Glass, J. (2022, June). Ssast: Self-supervised audio spectrogram transformer. In Proceedings of the
AAAI Conference on Atrtificial Intelligence.

31.08.2025



«

Audio Mamba: selective state spaces for self-supervised audio
representations

« Compare with the well-established self-supervised audio spectrogram transformer (SSAST)

Model Data #Params BO CD ESC-50 LC Mri-S Mri-T NS-5h SC-5h F50K VL s(m)T
SSAST Based
SSAST [10] AS+LS 89M 93.44+0.956.5+0.268.420.4 60.7+0.3 96.7+0.1 96.320.1 66.8+0.7 53.5+1.3 38.2+0.1 28.5+0.9 73.1+0.2
SSAST-Tiny AS 54M 90.4+0.746.9+0242.4+0.642.7+0.295.7+0.1 94.320.1 61.2+0.5 50.6+1.6 24.6+0.1 13.8+1.0 56.0+0.2
SSAST-Small AS 21.5M 93.240.551.620.2 50.1£0.6 50.0+0.3 96.2+0.1 95.0+0.1 63.8+0.4 58.3+1.231.620.1 15.6+0.7 63.4+0.3
= SSAST-Base AS 857M 93.1+0.7 56.0+0.4 59.6+0.7 52.9+0.3 96.6+0.1 96.2+0.2 64.6+0.8 66.1+1.0 37.5+0.1 19.2+0.9 69.2+0.3
Proposed
SSAM-Tiny AS 48M 93.7:0.861.8+0.370.620.259.2+04 97.120.1 94.920.1 62.0+0.7 74.8+0.4 41.320.2 27.8+1.0 76.3+0.2
SSAM-Small AS 179M 94.0+0.7 67.5+0.2 78.7+0.6 60.5+0.3 97.5+0.1 96.7+0.1 66.3+0.8 83.7+0.3 48.5+0.1 39.6+0.7 84.4+0.3
= SSAM-Base AS 693 M 93.2+1.1 70.3+0.2 81.0£0.3 63.5+0.2 97.7+0.1 96.9+0.1 70.5+0.5 87.9+0.3 52.2+0.1 50.420.7 89.7+0.3

Yaday, S., & Tan, Z. H. (2024). Audio Mamba: Selective State Spaces for Self-Supervised Audio Representations. Interspeech 2024.

31.08.2025



«

AALBORG UNIVERSITY

xLSTM: Extended long short-term memory

« Introduces exponential gating (i.e., exponential activations on input and forget gates, instead
of sigmoid) to better revise storage decisions.
* A normalizer state for better stability.
« 2 building blocks
« SLSTM:
* improved memory mixing -> mixing within "heads” but not across them
* Not parallelizable

« mLSTM:
» enhances storage capacity by using a matrix cell state CeR”*(dxd) instead of a scalar

* No memory mixing -> parallelizable cell update

Beck, M., Poppel, K., Spanring, M., Auer, A., Prudnikova, O., Kopp, M., ... & Hochreiter, S. (2024). xIstm: Extended long short-term
memory. Advances in Neural Information Processing Systems, 37.

31.08.2025



AXLSTMs: Model architecture

Linear Projection |
|
Patch tokens
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«

AALBORG UNIVERSITY
DENMARK

Yaday, S., Theodoridis, S., & Tan, Z. H. (2025). AXLSTMs: learning self-supervised audio representations with xXLSTMs. In Proc.

Interspeech 2025.

31.08.2025
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Ax LSTM s : expe ri m e ntal res u Its AALBO;:NI:A}:IRVKERSITY

* Pretrained on AudioSet, AXLSTMs outperform comparable self-supervised audio
spectrogram transformer (SSAST) baselines

* by up to 25% in relative performance across ten diverse downstream tasks while
» having up to 45% fewer parameters.
* Overall score: higher is better:

Model Data #M Params S (m)T
SSAST Based

SSAST [6] Mix 89.0 72.5:02
SSAST-Tiny AS 5.4 55.6:02
SSAST-Small AS 21.5 63.0:02
SSAST-Base AS 85.7  68.7:03
Proposed

AXLSTM-Tiny AS 4.3 70.7x02
AXLSTM-Small AS 16.7  81.1:03

AxLSTM-Base AS 65.6  86.6:02

31.08.2025
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XLSTM-SENet: xLSTM for Single-Channel Speech Enhancement

 We propose the 1st xXLSTM-based speech enhancement system [1], following MP-SENet [2].
» Architecture: (¥
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Figure 1: Overall structure of our proposed xLSTM-SENet with parallel magnitude and phase spectra denoising.

[1] N. L. Kiithne, J. @stergaard, J. Jensen, and Z.-H. Tan, “xlstm-senet: xIstm for single-channel speech enhancement,” In Proc.
Interspeech 2025.

[2] Y.-X. Lu, Y. Ai, and Z.-H. Ling, “Mp-senet: A speech enhancement model with parallel denoising of magnitude and phase spectra,” in
INTERSPEECH, 2023, pp. 3834—-3838.



XLSTM-SENet: experimental results

 Performance on VoiceBank+Demand

Model 3 ‘Er&?“ PESQ  CSIG CBAK COVL  STOI
Noisy - 1.97 3.35 2.44 2.63 0.91
MetricGAN+ [9] - 3.15 4.14 3.16 3.64 -
CMGAN [10] 1.83 3.41 4.63 3.94 4.12 0.96
DPT-FSNet [35] 0.88 3:33 4.58 3.2 4.00 0.96
Spiking-S4 [36]  0.53 3.39 4.92 2.64 4.31 %
TridentSE [37] 3.03 3.47 4.70 3.81 4.10 0.96
MP-SENet [14] 2.05 3.50 4.73 3.95 499 0.96
SEMamba [21] 225  3.55 A.77 3.95 1.26 0.96
MP-SENet* 2.05 3.49+0.02 4.7240.02 3.924+0.04 4.22+40.02 0.96+0.00
SEMamba* 2.25 3.49+0.01 4.75+0.01 3.94+0.02 4.244+0.01 0.96+0.00
xLSTM-SENet 2.20 3.48+40.00 4.74+40.01 3.93+0.01 4.22+0.01 0.96+0.00

» Match the performance of SOTA Conformer and Mamba models

«

AALBORG UNIVERSITY
DENMARK

N. L. Kiihne, J. Ostergaard, J. Jensen, and Z.-H. Tan, “xIstm-senet: xIstm for single-channel speech enhancement,” In Proc. Interspeech

2025.

31.08.2025
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AALBORG UNIVERSITY
DENMARK

MambAttention: Mamba with multi-head attention for generalizable
single-channel speech enhancement

* Motivation: Self-attending RNNs have shown improved generalization performance over pure
recurrent models.

« Combine Mamba with a shared multi-head attention module across time and frequency
dimensions.

(Yom)®

Noisy Speech " o 2| 5 Enhanced Speech
y Magnitude MY (Xm)° % 2 [ X PS P
5 Mask Decoder z g
. 8 — 0O
2 v 5 S =
Y| 2V 8 £
o) LN oY 2 A — > R x MambAttention — = B
; =) S 5} |72}
1) &} = j2]
O 2 .
= Wrapped Phase X5
Decoder
Reshape L e Time Reshape L IRy J_) Frequency g Reshape
Multi-Head >¢ > Multi-Head > > ) >
(M x K xT x F) (MF' x T x K) . Mamba (MT x F' x K) . Mamba (MxKxTxF)| (MxKXTxF')
Attention Attention

Shared

Multi—Head BN
Attention

Fig. 1: Overall structure of our proposed MambAttention model. M, K, T, and F’ represent the batch size, the number of
channels, the number of time frames, and the number of frequency bins, respectively.

Kiihne, N.L., Jensen, J., @stergaard, J. and Tan, Z.H., 2025. MambAttention: Mamba with Multi-Head Attention for Generalizable Single-
Channel Speech Enhancement. arXiv preprint arXiv:2507.00966.

31.08.2025



MambAttention — cont’d

«

AALBORG UNIVERSITY
DENMARK

« All models trained exactly in the same framework using the VB-DemandEx dataset, only
neural architectures differ.

« MambAttention significantly outperforms SOTA systems on the out-of-domain test sets
across all reported evaluation metrics.

In-Domain Out-Of-Domain
VB-DMDEXx DNS 2020
Model P ?’;‘;‘S PESQ SSNR ESTOI SI-SDR PESQ SSNR ESTOI SI-SDR
Noisy - 1.625 -1.068 0.630 4976 1.582 6.218 0.810 9.071
xLSTM-Attention 2.27 3.019+0.010 7.689+0.186 0.800+0.002 16.653+0.107 | 2.801+0.167 7.187+0.931 0.886+0.025 13.913+1.889
LSTM-Attention 248 3.023+0.037 7.645+0.339  0.803+0.008 16.596+0.279 | 2.546+0.183 5.792+0.878 0.847+0.032 10.961+1.622
Conformer [27] 2.05 2.935+0.065  7.641+0.283 0.787+0.010 16.202+0.318 | 2.666+0.010 7.369+0.382 0.875+0.009 13.665+0.892
=) MambAttention 2.33 3.026+0.007  7.674+0.411  0.801+0.002 16.684+0.095 | 2.919+0.118 8.133+0.733 0.911+0.009  15.169+1.363
Noisy xLSTM Conformer MambAttention Clean
= 19)) %) C |9)) C [9)) NR),

Kiihne, N.L., Jensen, J., @stergaard, J. and Tan, Z.H., 2025. MambAttention: Mamba with Multi-Head Attention for Generalizable Single-
Channel Speech Enhancement. arXiv preprint arXiv:2507.00966.

31.08.2025



Conclusions AALBO;EGNI:A IIIIIIIIIII

« For audio representation learning

« both SSAM and AXLSTM outperform comparable transformer baselines, while having
fewer parameters

« SSAM > AXLSTM >> SSAST

* For speech enhancement

« XLSTM and Mamba match or outperform in-domain performance of attention-based
models (Conformer).

« Combining Mamba and xLSTM with multi-head attention yields significant improvements
in generalization/out-of-domain performance.

« XLSTM is memory hungry and slower compared to Mamba and Transformer, in our settings

31.08.2025
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Thank you for your attention.

Thank my co-authors as cited in slides.

31.08.2025
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Before start...

| am a final-year Ph.D. candidate advised by Dr. Emmanouil Benetos, Dr. Huy Phan, and Prof. Mark
Sandler, at Centre for Digital Music (C4DM), Queen Mary University of London. My research interests are
spanning from audio/speech/music understanding, controllable audio generation, multimodal representation
learning.

Great thanks to my collaborators:
Emmanouil Benetos (Queen Mary University of London)
Huan Zhang (Queen Mary University of London)
Xubo Liu (Meta)
Huy Phan (Meta)
Haohe Liu (Meta)
Mark D. Plumbley (University of Surrey)
Wenwu Wang (University of Surrey)
Qiugiang Kong (Chinese University of Hong Kong)
Yin Cao (Xi'an Jiaotong-Liverpool University)
Dan Stowell (Tilburg University)
Zhuo Chen (ByteDance)
Yuxuan Wang (ByteDance)
Sebastian Braun (Microsoft Research)
Hannes Gamper (Microsoft Research)
Ivan Tashev (Microsoft Research)
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Background: Motivation of learning a sound describer

Engineering and
Physical Sciences
Research Council

What's “wrong” with closed-end classifiers?
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» Trained on the task-specific dataset(s)
» Require a predefined set of sound events
* Less practical in the real-world application

HJ What happens in the audio? l
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Trained on a broad range of audio tasks
Describe sound in human language
Following complex instructions
Approachable to the user.

This highlights the study on interacting with sounds using natural language

University of London
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Background: Revisit language modelling

Output

What is a Large Language Model (LLM)? t
- LLM, such as ChatGPT, learns to predict [@ GPT—Q’
next token with massive textual tokens . \

Fig 1. Overall framework of Generative Pre-trained Transformer 2 (GPT-2) [1].
(img borrowed from @JayAlammar(2] )
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Background: Revisit language modelling

What is a Large Language Model (LLM)?
- LLM, such as ChatGPT, learns to predict
next token with massive textual tokens

What is multi-modal LLM?
- A generative network that predicts the next

token conditioned on image/video/audio + text.

Why multi-modal LLM?
- Leverage knowledge within LLMs
- Explore Homogeneity across tasks

\;_ Queen Mary

University of London

Engineering and
Physical Sciences
Research Council

Output

® = )
t

Input

recite| the | first law $

Fig 1. Overall framework of Generative Pre-trained Transformer 2 (GPT-2) [1].
(img borrowed from @JayAlammar(2] )
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https://jalammar.github.io/illustrated-gpt2/
https://jalammar.github.io/illustrated-gpt2/
https://jalammar.github.io/illustrated-gpt2/

Method: Overview of APT

Acoustic Prompt Tuning (APT): an adapter extending LLMs/VLMs to the audio domain
using an improved soft-prompting approach

<AUDIO>

<AUDIO>

OOED - EONONECOCO0DD - DOEEOO0BONCEONOOOO

! LL[ projection ]_T !

(Y [Embedding Iayer] -
>
$|3
OO B LLM# o8
£|E
5 |
1 =
r | 3 8
: Aligner ] [ Tokenizer . ]
- 3
i T [ Tokenizer |
Input A
spectrogram . . . . <AUDIO= is the first sound; <AUDIO> is the second sound. Question: How many sound events in total?
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Method: Overview of APT

APT is highlighted three core designs:
1. Interleaved acoustic and text embeddings

Generated text
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Aligner ] [ Tokenizer ]
A
T [ Tokenizer |
y Y
spectrogram . . e . . <AUDIO= is the first sound; <AUDIO> is the second sound. Question: How many sound events in total?
learned query Input text
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Method: Overview of APT

APT is highlighted three core designs:
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Method: Overview of APT

APT is highlighted three core designs:
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Method: NLAR task setup

We propose the natural language audio reasoning task, to
evaluate model’s ability to analyse audio clips by comparison
and summarisation.

Table 2: An example demonstrating APT-LLM’s capacity of audio reasoning. It requires audio
networks to comprehend recordings and reasoning across multiple recordings.

Natural Language Audio Reasoning (NLAR) example: “Where is the sudden sound?”

User
Wav1:"AmbianceBackyard_Quiet_bip.wav’

Wav2:“Rain hitting window.wav”

Question: Which recording has a more sudden and startling sound event?

APT-LLM First.
Ground truth ~ first

L +
cmerigind (V0 Queen Mary Ol music/

Research Council University of London
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Discussion: Evaluation on the audio understanding tasks

TABLE IV

ZERO-SHOT AUDIO UNDERSTANDING PERFORMANCE (%) COMPARISON WITH AUDIO LANGUAGE MODELS. WE GROUP THE METHODS IN TERMS OF THEIR

TRAINING STRATEGY. “#PARAMS.” DENOTES THE NUMBER OF TRAINABLE PARAMETERS AND “#PAIRS” REPRESENTS THE NUMBER OF AUDIO-TEXT PAIRS.

T INDICATES THE HIGHER NUMBER, THE BETTER PERFORMANCE.

Model #Params.  #Pairs  AudioSet (mAP{)  AudioCaps (SPICET) Clotho (SPICET)

Audio-language models trained with the contrastive loss

AudioCLIP [39] 30M 2M 25.9 -

CLAP [40] 190M 128k 5.8 -

One-for-all models for various audio tasks

Qwen-Audio |7] 640M - 18.5 - 13.6

LTU [9] 96M 5.7M 18.5 17.0 11.9

Pengi [13] >191M 3.4M - 18.2 12.6

APT-LLM 101M 2.6M 14.7 17.1 11.6
TABLE V

APT-LLM has a promising result on
common audio tasks without fine-
tuning on task-specific data. After
fine-tuning for two epochs, APT-LLM
achieves the best performance on
downstream tasks.

PERFORMANCE (%) COMPARISON IN AUTOMATED AUDIO CAPTIONING TASKS. 1 INDICATES THE HIGHER NUMBER, THE BETTER PERFORMANCE.

Model AudioCaps Clotho Weighted average
SPICEt SPIDErf SPICET SPIDErt SPICET  SPIDErt

Specialised systems trained with task-specific examples

AT+CNNI10 [41] 16.8 - 11.5 - 15.1 -

CNN-GPT2 ﬂ@] 16.7 43.8 11.1 21.5 14.9 36.7

WSAC+PD [43] 17.3 40.3 123 247 15.7 353

WavCaps [32] 18.2 48.5 13.3 29.7 16.6 42.5
One-for-all models for various audio tasks

APT-LLM 19.1 40.2 13.2 24.8 17.2 353

L +
B Genesmead, wOf Queen Mary

Research Council University of London
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Discussion: Evaluation on the advanced understanding tasks

TABLE VII TABLE VIII
BENCHMARKING APT FOR ACCURACY (%) ON THE NATURAL LANGUAGE ACCURACY (%) COMPARISON BETWEEN DIFFERENT MODALITIES IN
AUDIO REASONING TASK. AUDIO-VISUAL LEARNING.

Model AccuracyT Model Modal Accuracy T
AACHChaGPT 27.9 BLIP-2 (1] Video-only 429
APT-LILM 62.9 .
APT.LLM 63.8 APT-LILM Audio-only 277

1.5 . APT-BLIP-2  Audio-video 59.7

APT-LLMs yield the best performance on NLAR and zero-shot audio-visual Q&A tasks.

L +
Eﬂf,!i'rfi"s'lgiei“is ‘C_.__" Queen Mary @aadigital music;"‘

Research Council University of London



Background: Revisiting the audio editing task

Audio editing is to change the content of audio by following the instruction precisely.

Existing works treat it as a regeneration task, overlooking the need for high-fidelity and localized
editing.

el BN AN S R

“Add horse hooves in the background”

e N\ ()

Instruction interpreter
Encoder Decoder

Expert models

“Drop the sound of duck quacking”

“Replace string instrument to drum kit"

| 7
“Increase resolution”

Fig. An example of end-to-end audio editing system [1]
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Method: Overview of WavCraft

Engineering and
Physical Sciences
Research Council

WavCraft

ition & Ct

llable Editing

Human-Computer Co-Creation

PROMPT
- Task introduction;
- Specific instances.

e

INTRODUCTION Audio Material(s)
i —
Audio Audio Analysis
Programmer
Computer Program

Code Execution

Edited Audio

Extract 1-5s in the audio, increase the volume. Generate
water splash sound (low volume) and apply low pass filter
on the output. Mix two sounds together.

\

WAV = LOW_PASS{WAVI, min_cutoff_reg-500.0, mas _ctoff._freq=1000.0,
min_rolloffs6, max_rolloffs12)

— WAV, _= SPLIT(INPUT_WAVO break_points=[1, ])

WAVL= rrA(u:v.- "water splashing’, lengthed , whimes2)

OUTPUT_WAV = MIX([(WAVD, 0), (WAV1, 0}])

Extract baby crying from the audio

Audio Scriptwriting

Enrich the two audio clips | have gave you. Make it like a f1
racing live stream. INSPIRATION INSTRUCTION.

WAVO, _ = TSS{INPUT_WAVO, text="car accelerati

TSS(INPUT_WAV,

Av
text="car skiding and screching o st0p”)

WAVZ = TTA(texts"crowd cheering’, volumess,
lengeh=LENINPUT_WAVO) + LEN(INPUT_WAV3))

WAV3 - TTS{text-"And the race s onl Look t that

petormncl’, \;clum: 10)

OUTPUT_WAY = MIK([(WAVD, O}, (WAVE, LEN(WAYO))
(WAV2,0), (WAV3, 0)))

WAVO, _ = TSS(INPUT_Wj

Then add this audio in the beginning?

2

wAvn 'ssum-m wAvn rexerbay erying’)

‘QUTPUT_WAVD = Mlx([(wrur w,\vl, o),
(WAVO, LEN(INPUT_WAV1))])

WAVD, _ = TSS(INPUT_WAVD, text="baby crying”)
OHTFUY WA\IO MIX([(INPUT_WAVL, 0), (WAVO, LEN(INPUT_WAV1])))
wavi = rn:xm- baby ughing’, length=5, voume: 5]

OUTPUT. WAV = CAT((OUTPUT_WAVD, WAV1])

‘a_.@_s’ Queen Mary

University of London

[ ig-Re]@ digital music



Code & Demo
Olrai O

Discussion: Evaluation on the audio editing tasks

Audio Editing Results

Table 1. Compared to the audio editing model on five editing tasks. 10 2bs Al 2b1
FAD: Fréchet Audio Distance, IS: Inception score, KL: kullback—leibler 2t4 |3 r r 2-}’8
divergence, LSD: log spectral distance 25 QIZQ Zrﬁ Z_I,S 2“?4 2[”
Task AUDIT (Wang et al.) WavCraft 20
FAD| ISt KLJ| LSD| |FAD| ISt KL/| LSD| 15
Add 9.27 3.87 3.00 1.95 063 6.05 145 1.59 1.0
Removal 17.57 327 440 3.46 348 638 1.72 2.07 o - —
Replacement 1024 286 310 255 | 072 609 216 177 ' e
Inﬁ"lng 1261 388 286 340 331 6'37 100 210 Relevance  Coherence Naturalness Engagement Creativity
Super-resolution  13.68 2.62 4.25 2.50 598 596 1.26 1.93 ) . . ) )
Figure 1. Comparing the ability of audio storytelling
50 - Gr.:unlfditl.th 15 320 378 323 378 347 -
=S Db b
Table 2. Compared to the audio generative models tu - | 2
Model FAD| KL| IS* ',.-—-.l
25 *
AudioLDM (Liu et al., 2023a) 4.65 1.89 791 20 ' i
WavJourney(Liu et al., 2023d)  3.38 1.53 794 13 R —
Wavcra.ft 2-95 1.68 8-07 H : we frequency time wolume

e

Engineering and
Physical Sciences
Research Council

&+
wQf Queen Mary

University of London

Figure 2. Overall subjective
evaluation on audio editing quality

@aadigital music/

Figure 3. Subjective evaluation on
the quality of edited audio


https://first-riddle-7e9.notion.site/WavCraft-Demo-40c079fc82ca411ca0520b9d65abd3f5

Discussion: Takeaways

e Introduced Acoustic Prompt Tuning (APT) that enables LLMs to process audio by injecting instruction-
aware audio embeddings, supporting diverse audio tasks with minimal architectural changes.

e Curriculum learning and interleaved audio-text inputs are performed via various tasks without input
format constraints, enabling richer multi-audio reasoning.

e WavCraft is an LLM-driven audio agent that interprets user instructions and decomposes them into
subtasks, coordinating specialized models to create or edit audio content.

e It uses natural language prompts and audio descriptions to control generation and editing in a fine-
grained, interpretable, and user-friendly way.

. * ‘.
B Genesmead, wOf Queen Mary digital music/

Research Council University of London
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Outline ¥ SURREY

* Introduction
 What is language queried audio source separation (LASS)?
e Existing methods and challenges

* Two new methods
e Discriminative model: AudioSep
* Generative model: FlowSep

e Conclusions and future works

www.surrey.ac.uk
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UNIVERSITY OF

Language Queried Audio Source Separatidh SURREY

« LASS — Separate a target source from an audio mixture based on the
natural language descriptions of the target source
 First attempt bridging audio source separation and natural language

processing
« Support input arbitrary text to separate desired sound sources

Language Query: A bird is chirping under the thunder storm

v

LASS

X. Liu, H. Liu, Q. Kong, X. Mei, J. Zhao, Q. Huang, M.D. Plumbley, and W. Wang,"Separate What You Describe: Language-Queried Audio
Source Separation," in Proc. 23rd Interspeech Conference INTERSPEECH 2022), 18-22 September, 2022, Incheon, Korea.

www.surrey.ac.uk



UNIVERSITY OF

Existing Methods and Challenges SURREY

- Existing methods
« LASS-Net (Liu et al 2022): first LASS model
 SoundFilter (Kilgour 2022): exploiting audio supervision

« CLIPSep (Dong et al. 2023): exploiting visual supervision

« Challenges
« Small scale of data available for training
« Open-domain source separation with texts
« Overlapping sound events

» Processing artefacts and incomplete separation

www.surrey.ac.uk
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Method 1: AudioSep SURREY

 CLAP/CLIP + ResUNet, trained with 14,000 hours of multimodal data
« A foundation model for open-domain sound separation with texts
« Impressive zero-shot performance in separating speech, music, sounds

Training
e.g., People speak and dog barks : ramme
Magnitude Phase Target > L1 Loss
/’ Mask Residual i | Waveform
Language ) 7Y
> — PSPPI PRI PP
Query QueryNet SeparationNet v ,L
4
> O D
’,,..--"""' -/
“I:::\“Ef“rfm »  STFT » Magnitude | Phase (——¢ l
Predicted | Predicted ,| Inverse | Predicted
Magnitude Phase STFT Waveform

Paper: https://arxiv.org/pdf/2308.05037.pdf
Code: https://github.com/Audio-AGl/AudioSep
Demo: https://huggingface.co/spaces/Audio-AGl/AudioSep
www.surrey.ac.uk
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Experimental Results % SURREY

» AudioSep achieved the state-

. AUDIOSEP TRAINING DATASETS.
of-the-art results on multiple

Caption  Label  Video  Num. clips  Hours

datasets. AudioSet X v v 2063839 5800
VGGSound X v v 183727 550
: : AudioCaps v v v 49 768 145
« Impressive zero-shot separation “ o
p p Clotho v2 v X X 4884 37
WavCaps v X X 403 050 7568
performance on MUSIC and
ESC-50.
BENCHAMRK EVALUATION RESULTS OF AUDIOSEP AND COMPARISON WITH BASELINE SYSTEMS.
AudioSet VYGGSound AudioCaps Clotho MUSIC ESC-50 Voicebank-DEMAND
SISDR SDRi SI-SDR SDRi SI-SDR SDRi SI-SDR SDRi SI-SDR SDRi SI-SDR SDRi PESQ SSNR
USS-ResUNet30 [1°] - 5.57 - - - - - - - - - - 2.18 9.00
USS-ResUNet60 [ 1] - 5.70 - - - - - - - - - - 2.40 9.35
LASSNet [7] -3.64 147 4350 117 096 332 342 224  -1355 013  -2.11 369  1.39 0.98
CLIPSep [ ] 0.19 255 1.22 318 009 295  -148 236  -037 250  -068 264 213 1.56
AudioSep-CLIP 6.60 7.37 7.24 7.50 5.95 7.45 4.54 6.28 914 1045 890 1003 240 8.09
AudioSep-CLAP 6.58 7.30 7.38 7.55 6.45 7.68 4.84 6.51 8.45 9.75 9.16 1024 241 8.95

X. Liu, Q. Kong, Y. Zhao, H. Liu, Y. Yuan, Y. Liu, R. Xia, Y. Wang, M.D. Plumbley, and W. Wang,“Separate
Anything You Describe" in IEEE/ACM Transactions on Audio Speech and Language Processing, vol. 33, 458--

471, 2025. www.surrey.ac.uk
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AudioSep: Sound Demos SURREY

Human query: “The engine sound of a vehicle”

Mix Separated

Human query: “The sound of hitting the keyboard”

Mix ~ Separated

“www.surrey.ac.uk



Method 2: FlowSep

Existing Ideas:

e Discriminative approaches.

e Time-frequency masking on
spectrogram to remove the noise
sound sources.

Challenges:

e Challenging with overlapping
sound events.

* Excessive and insufficient masking
leads to artifacts, including spectral
holes and incomplete separation.

UNIVERSITY OF

SURREY

A “New” Idea:

Using the generative approaches.

Diffusion-based generation
framework with rectified flow
matching.

Separation system by generating new
audio samples with the noise clips
and text prompts as a condition.

www.surrey.ac.uk



FlowSep: Architecture

* Text-to-audio generation model as the backbone, Rectified Flow

Matching for feature generation.

UNIVERSITY OF

* Extended VAE latent space to integrate the noise audio feature.

* Flan-T5 text encoder, VAE latent decoder and BigVGAN vocoder.

“Motor revving as a

crowd of people laugh
and applaud”

Input prompt

Flan-T5

ottt - B

Target waveform Noise waveform

Rectified Flow
Matching

STFT

VAE
Encoder

A A
. |
I

Z0) R\ e==2q

.--—"'-'-'_'-

VAE || Big
Decoder|| VGAN

!

Output waveform

— E__________________________ i

| == training

| «es=sp inference |

forward

Y. Yuan, X. Liu, H. Liu, M.D. Plumbley, and W. Wang,“FlowSep: Language-Quried Sound Separation
with Rectified Flow Matching" in ICASSP 2025.

www.surrey.ac.uk
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Training Data % SURREY

A total of 1,680 hours of audio from various datasets for training. When
creating the mixture audio samples, every two audio clips are not sharing
any overlapping sound source classes. All the segments are padded or
cropped to 10 seconds with 16kHz sampling rate, and we mix two
waveforms with a random SNR between -15 and 15 dB.

e AudioCaps:

* One of the largest publicly available audio captioning dataset, containing
49837 10-second audio clips with human annotated captions.

 VGGSound:

e Audio dataset with 200,000 audio clips. Each sample has a duration of 10
seconds and annotated with labels.

* WavCaps

e Large-scale audio dataset with weakly-labelled captions generated with
LLM. We only use the samples less than 10 seconds and collected a total of
400,000 clips.

www.surrey.ac.uk
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Evaluation Data SURREY

VGGSound:

e 2000 mixtures generated from a group of 200 clean and distinct audio
samples, mixed with random LUFS loudness between -35 and -25 dB.

ESC-50:

e 2000 mixtures with a SNR at O dB.

AudioCaps:

e 928 samples by mixing the audio from testing set under random SNR
between -15 and 15 dB.

DCASE2024 Task 8:

e DCASE-Synth includes 3000 mixtures from 1000 selected audio clips under an
SNR between -15 and 15 dB.

e DCASE-Real consists of 100 audio clips from read-world scenarios.
www.surrey.ac.uk
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Experimental Results SURREY

e Unlike discriminative network that modify the original audio clips,
generated results do not strictly align with the target audio sample in the
temporal dimension.

* Hence, traditional objective metrics are not suitable for evaluating
generative models based separation methods.

* We apply FAD, CLAPScore and CLAPScorea from generative tasks to
evaluate the performance.

TABLE 1
OBJECTIVE EVALUATION ON LASS, WHERE AC, VGG AND ESC ARE SHORT FOR AUDIOCAPS, VGGSOUND AND ESCS0 RESPECTIVELY,

FAD | CLAPScore 1 CLAPScore 4 T
AC DE-S VGG ESC AC DE-S DE-R VGG ESC AC DE-S VGG ESC

Unprocessed  59.8 40.5 42.5 8.1 11.9 23.2 22,7 13.6 19.1 64.9 71.3 66.7 71.3
LASS-Net 509  1.83 309 328 | 144 244 25.3 174 205 | 70.2  T6.6 695 T79.6
AudioSep 438 1.21 230 193 | 13.6  26.1 29.7 190 21.2 | 696 T8O T24  BO.S

FlowSep 286 09 206 149 | 219 269 313 195 227 | 81.7T 801 732 B80T

Model

www.surrey.ac.uk
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FlowSep - Demos ¥ SURREY

Query Mixture AudioSep Ground Truth
a person is pressing the F
shutter button of the -
camera to check something

* Baseline models show incomplete separation with noticeable spectral gaps.
* FlowSep demonstrates promising capabilities in such situations.
* More demos please refer to https://audio-agi.github.io/FlowSep demo/.

Y. Yuan, X. Liu, H. Liu, M.D. Plumbley, and W. Wang, “FlowSep: Language-Quried Sound Separation with

Rectified Flow Matching" in ICASSP 2025.
www.surrey.ac.uk


https://audio-agi.github.io/FlowSep_demo/
https://audio-agi.github.io/FlowSep_demo/
https://audio-agi.github.io/FlowSep_demo/

DCASE Challenge —Task 10 “ UNIVERSITY OF
° SURREY

Challenge2024 = Taska ~ &

Language-Queried Audio Source

Separation

Task description

Separate arbitrary audio sources using natural language queries.

Challenge has ended. Full results for this task can be found in the | Resuli=» | page.

If you are interested in the task, you can join us on dedicated slack.

Mark D. Plumbley

Description

Language-queried audio source separation (LASS) is the task of separating arbitrary sound sources using textual descriptions of the
desired source, also known as 'separate what you describe'. LASS provides a useful tool for future source separation systems, allowing
users fo extract audio sources via natural language instructions. Such a system could be useful in many applications, such as automatic
audio edifing, multimedia content retrieval, and augmented listening. The objective of this challenge is to effeclively separate sound

ﬁ Gordon Wichemn sources using natural language queries, thereby advancing the way we interact with and manipulate audio content.

Jonathan Le Rol

Loanguoge Query: A bird Is chirping under the thunder storm

¢
- -

Figure 1: Overview of LASS system.

Yan Zhao

Yuzhuo Liu

Hangting Chen

wh encent Al Lab

Audio dataset

https://dcase.community/challenge2024/task-language-queried-audio-source-separation
www.surrey.ac.uk
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Possible Future Directions SURREY

Conclusions:

e Language queried audio source separation offers tools for
users to control which sound to be separated from the sound
mixtures, using language-based queries.

e Both discriminative (AudioSep) and generative approaches
(FlowSep) have been developed, offering state-of-the-art
performance.

Future directions:

e Leverage generative models (e.g., diffusion models) to
improve the perceptual quality of separated sounds.
e Explore advanced reasoning capabilities of LLMs for LASS
(e g., separating complex queries like "the second sound" or
"annoying sounds").
e Apply self-supervised techniques (e.g., MixIT) for pre-training
to enhance separation performance.

www.surrey.ac.uk
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Take Away % SURREY

EMRPCNN: My contact:
Code/demos at project page: Email: w.wang@surrey.ac.uk
https://qgithub.com/tuxzz/emrpcnn_pub Web: https://personalpages.surrey.ac.uk/w.wang/
https://tuxzz.org/emrpcnn-ckpt/
FlowSep:
. Paper/Code/Demo:
AudioSep: https://audio-agi.github.io/FlowSep_demo

Code/paper/demo:

« DCASE 2024 Task 9: “Language-Queried Audio Source Separation”
» GitHub: https://github.com/Audio-AGI/AudioSep

« HuggingFace: https://huggingface.co/spaces/Audio-AGI/AudioSep

* Media coverage:
Google Research () stars < 1.3k

€3 gradio Shmila—IPANE CyberEd

ARCHETYP >
A S t aﬁw /fgg"’” @0 Medium AlPressRoom

www.surrey.ac.uk



https://github.com/Audio-AGI/AudioSep
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Listenable Posthoc Explanations for Audio Classifiers

Glass

Why?

Input audio Classification

0

Explanation

Desiderata: Faithful, Listenable, Understandable Explanations

Explainability in Decision Critical Applications (e.g. Healthcare, DeepFake detection)



Listenable Maps for Audio Classifiers (L-MAC)

ISTFT  Listenable
— Interp. Masking
) X OutputHead —— y Loss

0 }

Y
Y

T Classifier
—> InputTf >{Classifier > h > Decoder M > [nputTf > +

1 OutputHead

Explanatlon

Input Audio Saliency Map (Mask-in) Mask-out . .
Faithful & Understandable Explanations!
Metric [AI(1) AD (1) AG(f) FF(1) FidIn(f) SPS(1) COMP ()
Saliency 000 1579 000 005 007 0.3 5.48
Smoothgrad 000 1571 000 003 005 0.42 5.32
.3 16 025 1545 001 007 013 0.43 5.11
23 Gradcam 850 1011 147 017 033 0.34 5.64
i T SH  Guided GradCAM 000 1561 000 005 006 0.44 5.12
(h) = Mi(m) o &1 Guided Backprop 000 1566 000 005 006 0.39 5.47
@ 121, RT=02 163 1278 042 011 015 0.25 5.50
Maskein SHAP 000 1579 000 005 006 0.43 5.24
L-MAC (ours) 36.25 115 2350 020 042 |[o047 411
min AinLin(log f(Ms(h) ® X),) L-MAC, FT, A, =4 (ours) | 32.37 1908 1874 021 041 0.43 5.20
]
0 Saliency 000 1581 000 010 007 0.39 4.53
Mask-out Mask Reg Smoothgrad 0.00 15.61 0.00 0.07 0.04 0.39 4.54
—_— 2 6 000 1555 000 012 008 0.42 4,36
_ = S GradCAM 700 1093 104 017 029 0.34 472
AoutLout(log £((1 = My(h)) © X), )+ [My(h)] £2  Guided GradCAM 0125 1540 667 008 007 0.45 417
j ~—  Guided Backprop 0.125 15.54 0.00 0.10 0.08 0.39 4.53
3 sHap 000 1557 000 011 008 0.41 4.42
. . . L-MAC (ours) 3563 159  24.28 022 042 | |0.45 411
. Paissan, M. Ravanelli, C. Subakan, ICML 2024 (Oral) L-MAC (ours) FT, A, =4 | 36.13 128 2115 023  0.42 0.32 471




L-MAC in Time Domain

Y
InputTf + UNet Output Masking Output InputTf +
| EmbeddingModel [ h=1 Decoder [~ He Head Loss Head || EmbeddingModel
‘D SepFormer ® SepFormer . 1
x(t) MaskNet > M~ Decoder — Z(t) ‘D
SepFormer
Encoder

Improves the Sound Quality

Improves the Faithfulness (for the most part)

70 Metric | AT(t) AD{) AG(®) FF(1) FidIn(f) SPS(f) COMP ()
o5 Saliency 0.00 15.79 0.00 0.05 0.07 0.39 5.48
Smoothgrad 0.00 15.71 0.00 0.03 0.05 0.42 532
60 IG 0.25 15.45 0.01 0.07 0.13 0.43 5.11
GradCAM 8.50 10.11 1.47 0.17 0.33 0.34 5.64
55 Guided GradCAM 0.00 15.61 0.00 0.05 0.06 0.44 5.12
wn Guided Backprop 0.00 15.66 0.00 0.05 0.06 0.39 5.47
QO so L2I, RT=0.2 1.63 12.78 0.42 0.11 0.15 0.25 5.50
= SHAP 0.00 15.79 0.00 0.05 0.06 0.43 5.24
a5 L-MAC 36.25 115 23.50 0.20 0.42 0.47 4.71
L-MAGC, FT, Ay, =4 32.37 1.98 18.74 0.21 0.41 0.43 5.20
40
LMAC-TD, a = 1.00 (ours) | 66.00 2.62 22.39 0.42 0.87 0.86 10.50
35 LMAC-TD, o = 0.75 (ours) | 69.75 2.10 28.07 0.42 0.91 0.86 10.53
LMAC-TD, a = 0.00 (ours) | 46.50 5.55 11.86 0.42 0.86 0.80 10.88
30
W 5 A° <o <o® o
\ \;\W \,V'\V K \;\P-(’ . \;\P«(‘

E. Mancini, F. Paissan, M. Ravanelli, C. Subakan; Submitted to ICASSP 2025



Zero-Shot Audio Classification

Contrastive Training Zero Shot Classification

i T
t - 0102 1383  This is a CAT sound t -

INPUT TEXT —»| Text Encoder —» %2 t; ai - t2T as This is a DOG sound —»| Text Encoder —» {2 t; Qest
i3

t:}- Qtest

Qrest

Audio Encoder —f

Audio Encoder

Elizalde et al., CLAP: Learning Audio Concepts from Natural Language Supervision, ICASSP 2023



LMAC-ZS: Listenable Maps for Zero-Shot Audio Classifiers

ISTFT ] jstenable l
—> Interp. »Czs(e)

—_— M —>(£—> InputTf > faudio(-)

Lzs(0) = Z HCM — t] fandio (Mo(ti, hj) © Xaudiod) H ;

,J

And still faithful..

INPUT TEXT ——>{ feex(:) F—>t;

InputTf F>{ faudio(-) h;

Y
E
(=
L

inp, original sim = 0.49

inp, original sim = 0.23

Time

Dominant el < the s e seund o dog Dominant audio = ths i e sound of cog Metric [Al) AD() AG( FF(D) FdIn() SPS() COMP() MM
ZS classification on ESC50, Mel-Masking, 80.7% accuracy
Gradcam 290 4585 1.01 0.28 0.19 0.71 9.52 0.15
GradCam++ 8.45 35.07 3.19 0.50 0.39 0.41 10.32 0.35
SmoothGrad 050 5276 0.12  0.024 0.036 0.301 10.52 0.039
1G 025 5347 0.054 0.064 0.022 0.57 10.09 0.037
. . LMAC-ZS (CT) | 29.00 1225 1293 049 0.80 0.78 9.40 0.14
LMAC-ZS (Full) | 2345 17.12 1031 0.51 0.68 0.80 9.12 0.17
m *xSTET masked:sim:= 0:56 m*xSTEF masked sim;=i0.30 ZS classification on ESC50, STFT-Masking, 78.9% accuracy
GradCam 20.30 2375 7.7 0.78 0.58 0.72 11.54 0.14
GradCam++ 32.50 8.97 7.95 0.79 0.84 0.41 12.41 0.35
SmoothGrad 6.95 3275 2.85 0.78 0.47 0.53 11.98 0.0001
1G 16.10  21.51 6.05 0.79 0.65 0.74 11.58 0.0095
I3 5 5 i5 I3 s 15 LMAC-ZS (CT) | 3740 743 11.26  0.78 0.86 0.50 12.29 0.11
Time Time LMAC-ZS (Full) | 4335  4.29 10.57 078 0.9 0.65 11.86 0.1

F. Paissan, L. Della Libera, M. Ravanelli, C. Subakan, NeurlPS 2024



Ongoing Work: Explainable MLSP

Posthoc methods are great! Works (faithful / listenable) on unimodal and multimodal models.
- But can we create explainable models?

Explainable LLMs? (Interspeech 2025)

. - Text Response
/¥ Frozen / Trainable *
@ Mean Pooing
MA *
l Prompt key C\\ﬁ’ LL
vV Prompt Value

1t
Prompt values Audio Instruction
[—;\

o T

{ N
B @ ; 1

B W ' \ " o

1

D /
IV Whisper % 5

_
B R - =

Y Text Instruction
P t
Prompt Pool -‘W\M““l‘hmw\m romp

Posthoc explanation methods for Audio Language Models.

Controllable Recommendation Systems



Scrutable Audio / Multimodal RecSys

, Encoder |Dense Vector Item Scoring :
User Behavior Data > User Embeddings % Recommendations
Protoype 1
) Attention FTOtoype 2 Encoder | Scrutable User Item Scoring .
User Behavior Data ——— : —————— Embedding »l Recommendations

Prototype K

—— NDCG{®20 (Before

—— NDCGY®20 (After

—+— @20 (NDCG_t@2
e

F. Oncel, E. Penaloza. H. Wu, S. Gupta, M.
Ravanelli, L. Charlin., C.Subakan; Audio
Prototype Network for Controllable Music
Recommendation, MLSP 2025




Scrutable Audio / Multimodal RecSys

Generating Personalized Controllable Audio Summaries

User Behavior Data

Audio Gen.
Model

Scrutable Audio Profile

Item Scoring

Recommendation

Generating Personalized Controllable Multi-Modal Summaries

User Behavior Data

Audio Gen.
Model

=

Text Generative
Model

Scrutable Audio+Text
Profile

Item Scoring

y

Recommendation




Explainable Detection of Al Generated Voice

Faithful!

Faithfulness comparisons for Tacotron?2 Faithfulness comparisons for Fastspeech?2
) 0.6 A 101 o posM (ours) - Integrated Gradients
— 1 —+— PDSM (ours) - Grad SHAP

_ o i\ o 0-81 _+— PDSM (ours) - Gradient X Input

204 £,
X7 M E g —«— PDSM (ours) - Deep Lift
202 S 047 baseline (random phonemes)
£ i 0.2~ baseline tvanilla aithfulnessy
preprocess(.) 0.0 0.0 —
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Fraction of sample retained Fraction of sample retained

Q: More general
discretization techniques to
improve understandability.

S. Gupta, M. Ravanelli, P. Germain, C.Subakan, Interspeech 2024 ThankS!
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