

Audio Encoder Capability Challenge 2025

Workshop Agenda

Start Time	End Time	Duration	Торіся	Presenters	
10:15 AM	10:25 AM	0:10	Welcome and Introduction	Wenwu Wang	
10:25 AM	10:35 AM	0:10	Baseline Sharing	Yadong Niu	
10:35 AM	10:40 AM	0:05	Award winners with certificates	Wenwu Wang	
10:40 AM	10:50 AM	0:10	Share thoughts on neural audio codec	Wenwu Wang	
10:50 AM	10:55 AM	0.05	Q&A by Wenwu Wang	Wenwu Wang	
10:55 AM	11:00 AM	0:05	Share thoughts on data related topics	ed topics Helen Wang	
11:00 AM	11:10 AM	0:10	Presentation 1 by Team Audiocodec	Team	
11:10 AM	11:15 AM	0:05	Q&A by Team Audiocodec	Audiocodec	
11:15 AM	11:25 AM	0:10	Presentation 2 by Team SAMoVA	Team	
11:25 AM	11:30 AM	0:05	Q&A by Team SAMoVA	SAMoVA	

Challenge Introduction

Motivation

"Strongly inspired by the HEAR benchmark, this challenge introduces several key enhancements: a diverse task set, a focus on real-world applications, a combination of parameterized and parameter-free evaluation, and a new open-sourced, efficient evaluation system."

Organization committee



Helen Wang

Yadong Niu Wenwu Wang Junbo Zhang

DataoceanAl

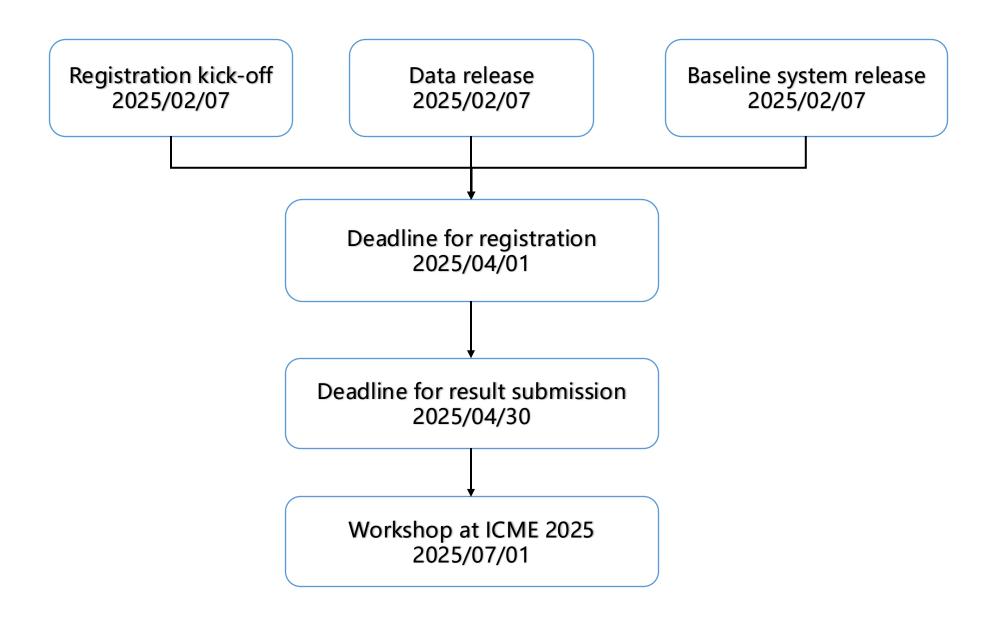
DataoceanAl

Guanbo Wang

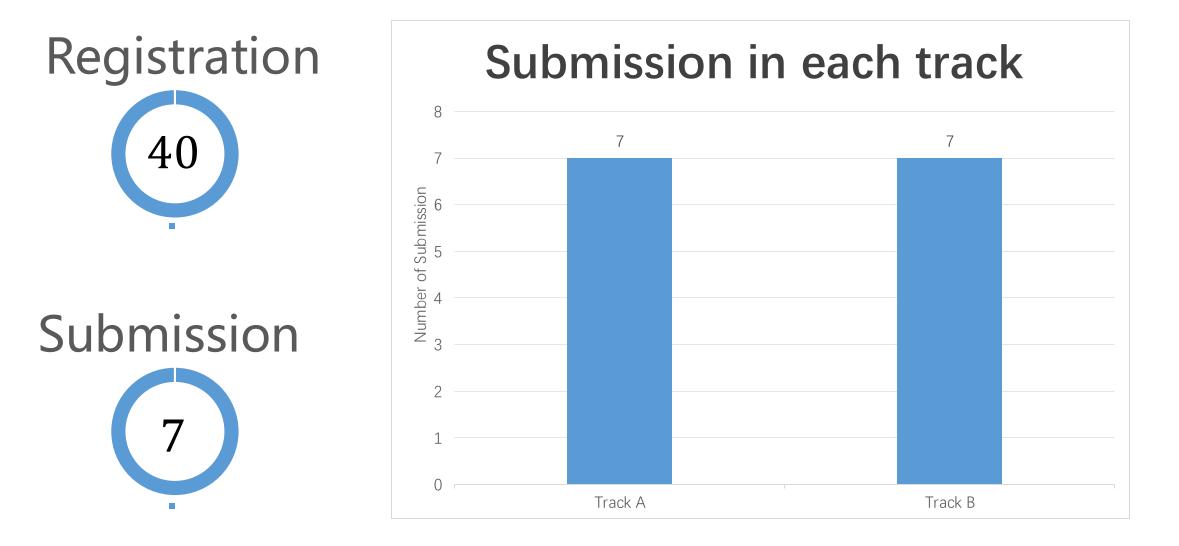
DataoceanAl

Chris Wu

Timeline



Statistics



Leaderboard

Track A: MLP Results						
Affiliation	Team	Weighted Averaged Score				
ByteDance	audiocodec	0.865				
ByteDance	GAEBT	0.860				
ByteDance	AudioX	0.836				
Carnegie Mellon University	CMU	0.827				
Alibaba	Aluminumbox	0.807				
NTT	Probin	0.709				
IRIT	SAMoVA	0.516				

Leaderboard

Track B: KNN Results						
Affiliation	Team	Weighted Averaged Score				
ByteDance	audiocodec	0.792				
ByteDance	GAEBT	0.782				
ByteDance	AudioX	0.778				
NTT	Probin	0.710				
Carnegie Mellon University	CMU	0.707				
Alibaba	Aluminumbox	0.641				
IRIT	SAMoVA	0.480				

Best Result in Each Track

Track	Affiliation	Team	Weighted Averaged Score
Track A: MLP Results	ByteDance	audiocodec	0.865
Track B: KNN Results	ByteDance	audiocodec	0.792

Baseline Sharing

Motivation

- Audio models exhibit a generalization gap:
 ✓ speech-trained models not work well for sounds
 ✓ Sound pretraining does not work for speech
- Self-supervised learning (SSL) audio representations show promise but lack exploration in scaled model and dataset sizes for crossdomain generalization.
- Need for a unified encoder to bridge speech, sound, and music domains efficiently.

Proposed Method: Dasheng

• **Design:** Masked Autoencoder (MAE) + Unprecedented Scale

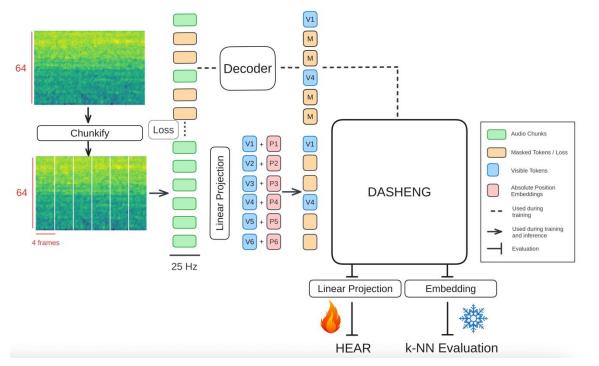


Fig. 1. The Dasheng Training Framework

Dasheng: Deep Audio-Signal Holistic Embeddings

Features

- ✓ training-data: 272k hours
- ✓ parameters: max to 1.2B
- ✓ frame-level representation

Dominant Results

- Evaluation on HEAR Benchmark (Dasheng: Blue line in Fig.2)
- Embeddings inherently capture rich information across domains

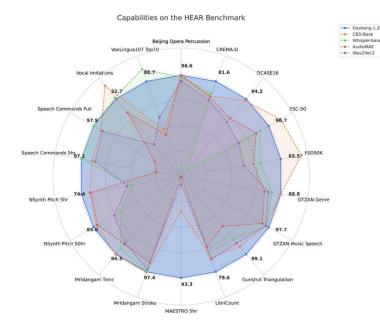


Fig. 2. Evaluation on the HEAR benchmark

Table 1. Evaluation using a k-NN classifier

Domain	Task	AudioMAE	Dasheng			
	Task	AUGIONIAE	Base	0.6B	1.2B	
	ESC50	53.1	61.9	66.6	68.6	
Env	FSDK18	43.4	70.3	72.1	72.1	
	US8k	58.2	73.9	75.9	77.7	
Music	NS _{Inst}	67.2	70.0	70.9	71.2	
	SPC1	56.9	93.6	93.4	95.9	
	SPC2	5.9	86.0	87.3	90.9	
Speech	VoxCeleb1	2.9	34.2	37.8	39.4	
	RAVDESS	28.7	58.1	61.8	61.9	
	FSC	7.6	52.3	57.6	62.4	

Dominant Results

• Evaluation: X-ARES Benchmark

✓ Domain: speech, sound, music

✓ Tracks: Parametric & Non-parametric

Domain	Dataset	Task Type	Metric	n-classes	Track B	Hidden
Speech	ASV2015	Spoofing detection	EER	2	\checkmark	X
	CREMA-D	Emotion recognition	Acc	5	\checkmark	X
	Fluent Speech Commands	Intent classification	Acc	248	\checkmark	X
	LibriCount	Speaker counting	Acc	11	\checkmark	X
	LibriSpeech	Gender classification	Acc	2	~	X
	LibriSpeech	Speech Recognition	iWER	-	Х	X
	Speech Commands	Keyword spotting	Acc	30	\checkmark	X
	VocalSound	Non-speech sounds	Acc	6	\checkmark	X
	VoxCeleb1	Speaker identification	Acc	1251	\checkmark	X
	VoxLingua107	Language identification	Acc	33	\checkmark	Х

Table 2. Average result on X-ARES Benchmark

Domain	Dataset	Task Type	Metric	n-classes	Track B	Hidden
Sound	Clotho	Sound retrieval	Recall@1	-	Х	X
	DESED	Sound event detection	Segment-F1	10	\checkmark	X
	ESC-50	Environment classification	Acc	50	\checkmark	X
	Finger snap sound	Sound event detection	Acc	2	\checkmark	\checkmark
	FSD18-Kaggle	Sound event detection	mAP	41	Х	X
	FSD50k	Sound event detection	mAP	200	Х	X
	Inside/outside car	Sound event detection	Acc	2	\checkmark	\checkmark
	Key scratching car	Sound event detection	Acc	2	\checkmark	\checkmark
	LiveEnv sounds	Sound event detection	mAP	18	X	\checkmark
	Subway broadcast	Sound event detection	Acc	2	\checkmark	\checkmark
	UrbanSound 8k	Urban sound classification	Acc	10	\checkmark	X
Music	Free Music Archive Small	Music genre classification	Acc	8	\checkmark	X
	GTZAN Genre	Genre classification	Acc	10	\checkmark	X
	MAESTRO	Note classification	Acc	88	\checkmark	X
	NSynth-Instruments	Instruments Classification	Acc	11	\checkmark	X
	NSynth-Pitch	Pitches Classification	Acc	128	\checkmark	Х

Dominant Results

• Evaluation: X-ARES Benchmark

Table 3. Average result on X-ARES Benchmark

Accessibility	Method	Dasheng	Wav2vec2	Whisper	Data2vec
Public Dataset	MLP	0.699	0.490	0.632	0.598
	KNN	0.504	0.262	0.299	0.388
Total Dataset	MLP	0.801	0.664	0.740	0.694
	kNN	0.683	0.469	0.475	0.455

Conclusion

- Audio encoders are vital for unified audio understanding, closing domain gaps through scaled SSL.
- Collaborative focus on speech, sound, and music enables generalizable models with real-world impact.

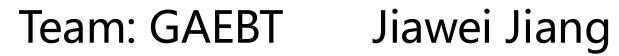
• Future: unified audio understanding + generation ?

Thanks

Award Winners with Certificates

1st Place of Track A

Team: audiocodec Linping Xu



Team: AudioX

Team: CMU

Shikhar, Hyejin Shim, Samuele Cornell, Kwanghee Choi, Satoru Fukayama, Jeeweon Jung, Soham Deshmukh, Shinji Watanabe

Team: Aluminumbox Xiang Lyu

Team: Probin M2D

Daisuke Niizumi

Team: SAMoVA

1st Place of Track B

Team: audiocodec Linping Xu

Team: GAEBT Jiawei Jiang

Team: AudioX

Team: CMU

Shikhar, Hyejin Shim, Samuele Cornell, Kwanghee Choi, Satoru Fukayama, Jeeweon Jung, Soham Deshmukh, Shinji Watanabe

Team: Aluminumbox Xiang Lyu

Team: Probin M2D Daisuke Niizumi

Team: SAMoVA

Reminder

If you did not join ICME in person, we will send the

e-certificate by email after the workshop.

Centre for Vision, Speech and Signal Processing

Neural Audio Codec

Wenwu Wang

Centre for Vision, Speech and Signal Processing (CVSSP)

University of Surrey

United Kingdom

Engineering and Physical Sciences Research Council

Outline

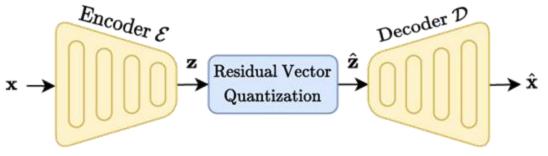
- Background: Audio Codec & Neural Audio Codec
- Motivation: Limitations with Current Neural Codecs
- Proposed Method: SemantiCodec
- Experimental Results
- Conclusions and Future Works

Audio Codec

- A device or software that encodes or decodes digital audio data for transmission, storage, or playback.
- Compressor-decompressor → "Codec"
- MP3, FLAC, AAC, Vorbis, etc.

Neural Audio Codec

- SoundStream (Zeghidour et al. 2021)
- Encodec (Défossez et al. 2021)
- Descript (Kumar et al. 2023)
- HiFi-Codec (Yang et al. 2023)
- SpeechTokenizer (Zhang et al, 2023)
- Codec Superb Benchmark (Wu et al. 2024)
 - <u>https://github.com/voidful/Codec-SUPERB</u>



Limitations of Current Neural Codecs

• High token rate (long token sequence)

- e.g., 6kbps Descript audio codec has 600 tokens per second
- Make auto-regressive modeling challenging and computational expensive

• Poor reconstruction quality at low bit rate (e.g., 0.6 kbps).

- Most previous studies work on bit rate > 2kbps
- Can we go further under 1.0 kbps?

Falling short in capturing semantic information

• For example, latent encodings given by 6kbps achieved an average accuracy of only 33% on the HEAR benchmark, while AudioMAE latent encodings achieved an accuracy of 61% (without finetuning).

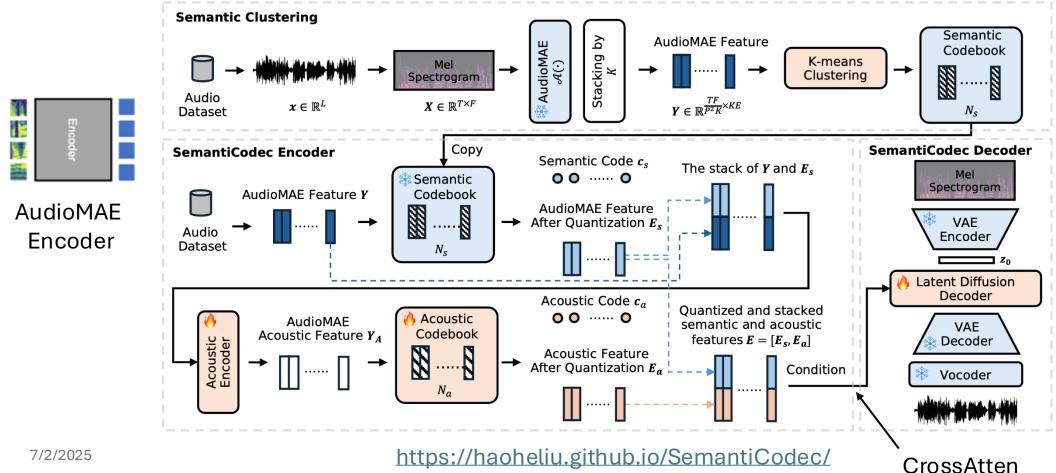
Motivations

- Shorter sequence: Lower token rates at 25, 50, or 100 tokens per second.
- Better reconstruction at lower bit rate: 0.3~1.4 kbps
- Improved semantic in the codec tokens (which potentially can lead to better language modelling)

SemantiCodec

Large scale k-means is challenging AudioSet + Million Song Dataset + GigaSpeech https://github.com/haoheliu/kmeans_pytorch

 Ultra-low bit rate (0.31 kbps ~1.40 kbps, token rate 25, 50, or 100 per second) & Strong semantics in the token & Variable vocabulary sizes



41

Experimental Evaluations

• Metrics:

- MEL: Mel spectrogram distance
- STFT: Short-time Fourier Transform Distance
- ViSQOL: Virtual Speech Quality Objective Listener Score
- WER: Word Error Rate
- Accuracy: Audio classification task accuracy
- MUSHRA Scores

• Datasets (we only use audio):

 GigaSpeech (10K hours), Million Song Dataset (510K music tracks), MedleyDB (122 tracks), MUSDB18 (10 hours), AudioSet (2M), VGGSound (190K), WavCaps (7K hours)

Experimental Evaluations

• Baselines:

- Encodec (EC): 23M parameters
- Descript Codec (DAC): 74M
- HiFi-Codec (HC): 63M

• Evaluations:

- Reconstruction performance evaluation: LibriTTS clean test set (300 speech utterances), AudioSet general sound (500 audio signals), MUSDB18 (50 songs covering vocals, drums, bass, etc.); 1050 audio clips in total
- Semantic information evaluation: HEAR benchmark (NSPitch, ESC-50, LibriCount, CREMA-D, Vocal Imitations (VoImit), Speech Commands(SC))
- Subjective evaluations: MUSHRA test: 10 raters, 10% of evaluation data (25 music tracks, 30 speech recordings, and 50 general sound samples)

Samples Comparison

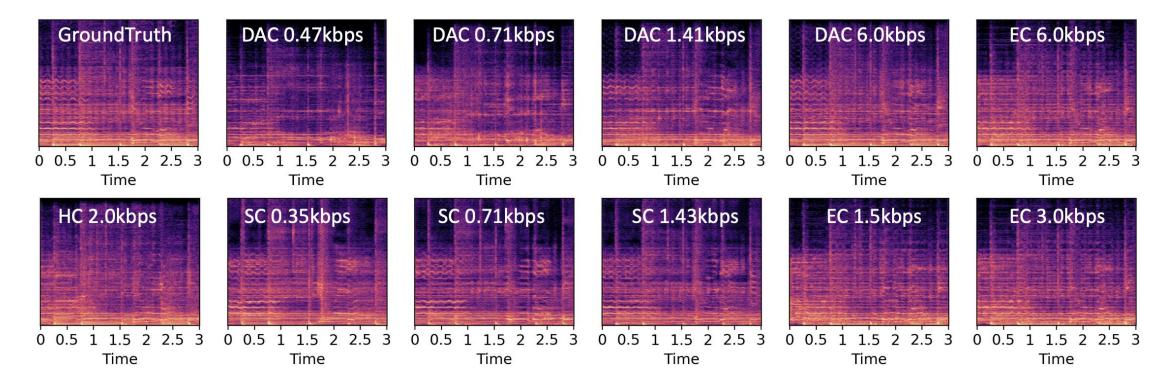
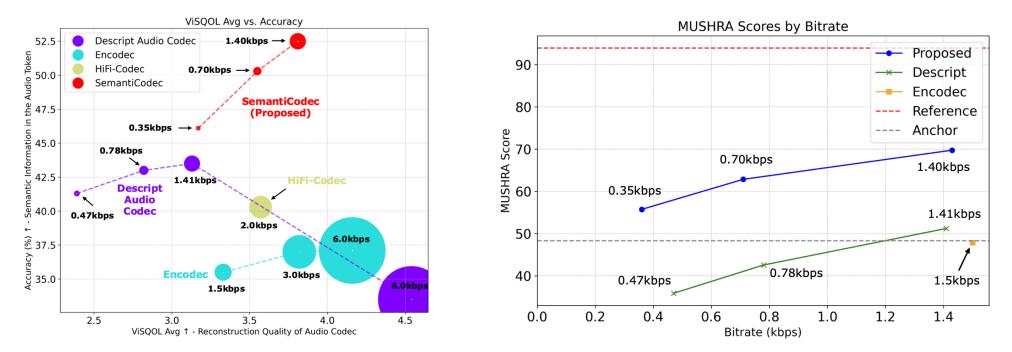


Fig. 3. The log-STFT spectrogram of the ground truth audio and the reconstruction audio with different audio codecs. DAC, EC, HC, and SC are the descript codec, Encodec, HiFi-Codec, and SemantiCodec, respectively.

Visual Comparison

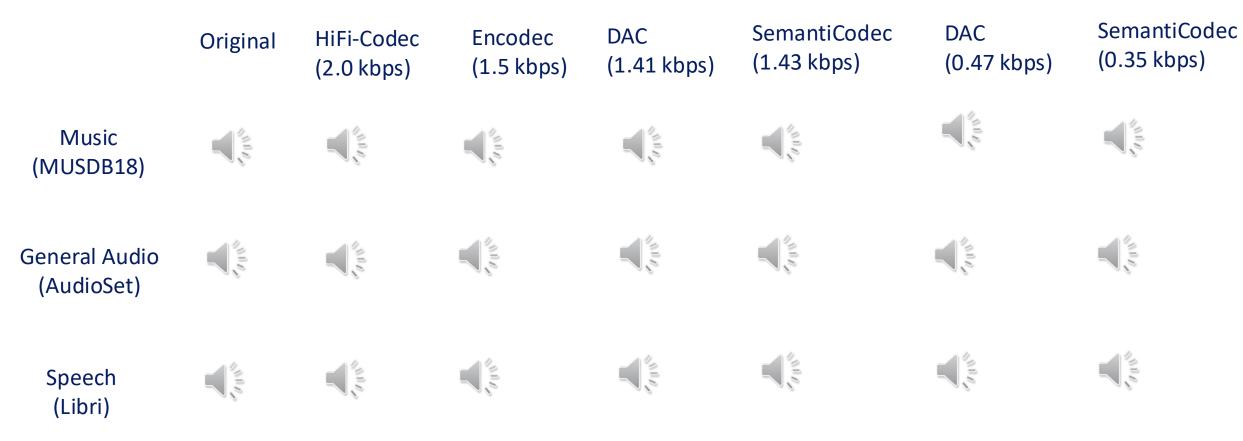
- Better reconstruction with a lower bit rate
- Better semantic in the audio token (potentially better Audio LLM?)



https://haoheliu.github.io/SemantiCodec/

Sound demos:

Demos



More sound demos:

https://haoheliu.github.io/SemantiCodec/

H. Liu, X. Xu, Y. Yuan, M. Wu, W. Wang, M.D. Plumbley, "SemantiCodec: An Ultra Low Bitrate Semantic Audio Codec for General Sound," IEEE Journal on Selected *Topics in Signal Processing*, vol. 18, no. 8, pp. 1448--1461, 2024.

7/2/2025

Conclusion & Future Work

- We have presented SemantiCodec, which produces audio tokens of more semantic, lower token rate, with thus enabling ultra-low bit rate audio codec, and works for any length audio.
- Future works:
 - How does the semantic of audio token related with LM performance?
 - Can shortened audio token sequence alleviate LM robustness issue?
 - Specialized SemantiCodec

Acknowledgements

Thanks to Haohe for providing slides.

The project is funded in part by EPSRC, British Council and GAIN program (Research England).

Take Aways

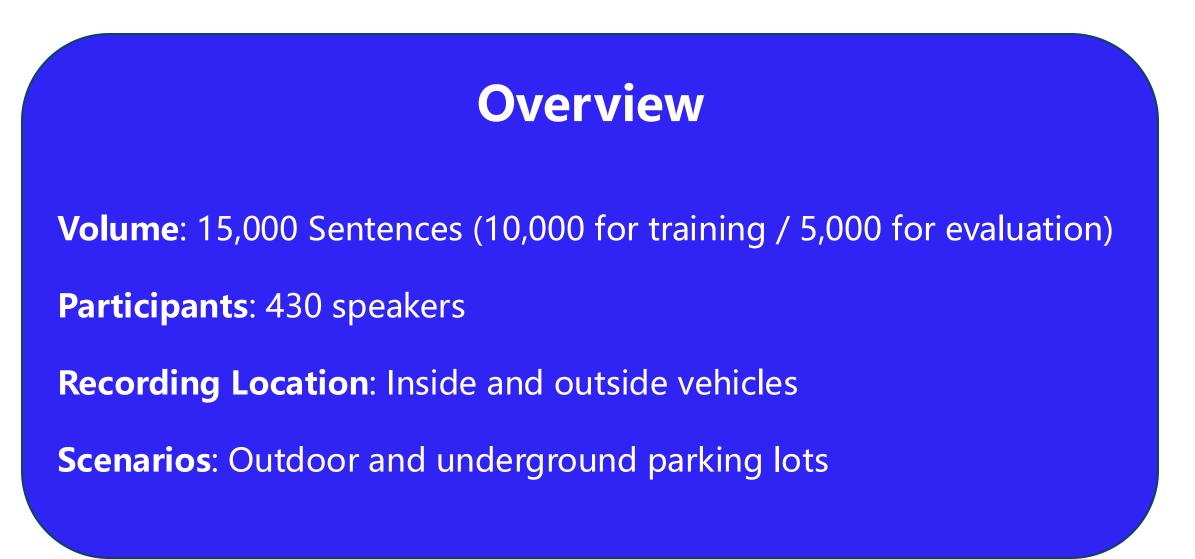
- Arxiv Paper: https://arxiv.org/abs/2405.00233
- Project Page: https://haoheliu.github.io/SemantiCodec/
- Open-source Code: https://github.com/haoheliu/SemantiCodec-inference
- Demos: https://haoheliu.github.io/SemantiCodec/

Dataocean Al Company Overview

Helen Wang

DataoceanAl

High-Quality ASR Dataset for Incarbin and outside



DataoceanAl

www.dataoceanai.com

High-Quality ASR Dataset for Incarbin and outside

Data Collection Details (In-Car)

- 5 fixed speaker positions
- Microphone fixed at point A
- 7,500 sentences total (1,500 per point)

Recording Conditions

- Windows fully closed
- Window slightly open near the sound source

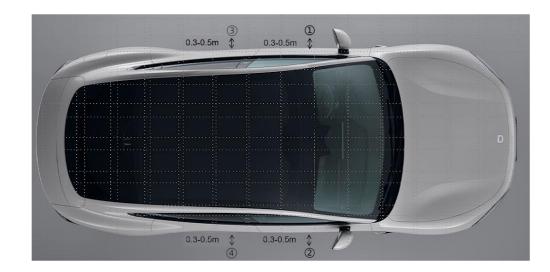
Data Collection Details (Outside-Car)

DataoceanAl

- 4 recording positions around the vehicle
- Microphone fixed at point A

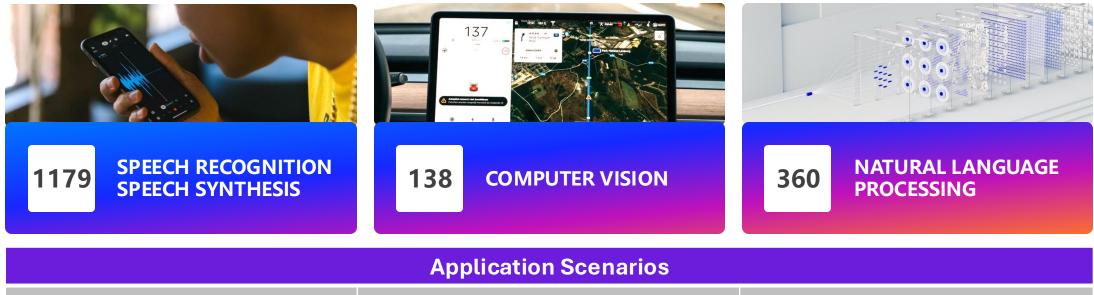
Recording Conditions

- Windows fully open
- Windows fully closed
- Windows slightly open



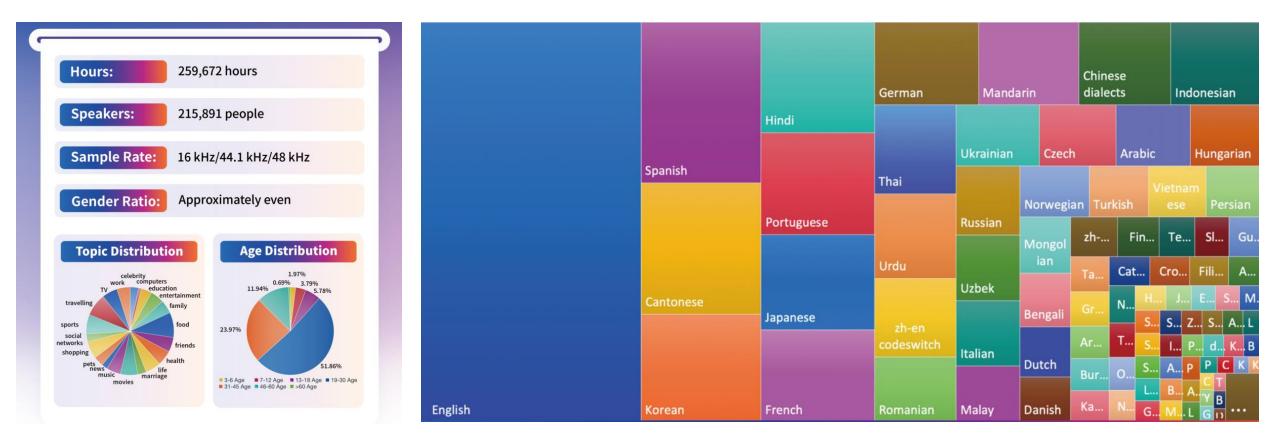
Off-The-Shelf Datasets

Over 1600 OTS datasets ready to go!



Personal assistant, voice input, smart home, intelligent customer service, robot, voice navigation, intelligent broadcast, voice translation, mobile social networking, virtual human, smart finance, etc. Intelligent driving, mobile socialization, virtual humans, smart finance, smart transportation, smart city, OCR recognition, etc. CoT, coding, machine translation, intelligent Q&A, information extraction, sentiment analysis, etc.

High Quality 100+ Languages Speech Dataset



DataoceanAl

Thanks !

Website: Dataoceanai.com

Presentation 1 by Team audiocodec

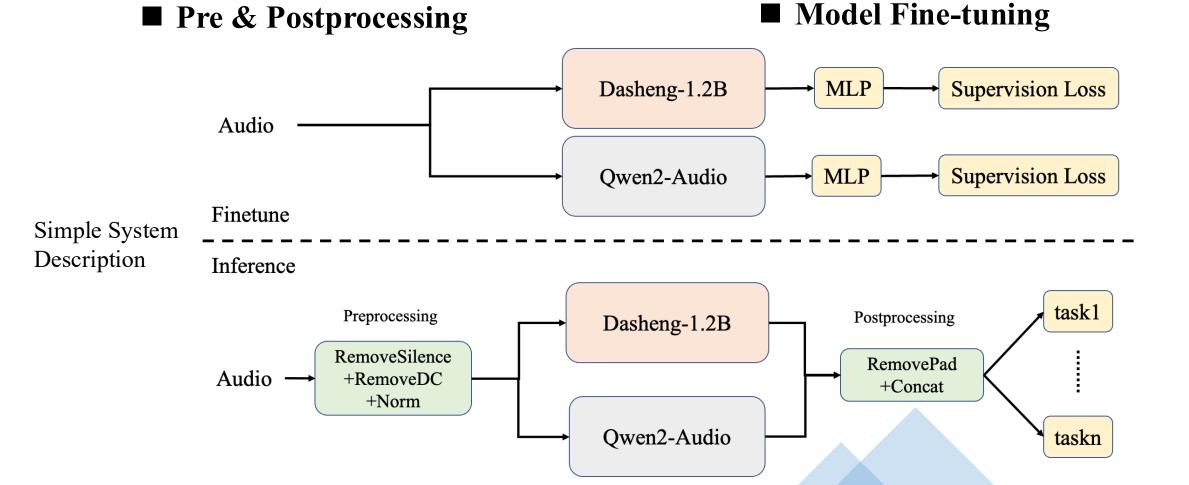
ByteDance 字节跳动

DQFAudio Encoder: A Solution for Audio Downstream Tasks Based on Model Ensemble and FineTuning

ByteDance MMLab Team: audiocodec Linping Xu xulinping.678@bytedance.com

Tasks Analysis

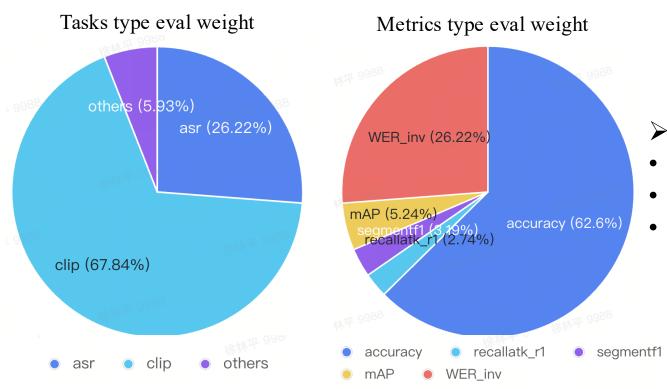
Model Ensemble



ByteDance 字节跳动

Tasks Analysis

- ➢ 23 Tasks Evaluation Weight
- Clip-Level Tasks: 67+% (by task type)
- Classification Tasks: 62+% (by type & metrics)
- Speech Recognition: 26+%



Note: Development-time Xares evaluation stats, not synced with latest commit.

trics type eval weight

Evaluation Efficiency optimization

Model Selection & Fine-tuning

Integrate audio and speech model

Fine-tuning focus clip classification tasks

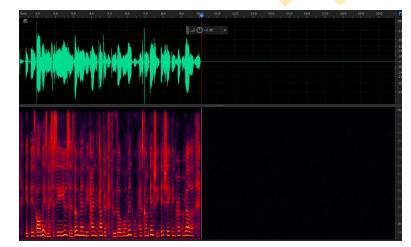
- 14 quick-representative tasks for development
- Process split: Encoder Inference || Task Evaluation
- Benefits: Faster results Higher GPU efficiency

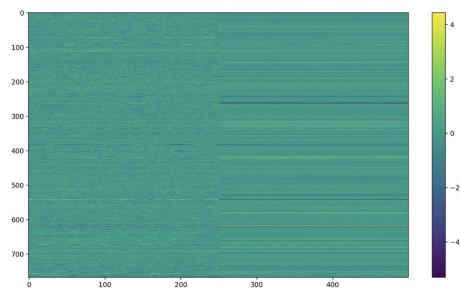
Pre & Postprocessing

- Evaluation Audio Analysis
- Long silent segments $(\geq 0.5s)$
- Fixed-length input requirement (e.g., Dasheng 10s, Whisper 30s)
- Silence padding for sub-length sequences when inference

- Silent segments influence
- **Dilutes effective information** in audio features
- Degrades encoder's performance especially Clip-Level Tasks

Silent Padding Impact on Embeddings





Pre & Postprocessing

- > Preprocessing:
- Detect & filter silent segments (10ms units)
- Applied DC removal + amplitude normalization
- > Postprocessing:
- Remove invalid features from silent padding
- ➢ Impact: 14 tasks' weighted scores up!
- Remove Silence
 - MLP: $0.705 \rightarrow 0.712$
 - KNN: $0.524 \rightarrow 0.582$
- Remove DC and Norm
 - KNN: $0.582 \rightarrow 0.598$

	-	processing stprocessin	14 tasks' weighted scores		
BatchSize	RemSil	RemDC	MLP	KNN	
16	\	\	\	0.704	0.504
1	\	\	\	0.705	0.524
1	\	on	\	0.705	0.523
1	on	\	\	0.711	0.582
1	on	on	\	0.712	0.596
1	on	on	on	0.710	0.598
16	on	on	on	0.707	0.546

Note:

Best inference performance achieved at batch size=1. When batch size = 16, some invalid features are retained, due to the tensor [B, C, T] requirement.

Model Ensemble

➤ Task Divergence

Audio vs. speech tasks exhibit different characteristics, with speech recognition carrying significant evaluation weightage

Parameter Flexibility

The challenge imposes no constraints on model parameter count, enabling architecture scaling.

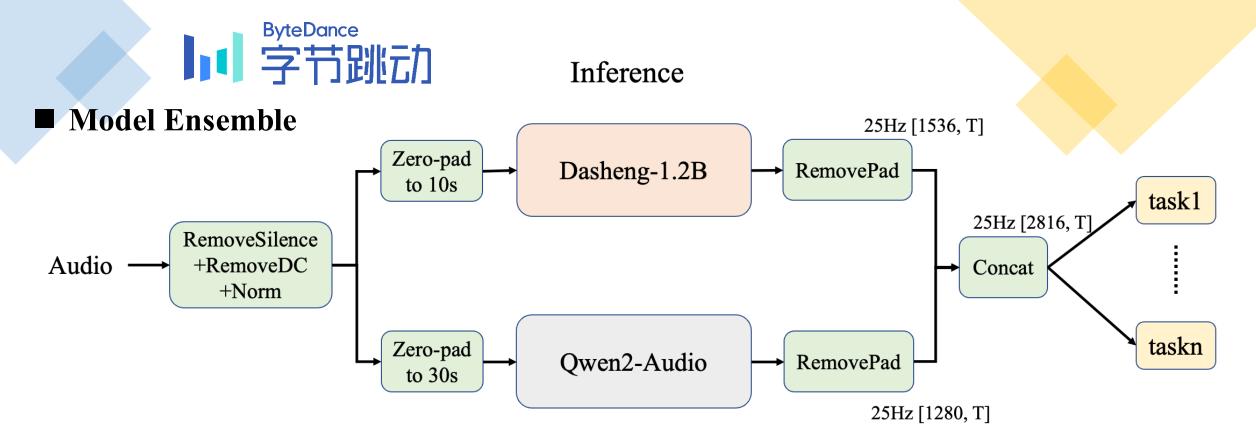
Model Domain Preferences

SSL Audio Encoders can be broadly categorized by application scenarios into Speech and Audio.

SSL for Speech & Audio					
Speech	Audio				
Wav2vec2	Dasheng				
Whisper	Beats				
Qwen2-Audio encoder	•••				

1+1 > 2 ?

Ensembling Speech and Audio models may yield better performance than single models.



- Model Integration Trials:
- Dasheng
- Dasheng + Whisper
- Dasheng + Qwen2-Audio Encoder

Key Note: Embedding alignment required in temporal dimension for ensemble models

Model	MLP	KNN
Dasheng1.2B	0.731	0.560
Dasheng1.2B+Whisper	0.743	0.586
Dasheng1.2B+Qwen2Audio	0.761	0.682

Model Fine-tuning & Ensemble

- Audioset for Fine-tuning
- Multi-task fitness: 527 classes
- Audio variety: speech, music environmental sounds
- Data scale: 5100+h

- Fine-tuning Strategy
- Approach: Fine-tune Qwen2-Audio Encoder and Dasheng separately, then fused embeddings.
- Model: Encoder + MLP

Fine-tuning Details

Model	Optimizer	learning rate	Masking Rate	Layer Freezing	others
Dasheng 1.2B				ALL Layers	4*V100
Qwen2-Audio Encoder	AdamW8bit	1.00E-05	0	Last 5 Layers	BatchSize=12 EpochLength=500

In model fine-tuning, pre-/post-processing are applied

Model Fine-tuning & Ensemble

- Fine-tuning Strategy & Key Result
- Dasheng Base Model Results
 - Fine-tuning significantly improved KNN scores
 - Minimal impact on MLP performance
- Same Method to Larger Models
 - Applied same fine-tuning pipeline to: Dasheng 1.2B and Qwen2-Audio Encoder
 - Observed consistent KNN improvements across models
- Best solution
 - Dasheng 1.2 Finetuned + Qwen2Audio Finetuned Audio Encoder

N (- 1 - 1		IZNINI
Model	MLP	KNN
Dasheng base	0.704	0.504
Dasheng base*	0.703	0.622
Dasheng1.2B	0.731	0.560
Dasheng1.2B*	0.731	0.647
Dasheng1.2B+Qwen2Audio	0.761	0.682
Dahseng1.2B*+Qwen2Audio	0.756	0.722
Dasheng1.2B*+Qwen2Audio*	0.759	0.726

* Indicates the model has undergone fine-tuning.

Challenge Results

Results of the ICME 2025 Audio Encoder Capability Challenge

Track 1 MLP Results

Track 2 KNN Results

Track 1 MLP Results

Click on column headers to sort the table

DQFAudio Encoder secured **first place** in the Weighted Averaged Score.

Affiliation	Team	Report	Weighted Averaged Score ↓	asvspoof2015	clotho	cremad	desed	esc50	finger_snap	fluentspeechcommands
ByteDance	audiocodec	download	0.865	0.995	0.055	0.858	0.596	0.968	0.885	0.992
ByteDance	GAEBT	download	0.860	0.997	0.054	0.868	0.637	0.965	0.885	0.988
ByteDance	AudioX	download	0.836	0.986	0.058	0.862	0.602	0.964	0.884	0.991
Carnegie Mellon University	СМU	download	0.827	0.983	0.033	0.810	0.568	0.905	0.873	0.954
Alibaba	Aluminumbox	download	0.807	0.980	0.027	0.772	0.556	0.871	0.873	0.958
NTT	Probin	download	0.709	0.924	0.045	0.715	0.738	0.978	0.875	0.683
IRIT	SAMoVA	download	0.516	0.884	0.013	0.426	0.305	0.341	0.853	0.027

THANKS.

ByteDance字节跳动

Presentation 2 by Team SAMoVA

Presented by Ludovic TUNCAY for IEEE ICME 2025 01.07.2025

Audio-JEPA

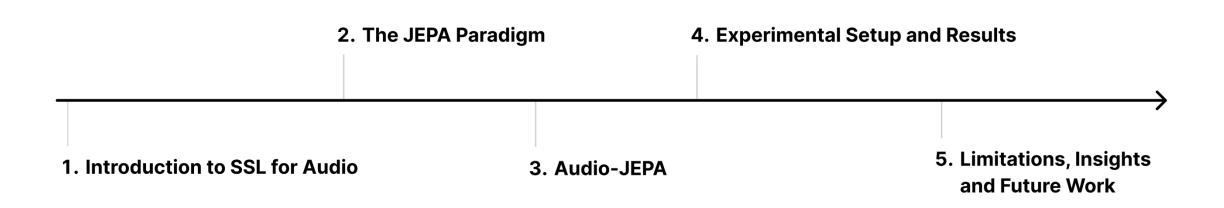
Joint-Embedding Predictive Architecture for Audio Representation Learning

Ludovic TUNCAY¹ ludovic.tuncay@irit.fr Étienne LABBÉ¹ etienne.labbe@irit.fr Emmanouil BENETOS² emmanouil.benetos@qmul.ac.uk Thomas PELLEGRINI ¹ thomas.pellegrini@irit.fr

¹ IRIT, Université de Toulouse, CNRS, Toulouse INP | Toulouse, France

² School of Electronic Engineering and Computer Science, Queen Mary University of London | UK

Presentation Overview

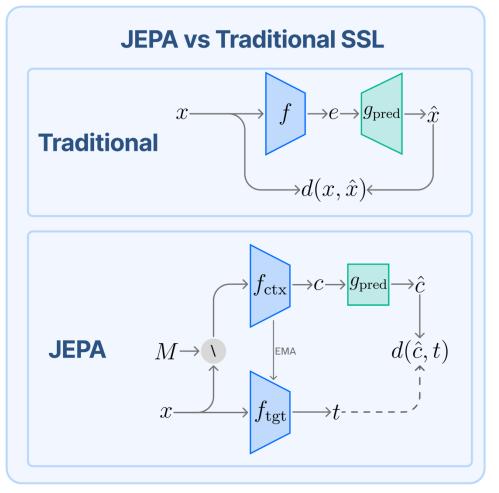


Introduction to Self-Supervised Learning for Audio

- Self-supervised learning leverages unlabeled data to learn useful representations
- Essential for audio, where annotated data is scarce and expensive to create
- Mordern approaches pre-train on large-scale datasets, then adapt to downstream tasks
- Reduces dependence on labeled data while maintaining strong performance

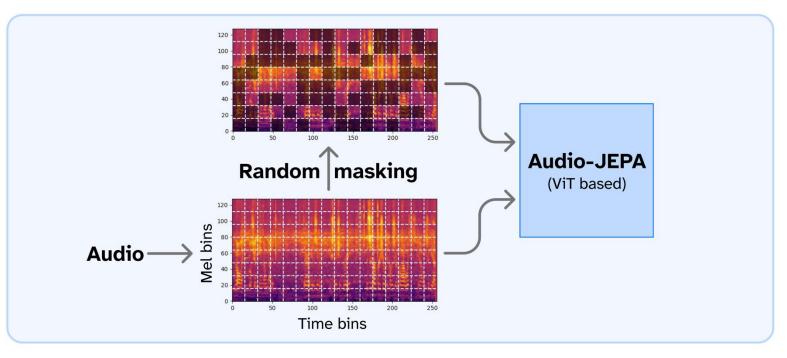
The JEPA Paradigm: Masked Latent Prediction

- Joint-Embedding Predictive Architectures (JEPA) predict high-level latent features of masked regions
- Rather than reconstructing raw inputs, JEPA encourages semantic feature learning by reconstructing latent features
- Proven effective for images (I-JEPA), video (V-JEPA, V-JEPA 2) and more modalities; **our work adapts it for audio**
- Focuses on **capturing meaningful semantic** structure because it works in the feature space



Audio-JEPA: Adapting JEPA to the Audio Domain

- Inputs: Convert audio waveforms to Mel-spectrograms (128 bands, 256 time bins)
- Randomly mask 40–60% of spectrogram patches for each sample
- Treats spectrograms as images. Feeds them into a Vision Transformer (ViT) backbone
- Each 16×16 patch spans and equivalent of 625ms of audio

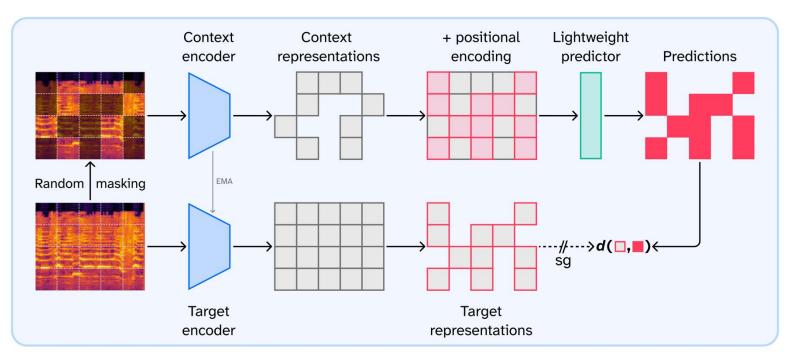


Audio-JEPA: Overview of the Architecture

- 1. Context Encoder (ViT based) Encodes visible patches
- **2. Target Encoder** (EMA of context encoder): Encodes the whole audio to create targets

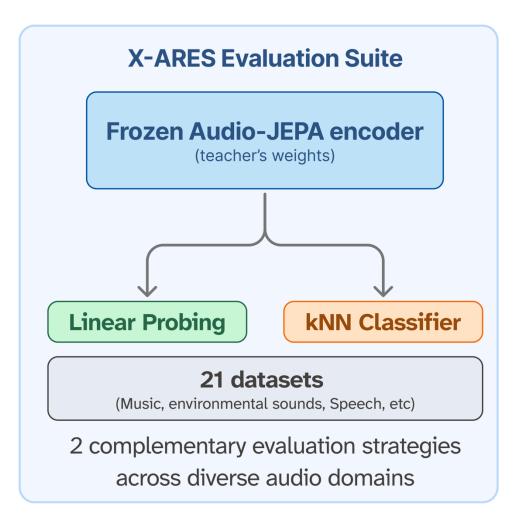
3. Lightweight Predictor (ViT based) Predict encodings of masked patches

• Training minimizes L2 distance in latent space



Experimental Setup

- Pre-training data: ~1.9M AudioSet clips (10s, 32KHz audio, 5338 hours total)
- Input Processing: 256 time bins and 128 band Mel-spectrograms divided into 16x16 patches or "chunks" (each spectrogram is 8x16 patches)
- Training details: 100k steps (~13 epochs), 256 batch size, 4 NVIDIA V100 GPUs
- **Resource efficiency:** 14 hours total training time (vs. days for wav2vec2)



Key Findings and Results

- Strong kNN results on music and environmental sound recognition tasks (ESC-50, FMA-small, GTZAN)
- Competitive with or superior to wav2vec2/ data2vec on these tasks using only 1/5 of the training data
- Performance lags behind on speech tasks (speaker verification, keyword spotting), probably due to the poor temporal resolution
- Random masking outperforms block masking for audio representation learning

Performance on key datasets (kNN)

Dataset	Audio-JEPA	Wav2Vec2	Data2Vec
ESC-50 (environmental)	14.0%	8.1%	4.0%
FMA-Small (music)	44.9%	25.1%	10.6%
GTZAN (music)	45.2%	30.3%	10.8%
Speech Commands	4.4%	20.8%	85.2%

Training Resources Comparison5,338 hours~27,000 hoursAudio-JEPAVSWav2Vec2/Data2vec(100k steps)(400k steps)

Limitations, Insights, and Future Works

Current limitations

- Weakness on fine-grained speech discrimination
- Large patch size (625ms in time dimension) limits temporal precision
- Linear probe performance lags behind kNN results due to the non-linear nature of the embedding space created by JEPA¹
- Underperforms on tasks requiring precise localization

Future directions

- 1. Attention pooling for head evaluation
- 2. Modernize transformer backbones
- 3. Systematic hyperparameter tuning
- 4. Targeted training for speech specific tasks

Despite being a straightforward adaptation of JEPA, Audio-JEPA demonstrates strong potential for audio representation learning while using significantly fewer resources than previous methods.

All code and pretrained models are open-sourced

¹ A. Bardes et al., Revisiting Feature Prediction for Learning Visual Representations from Video.

$\bullet \bullet \bullet$

Take a group photo

Thanks, see you next year!

