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The widely used governing equations for modelling water waves are

Hamiltonian, and therefore one would expect that symplectic integrators

would be appropriate for time integration. In this lecture the use of symplectic

or other geometric integrators for water waves is discussed. For a simple free

surface (a graph) the Hamiltonian formulation is canonical, but still the use of

symplectic integrators is not straightforward. For general surfaces, for

example breaking waves, one needs a coordinate-free Hamiltonian

formulation, and this was first proposed by BENJAMIN & OLVER (1982). For

breaking waves the Hamiltonian structure is no longer canonical, and new

ideas from geometric integration are needed.
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Equations governing water wave dynamics

Assume that the free surface is a single-valued function of horizontal
position (x, z),

y = η(x, z, t)

For inviscid irrotational flow, the velocity field is determined by a
velocity potential

u(x, y, z, t) = ∇φ(x, y, z, t)

Let
Φ(x, z, t) = φ(x, y, z, t)

∣∣
y=η(x,z,t)

,

and suppose that φ(x, y, z, t) is a harmonic function in the fluid interior.

Then the governing equations take the form

Φt = δH
δη

ηt = − δH
δΦ

 Zakharov (1968) formulation

where H(η, Φ) is the total energy.
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Symplectic integrator ?

The total energy density takes the form

H(η, Φ) = 1
2
〈Φ, G(η)Φ〉+ 1

2
gη2 .

where G(η) is the Dirichlet-Neumann operator, and g is the
gravitational constant. As far as I’m aware, a symplectic integrator has
never been implemented for this problem.

Typically, a boundary element method is used for spatial discretization,
and then a standard time integration.

For example in a recent state of the art paper, RK4 is used. To see the
implications of this, consider the linear problem in 2D with periodic
boundary conditions in the horizontal direction,

η(x, t) =
∞∑

j=1

qj(t) cos jx + pj(t) sin jx

Then (qj(t), pj(t)) for j = 1, 2, . . . decouple into an infinite number of
harmonic oscillators

q̇j = ωj pj

ṗj = −ωjqj

with frequencies

ω2
j = gj tanh(jh) , j = 1, 2, . . . ,

where h is the still water depth.
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Coupled harmonic oscillators and RK4

Take N modes; then
ut = Au , u ∈ R2N

with
A = A1 ⊕ · · · ⊕Aj ⊕ · · ·

and

Aj = ωjJ , J =

0 −1

1 0


The orbit of each mode is circular with the radius determined by initial
data, since

d

dt
İj = 0 where Ij(t) = ‖uj(t)‖2 .

where uj(t) = (qj(t), pj(t)).

The standard RK-4 method for this linear system for one step t 7→ t + h

reduces to

un+1 = [I + hA + 1
2
h2A2 + 1

3!
h3A3 + 1

4!
h4A4]un . (1)

which decouples into

un+1
j = [I + hAj + 1

2
h2A2

j + 1
3!
h3A3

j + 1
4!
h4A4

j ]u
n
j

= [(1− 1
2
α2 + 1

4!
α4)I + (α− 1

3!
α3)J]un

j ,

where α = ωjh.
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Harmonic oscillators and RK4

un+1
j = [(1− 1

2
α2 + 1

4!
α4)I + (α− 1

3!
α3)J]un

j ,

where α = ωjh. RK4 method distorts circles as follows

I(un+1
j ) =

(
1− (hωj)

6

72
+

(hωj)
8

576

)
Ij(u

n
j )

In the figure, I(un+1
j )/I(un

j ) is shown plotted versus hωj .

32.521.510.50
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For the distortion to be less than unity requires ωjh <
√

8 for all j.

If 0 < ωjh <
√

8 the amplitude of the oscillator is damped, and if ωjh >
√

8 the
amplitude is growing.

Does one choose the time step so that the largest frequency is stable? Or
choose a larger time step and then using smoothing to stabilize the high
frequencies?

Contrast with an elementary symplectic method such as the implicit midpoint
rule which preserves the circles of all the harmonic oscillators, regardless of
frequency.
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Irrotational waves and simple free surface

It is an open problem to implement a symplectic integrator in the case
where the free surface is represented as a graph.

On the other hand ...

• Representation of the free surface with a graph is a special choice of
parameterization.

• Can the free surface be represented in a coordinate free way?

• Can a coordinate free representation of the surface be incorporated
into a Hamiltonian formulation?

• What is the appropriate geometric integrator for a coordinate-free
representation of the free surface?

• These issues arise in a practical way when one is interested in
simulating overhanging and breaking water waves
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Coordinate-free representation of free surface

What changes when we represent the free surface as an abstract
mapping from a reference space into R3? Of the form,

X(a, b, t) = (X(a, b, t), Y (a, b, t), Z(a, b, t)) , (a, b) ∈ D ⊂ R2 .

The kinematic condition is replaced by the more general condition

n ·Xt = ∇φ · n

where n is the unit normal at the free surface. Note that there is some
non-uniqueness in this condition since it is equivalent to

Xt = ∇φ + γ1(a, b, t)T1 + γ2(a, b, t)T2 ,

where {T1,T2} is an orthonormal basis for the tangent space of the surface,
and γ1 and γ2 are arbitrary. The non-uniqueness is representative of the
reparameterization symmetry.

What about a Hamiltonian formulation for this case?

It is not well known that BENJAMIN & OLVER (1982) (in a brief
appendix of a long paper) showed that there is a Hamiltonian
formulation for this case, which differs in important ways from the
Zakharov formulation. They give the formulation in 3D, but we will
discuss the 2D case, with X(a, t) = (X(a, t), Y (a, t)).

�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������

(X(a,t),Y(a,t))
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Benjamin-Olver Hamiltonian formulation

The coordinates for the Hamiltonian formulation are X(a, t), Y (a, t)

and Φ(a, t) where

Φ(a, t) = φ(x, y, t)
∣∣
x=X(a,t),y=Y (a,t)

.

The equations are
0 −Φa Ya

Φa 0 −Xa

−Ya Xa 0




X

Y

Φ


t

=


δH/δX

δH/δY

δH/δΦ


or

K(U)Ut = ∇H(U) ,

which can also be cast into the illuminating form

Ua ×Ut = ∇H(U) , U = (X,Y, Φ) .

The Hamiltonian function is the total energy and the symplectic form is
generated by

Θ =

∫
S

Φ dX · n dS =

∫ a2

a1

Φ(XadY − YadX) da ,

with ω = dΘ.

Kernel of K is {Ua}. The kernel is due to the reparameterization
symmetry.
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Explicit equations for time integration

K(U)Ut = ∇H(U) ,

with

K =


0 −Φa Ya

Φa 0 −Xa

−Ya Xa 0

 = Ua×

Now

KTK = ‖Ua‖2

[
I− UaU

T
a

‖Ua‖2

]
,

and so

Ut = J(U)∇H(U) + Ker(K) , J =
1

‖Ua‖2
KT

or
Ut = J(U)∇H(U) + γ(a, t)Ua .

• γ(a, t) is arbitrary.

• Can one choose γ to optimize the form of the equations?

• While K(U) is a linear function of U, J(U) is a nonlinear function
of U.

• Can one choose γ to optimize the numerical scheme?

• Nonzero γ is equivalent to a time-dependent reparameterization.

• What are the implications of time-dependent reparameterization?
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Special case: 2D equations with periodic B.C.

With periodic boundary conditions, the equations can be simplified by
using time-dependent conformal mapping, and a Fourier series
expansion on the reference space.

0 −Φa Ya

Φa 0 −Xa

−Ya Xa 0




X

Y

Φ


t

=


−gY Ya +̂ H(A)

gY Xa + A

−Ĥ(Φa)


where Ĥ(·) is the Hilbert transform, e.g. on Fourier space

Ĥ(eijx) = isign(j)eijx

and A has a simple expression in terms of Y and Φ.

By expanding X , Y and Φ in a Fourier series, the system can be reduced
to a large system of ODEs of the form

KN(UN)UN
t = ∇H(UN) , UN ∈ R3N ,

with KN(UN) a linear function of UN ,

KN(UN) = K1 ⊕ · · ·Kj ⊕ · · · , Kj = cjU
j × .

Reminiscent of the structure of coupled rigid bodies, but with this
structure in the symplectic operator rather than the Poisson operator.

What is the appropriate choice of geometric integrator?
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Curvature driven free surface flow

A model problem which is useful for studying the reparameterization
question in isolation is the normal motion of a closed plane curve
driven by its local curvature.

This “curve-shortening” problem is a model for a number of phase
transition and front dynamics.

Let X(a, t) = (X(a, t), Y (a, t)) where a parameterizes the curve. Then
the governing equation for the curve X(a, t) is

n ·Xt = κ ,

where n is the unit normal

n =
1

`

−Ya

Xa

 , ` =
√

X2
a + Y 2

a ,

and κ is the surface curvature

κ(a, t) =
XaYaa − YaXaa

`3
.

The dynamics of X(a, t) is not unique since only the normal velocity is
prescribed. This becomes apparent when the governing equation is
expressed in the form

Xt = κn + γ(a, t)t , t =
1

`

Xa

Ya

 ,

with γ(a, t) arbitrary.

• T.Y. HOU, J.S. LOWENGRUB & M.J. SHELLEY. Removing the stiffness
from interfacial flows with surface tension, J. Comput. Phys. 114
312–338 (1994).
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Curvature driven free surface flow

Xt = κn + γ(a, t)t ,

Can choose γ(a, t) to optimize the numerical scheme.

Choosing γ is equivalent to a time-dependent reparameterization. To
see this, first suppose γ is zero,

Xt = κn ,

Introduce a time-dependent reparameterization

a = h(b, t) for some h(b, t) satisfying hb 6= 0 for all (b, t)

Then with
X̂(b, t) = X(h(b, t))

it follows that n̂ = n, t̂ = t and κ̂ = κ and so

∂
∂t

X̂(b, t) = Xt + Xaht

= κn + ht`t

= κ̂n̂ + `htt̂

that is,

X̂t = κ̂n̂ + γt̂ with γ =
ht

hb

̂̀.

The water-wave problem has the same structure but with the normal
velocity determined by a third equation for Φ.
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Summary and comments

• Appropriate geometric integrator for time evolution of water
waves is still largely unsolved.

• When the surface is a graph, the symplectic structure associated
with the Zakharov Hamiltonian formulation is canonical (albeit
infinite-dimensional), but the kinetic energy depends on the
“position variables”.

• Of interest to combine symplectic integration with BEM methods.

• The Hamiltonian structure changes substantially when using the
coordinate free Hamiltonian formulation of Benjamin and Olver.

• Symplectic form in the BO formulation is non-constant – a
Lie-Poisson type structure on the “left”. Can Lie-Poisson type
integrators be adapted to this setting?

• The coordinate-free Hamiltonian formulation generalizes easily to
interfacial waves and problems like the nonlinear
Kelvin-Helmholtz instability. Φ is simply replaced by

ζ(a, b, t) = ρΦ(a, b, t)− ρ′Φ′(a, b, t) .

• There is a potential to take advantage of reparameterization
symmetry in designing numerical schemes.

• Analogy with curvature-driven curve-shortening flow.

• T.B. BENJAMIN & TJB. Reappraisal of the Kelvin-Helmholtz problem. Part
I: Hamiltonian formulation, J. Fluid Mech. 333, 301–325 (1997).
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