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In these lectures, the concept of multisymplecticity and its role in the
discretization of partial differential equations is discussed. The topics
to be discussed include: overview of multisymplecticty, variational
integrators and the Cartan form, continuous and discrete conservation
of symplecticity, discrete multisymplectic structures, and implications
for waves. A new approach to multisymplectic structures will be also
introduced and its implications for numerics discussed. The latter idea
is based on the observation that any Riemannian manifold has a natural
coordinate-free multisymplectic structure on the total exterior algebra
bundle, and this “canonical multisymplectic structure” turns out to be
useful for analysis and numerics of Hamiltonian PDEs.
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From Lagrangian to Hamiltonian for ODEs

Recall the relationships between symplecticity, Lagrangians and
Hamiltonians for ordinary differential equations.

Historically, the construction of a “Hamiltonian system” started with a
Lagrangian function

L =

∫
L dt , with L = T − V on TQ ,

since a Lagrangian is derivable from physical (energy) considerations.

The Legendre transform then takes one from TQ to T ∗Q. The Legendre
transform delivers a canonical one-form on T ∗Q and a Hamiltonian
function. For example, if

Q = R1 and L = 1
2
q̇2 − V (q) ,

then

p =
∂L

∂q̇
= q̇ , H = pq̇ − L and θ = pdq ,

and the “Hamiltonian system” is0 −1

1 0

q

p


t

=

Hq

Hp

 .

One gets for free that M = T ∗Q is a symplectic manifold with symplectic
form (in local coordinates),

ω = dθ = dp ∧ dq .
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Symplectic geometry

On the other hand, symplectic structures exist independent of
differential equations, and independent of a Lagrangian. While
determining if a given smooth even dimensional manifold supports a
symplectic structure is a difficult problem in general, there is a class of
smooth manifolds which always has a natural symplectic structure.

Starting with a smooth n−dimensional manifold Q, the manifold
(M, ω) is a symplectic manifold when M = T ∗Q. The two-form ω is the
natural form on T ∗Q, ω = dp ∧ dq (in local coordinates).

Given a symplectic manifold, the idea of a Hamiltonian system arises
naturally from Cartan’s formula,

LXω = X dω + d(X ω) .

Vectorfields which preserve the symplectic form are generated by a
Hamiltonian function,

LXω = 0 ⇒ X ω = dH .

or alternatively, Hamiltonian vectorfields are symplectic:

X ω = dH ⇒ LXω = 0 .
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Dynamical systems on the cotangent bundle

Consider an arbitrary smooth vectorfield on Q = Rn,

qt = f(q) , q ∈ Q .

The associated flows on the tangent bundle and cotangent bundle are

ut = A(t)u , u ∈ TQ , A(t) = Df(q(t))

pt = −A(t)Tp , p ∈ T ∗Q

In stability computations and Lyapunov exponent computations it is
usual to integrate the coupled system for (q,u). However, the coupled
system (q,p) has a natural symplectic structure with symplectic form

ω = dp ∧ dq .

What is the Hamiltonian system? Use the formula: Xh ω = dH ,

Xh ω = 〈dq,Xh〉dp− 〈dp,Xh〉dq

= qt dp− pt dq

= f(q) dp + A(t)Tpdq

= dH , with H = 〈p, f(q)〉 .

Hence the coupled system for (q,p) is a Hamiltonian system

qt = ∂H
∂p

= f(q)

pt = −∂H
∂q

= −A(t)p .

3
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From Lagrangian to Hamiltonian for PDEs

One way to view multisymplecticity is through a total Legendre
transform. Consider a Lagrangian function for a scalar field

L (φ) =

∫ x2

x1

∫ t2

t1

L(t, x, φ, φt, φx) dt ∧ dx .

Introduce new coordinates – “polymomenta” – by

u =
∂L

∂φt

and v =
∂L

∂φx

.

Assuming that these equations can be uniquely solved for φt and φx as
functions of u and v, a “Hamiltonian function” is then defined by the
Legendre transform

S(t, x, φ, u, v) = uφt + vφx − L .

The governing equations are then

−ut − vx = Sφ

φt = Su

φx = Sv

In addition to a new Hamiltonian function, two one forms have been
generated

θ1 = u dφ and θ2 = v dφ .

with two forms ω1 = du ∧ dφ and ω2 = dv ∧ dφ. We have replaced the
characterization of the PDE by a Lagrangian with three objects: a
Hamiltonian function and a pair of two forms.
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Multisymplectic Hamiltonian PDEs

Motivated by the form of the equations obtained by Legendre
transform, it is natural to propose the following “canonical form” for a
multisymplectic Hamiltonian PDE

JZt + KZx = ∇S(Z) , Z ∈ H (1)

where H is the “phase space” and will be taken to be a
finite-dimensional vector space (Rn for simplicity), S is any smooth
function and J and K are skew-symmetric operators. The operators J

and K can depend on Z as long as they satisfy the Jacobi condition (i.e.
associated with closed two forms).

Every system of the form (1) satisfies conservation of symplecticity

A (Z)t + B(Z)x = 0 .

where

A (Z) =
1

2π

∫ 2π

0

1
2
〈JZθ, Z〉dθ and B(Z) =

1

2π

∫ 2π

0

1
2
〈KZθ, Z〉dθ ,

and these functionals are averaged over an ensemble of solutions of (1)

Z(x, t, θ) with Z(x, t, θ + 2π) = Z(x, t, θ) .

This result is a generalization of the familiar result for Hamiltonian
ODEs

d

dt

∮
p · qθ dθ = 0 ,

for an ensemble of solutions of Hamilton’s equations.
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Conservation of symplecticity – variations

The conservation of symplecticity that arises in numerics is the
conservation law for variations.

Let U(x, t) and V (x, t) be any solutions of the first variation equation

J
∂

∂t
δZ + K

∂

∂x
δZ = D2S(Z)δZ

when Z(x, t) is a solution of (1). Let

ω(U, V ) = 〈JU, V 〉 and κ(U, V ) = 〈KU, V 〉 .

Then

ωt + κx = ω(Ut, V ) + ω(U, Vt) + κ(Ux, V ) + κ(U, Vx)

= 〈(JUt + KUx), V 〉 − (JVt + KVx), U〉

= 〈D2S(Z)U, V 〉 − 〈D2S(Z)V, U〉

= 0 ,

since D2S(Z) is symmetric.
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Conservation of energy and momentum

For a multisymplectic Hamiltonian PDE

JZt + KZx = ∇S(Z) , Z ∈ H (2)

If J, K and S do not dependent explicitly on t, then energy is conserved

E(Z)t + F (Z)x = 0 ,

where

E(Z) = S(Z)− 1
2
〈KZx, Z〉 and F (Z) = 1

2
〈KZt, Z〉 .

If J, K and S do not dependent explicitly on x, then momentum is
conserved

I(Z)t + S̃(Z)x = 0 ,

where

I(Z) = 1
2
〈JZx, Z〉 and S̃(Z) = S(Z)− 1

2
〈JZt, Z〉 .

Remarks

• energy flux and momentum density are always quadratic functionals.
But energy density and momentum flux are non-quadratic if the
system is nonlinear, since then S(Z) is not quadratic. This
distinction is important when considering numerical integrators
which preserve quadratic invariants.

• For steady solutions, the multisymplectic Hamiltonian function S

equals the momentum flux S̃. This is the origin of the use of S for
the multisymplectic Hamiltonian functional.
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Other variations on multisymplectic structures

• k−symplectic geometry of the frame bundle. It exploits the natural
canonical soldering form of the linear frame bundle of an
n-dimensional manifold to generate a vector-valued k−symplectic
form. The Hamiltonian systems generated however have
vector-valued Hamiltonian functions. (Norris, de Leon, Lawson,
Awane, Salgado)

• Multisymplectic manifolds: a multisymplectic vector space of order
m + 1 is a vector space of dimension n + m with a closed
(m+1)−form ω which is non-degenerate in the sense that v ω = 0

iff v = 0 for all v. It reduces to a classical symplectic manifold
when m = 1. Some success with the case m = 2 with n = 4 (3 forms
on 6-dimensional manifolds). Lacks a Darboux theory;
non-uniqueness of canonical forms (Cantrijn, Ibort, De León)

• DeDonder-Weyl, Catheodory theory, Kijowski theory, Dedecker
theory. Variations on the Lagrangian theory, Legendre transform,
covariant Hamiltonian formulations (Śniatycki, GIMMSY,
Crampin, Saunders, Marsden, Shkoller, Helein, Krupkova).

• Lepagean equivalents: looking at non-uniqueness of the Cartan
form (Krupka, Gotay, Krupkova, Betounes).

8
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Cartan form – from ODEs to PDEs

Ordinary differential equations: consider

L =

∫ t2

t1

L(t, q, q̇) Ω , Ω = dt .

Reformulate as

L =

∫ t2

t1

[L(t, q, v) + α(q̇ − v)] Ω .

But taking the variation with respect to v results in Lv = α and so

L =

∫ t2

t1

[L(t, q, v) + Lv(q̇ − v)]Ω .

But q̇dt = dq,

L =

∫
θL ,

with θL the Cartan form

θL = Ldt + Lv(dq − vdt) .

Various interesting arguments about why the Cartan form is superior to
the Lagrangian function (Dedecker, Crampin, Burke, Marsden).

Remark. By retaining α throughout (which is in the cotangent space),
one can develop L on a submanifold of T ∗Q⊕ TQ leading to both
Lagrangian and Hamiltonian dynamics (cf. SKINNER & RUSK).

• R. SKINNER & R. RUSK. Generalized Hamiltonian Dynamics I:
Formulation on T ∗Q⊕ TQ, J. Math. Phys 24 2589–2601 (1983).
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Cartan form – PDEs

For PDEs try to reproduce this strategy starting with a Lagrangian for a
first order field theory

L =

∫ x2

x1

∫ t2

t1

L(t, x, q, qt, qx) Ω , Ω = dt ∧ dx .

Introduce new coordinates u = qt and v = qx,

L =

∫ x2

x1

∫ t2

t1

[L(t, x, q, u, v) + α(qt − u) + β(qx − v)] Ω .

Taking u, v variations results in α = Lu and β = Lv, and so

L =

∫ x2

x1

∫ t2

t1

[L(t, x, q, u, v) + Lu(qt − u) + Lv(qx − v)] Ω .

Now use

Luqt Ω = Luqt dt ∧ dx = Lu(dq − qxdx) ∧ dx = Ludq ∧ dx .

Similarly LvqxΩ = −dq ∧ dt, leading to

L =

∫
ΘL

with ΘL the Cartan form in local coordinates

ΘL = Ludq ∧ dx− Lvdq ∧ dt + (L− uLu − vLv) Ω

By retaining α and β, theory goes through for singular Lagrangians.

• A. ECHEVERRÍA-ENRÍQUEZ, C. LÓPEZ, I. MARÍN-SOLANO, M.C.
MUÑOZ-LECANDA, N. ROMÁN-ROY, Lagrangian-Hamiltonian
unified formalism for field theory, J. Math. Phys. 45 360–380 (2004).
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Cartan form and integrability constraints

Replace
∫

L by

L =

∫
ΘL

with

ΘL =
∂L

∂qt

dq ∧ dx− ∂L

∂qx

dq ∧ dt +

(
L− qt

∂L

∂qt

− qx
∂L

∂qx

)
Ω

or
ΘL = Ludq ∧ dx− Lvdq ∧ dt + (L− uLu − vLv) Ω

In the latter case, the relationship between u and v arises:

u = qt and v = qx ⇒ ux = vt

Is this condition automatically satisfied, or a constraint?

Consider the one form
γ = udt + vdx

Then the above condition is equivalent to γ closed, since

dγ = (vt − ux)Ω .

On the Hamiltonian side, one encounters integrability conditions. How
can one address these conditions?

11
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Variational integrators

Suppose one has a scalar non-degenerate first-order field theory defined by a
Lagrangian

L =
∫ x2

x1

∫ t2

t1

L(t, x, q, qt, qx) Ω , Ω = dt ∧ dx .

Instead of discretizing the Euler-Lagrange equation, MPS propose discretizing
the Lagrangian density but without fixed boundary variations: the variational
route to the Cartan form.

Space time is replaced by a lattice, and the Lagrangian is replaced by a discrete
Lagrangian L∆. This discretization is called a Veselov-type discretization.

Variation of L∆ leads to discrete E-L equations. However, the key is that
nonzero variations at the boundary lead to a sum of terms which represent a
discrete version of the Cartan form. If this sum vanishes the integrator is said
to be multisymplectic (the exterior derivative of the Cartan form is called a
multisymplectic form there).

Remarks:

• Elegant approach for discretizing Lagrangians.

• It is limited, however, to Lagrangians where the Cartan form can be
uniquely defined; predominantly scalar first order field theories.

• Generalizations have been proposed however for fluids, second order
fields, and constrained systems (Marsden, Kouranbaeva, Shkoller, Chen,
Qin, Wang).

• Potential for backward error analysis (Oliver, West & Wulff).

• J.E. MARSDEN, G.W. PATRICK & S. SHKOLLER. Multisymplectic geometry,
variational integrators, and nonlinear PDEs, Comm. Math. Phys. 199
351–395 (1998).

12
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Discrete conservation of symplecticity

One can start with the canonical form for a multisymplectic PDE

JZt + KZx = ∇S(Z) . (3)

and then use any scheme to discretize the equation

J∆t
ijZ

ij + K∆x
ijZ

ij = ∇S(Zij) .

If this discretization satisfies discrete conservation of symplecticity, we
call it a multi-symplectic integrator

∆t
ijω(U ij, V ij) + ∆x

ijκ(U ij, V ij) = 0 ∀ i, j .

Remarks:

• Applies to any multisymplectic PDE in canonical form.

• Not clear, however, that “discrete form of multisymplectic
conservation law” is unambiguous.

• Natural for concatenating 1D symplectic schemes in space time (i.e.
GLRK).

• Agrees with variational integrators when (3) is obtained from a
well-behaved Lagrangian.

• Backward error analysis results exist (Moore, Reich)

• S. REICH. Multi-symplectic Runge-Kutta collocation methods for
Hamiltonian wave equations, J. Comput. Phys. 157 473–499 (2000).

• B.E. MOORE & S. REICH. Backward Error Analysis for
Multi-Symplectic Integrators, Numer. Math. 95 625–652 (2003).
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Discrete multisymplectic structures

Let S : n 7→ n + 1 be the forward shift operator and define

∆+ = S − id and ∆− = id − S−1 .

HYDON shows that the semi-discrete analogue of JZt + KZx = ∇S(Z)

is

JijZ
j
,t + Kij∆

+Zj −Kji∆
−Zj =

∂S

∂Zj
,

and this equation has a semi-discrete conservation of symplecticity,

Dt(
1
2
JijdZi ∧ dZj) + ∆+(Kijd(S−1Zi) ∧ dZj) = 0 .

As an example, consider the Ablowitz-Ladik equation,

iut + (1 + |u|2)(∆+∆−u) + 2|u|2u = 0 .

It is an integrable differential difference equation and is
multisymplectic in the above sense.

In the same paper, HYDON introduces a new generalization of
multisymplectic Noether theory for both continuous multisymplectic
systems and semi-discrete systems. In application of this theory to the
Ablowitz-Ladik equation, a new conservation law has been discovered.

• P.E. HYDON. Multisymplectic conservation laws for differential and
differential-difference equations, Proc. Roy. Soc. London A (in press,
2005).

14
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Towards intrinsic multisymplectic structures on any
Riemannian manifold

So far, we have talked about multisymplectic structures that are
dictated by PDEs. However, as noted earlier, one can obtain classical
symplectic geometry from a manifold directly. The cotangent bundle of
a smooth manifold has a natural symplectic structure.

Do manifolds, or bundles built on manifolds have a natural
multisymplectic structure?

In going from ODEs to PDEs it is the base manifold that is changing; i.e.
changing from the one-dimensional manifold time to the m + 1

dimensional manifold space+time. The fibre structure does not change
dramatically. This observation suggests that if multisymplectic
structures appear naturally they will be induced by the geometry of the
base manifold.

It turns out that there is a class of intrinsic multisymplectic structures
on the total exterior algebra bundle of the base manifold. For the case of
ODEs, the total exterior algebra reduces to the cotangent bundle (of
time!). As soon as the dimension of the base exceeds one, interesting
new geometry appears and it generates multisymplectic structures.

• TJB. Canonical multisymplectic structure on the total exterior algebra of
a Riemannian manifold, Preprint (2004).

15
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Symplectic geometry on the total exterior algebra bundle

d2q
dt2

= −V ′(q)

(base manifold) M = R1∧0(T ∗
mM)⊕

∧1(T ∗
mM)

 →


∂2q
∂x2

1
+ ∂2q

∂x2
2

= −V ′(q)

(base manifold) M = R2∧0(T ∗
mM)⊕

∧1(T ∗
mM)⊕

∧2(T ∗
mM)

M = R1, 〈·, ·〉, vol = dt

Hodge star operator: F1 = dt, Fdt = 1

co-differential: δu = −FdFu, u ∈
∧1(M)∧

(M) =
∧0(M)⊕

∧1(M) (mappings from M into
∧

(T ∗
mM)),

i.e. functions on M and oneforms on M

Take coordinates (q, P ) ∈
∧0(M)⊕

∧1(M); i.e. P = p(t)dt. The natural
form on

∧
(M) is

Θ = P ∧Fdq

pdq from the view of the base manifold

Consider the first variation of the functional
∫

Θ−H(q, P )dt

δP = Hq and dq = HP0 δ

d 0

  q

P

 =

Hq

HP


In coordinates the operator on the left is Jd

dt
.

Kernel

0 δ

d 0

 = the harmonic forms in
∧0⊕

∧1

16
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Störmer-Verlet from the view of the base manifold

Consider Hamilton’s equations for the classical mechanical system
written in the “coordinate-free” way

dq = P and δP = V ′(q)

Now introduce a discretization of time, with qj = q(j∆t),

�������������������������
�������������������������
�������������������������
�������������������������

j j+1

P

On this lattice approximate the exterior derivative and one form P by

dq ≈ ∆+qj = qj+1 − qj and P ≈
∫ tj+1

tj

p(t)dt ≈ pj+ 1
2
∆t .

How to approximate the co-differential δ? Recall that δ is the adjoint of
d with respect to the Riemannian metric on the base manifold, hence

δP ≈ d∗P
∣∣
j,j+1

= (−pj+ 1
2

+ pj− 1
2
)/∆t .

Using (∆+)∗ = −∆−. Combining these equations

qj+1 = qj + ∆t pj+ 1
2

and pj+ 1
2

= pj− 1
2
−∆t V ′(qj) .

i.e. obtain Störmer-Verlet (and its generalizations) by discretizing using
difference forms or discrete differential forms (Bossavit, Hiptmair, Hydon,
Leok, Mansfield).

Is Störmer-Verlet based on the cotangent bundle geometry of the base
manifold (time) or the cotangent bundle geometry of the phase space?

17
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Structure of the total exterior algebra of M = R2

Take M = R2 with coordinates (x1, x2).

M is taken to be a Riemannian manifold with

standard inner product 〈·, ·〉 and volume form vol = dx1 ∧ dx2

Mappings into the total exterior algebra built on T ∗
xM :∧

(M) =
∧0(M)⊕

∧1(M)⊕
∧2(M)

i.e. functions on M , oneforms on M and twoforms on M

Hodge star operator: Fvol = 1,
Fdx1 = dx2, Fdx2 = −dx1

co-differential: δu = −FdFu, u ∈
∧k(M), k = 1, 2

Take a point (q, P, R) ∈
∧0(M)⊕

∧1(M)⊕
∧2(M);

i.e. P = p1(x)dx1 + p2(x)dx2 and R = r(x) dx1 ∧ dx2.

A natural form on
∧

(M) is

Θ = P ∧Fdq + R ∧FdP

18
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Properties of Θ

Θ(Z) = P ∧Fdq + R ∧FdP

Let 〈〈·, ·〉〉 be the induced inner product on
∧

(T ∗
xM).

Θ can be reformulated as

Θ(Z) = 1
2
〈〈J∂Z,Z〉〉Vol + dΥ

where

J∂ =


0 δ 0

d 0 δ

0 d 0


and Υ is the one form

Υ(Z) = 1
2
(q FP + FR P )

Now consider the integral of Θ: T (Z) =
∫

V
Θ(Z). Then

d

dε
T (Z + εξ)

∣∣
ε=0

=

∫
V

〈〈J∂Z, ξ〉〉vol

with appropriate variations at the boundary.

19
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Properties of the operator J∂ on
∧

(M)

Analyze J∂Z in more detail.
In standard coordinates

J∂Z =


0 δ 0

d 0 δ

0 d 0




q

P

R

 =

−( ∂p1

∂x1
+ ∂p2

∂x2
)

( ∂q
∂x1

+ ∂r
∂x2

)dx1 + ( ∂q
∂x2

− ∂r
∂x1

)dx2

( ∂p2

∂x1
− ∂p1

∂x2
)dx1 ∧ dx2

It is a a Cauchy-Riemann operator with (q, r) and (p1, p2) conjugate pairs
of harmonic functions.

In standard coordinates

J∂ = J1
∂

∂x1
+ J2

∂
∂x2

with

J1 =


0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0

 , J2 =


0 0 −1 0

0 0 0 1

1 0 0 0

0 −1 0 0

 .

In a coordinate representation, it is a multisymplectic operator.

20
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Clifford algebra structure of J∂

In standard coordinates

J∂ = J1
∂

∂x1
+ J2

∂
∂x2

with

J1 =


0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0

 , J2 =


0 0 −1 0

0 0 0 1

1 0 0 0

0 −1 0 0

 .

The operators J1, J2 and J12 := J1J2 satisfy

J2
1 = −I, J2

2 = −I and J1J2 + J2J1 = 0,

{J1,J2,J12} generate the quaternions; the Clifford algebra (C `0,2)

For any ξ ∈
∧

(T ∗
mM) ∼= R4 of unit length

{ξ,J1ξ,J2ξ,J12ξ}

provide an orthonormal basis for
∧

(T ∗
mM) ∼= R4.

21
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Multi-symplectic Dirac operator

Square the operator J∂

J∂ J∂ =


0 δ 0

d 0 δ

0 d 0




0 δ 0

d 0 δ

0 d 0

 =


δd 0 0

0 dδ + δd 0

0 0 dδ


But dδ + δd = −∆. Hence

J∂ J∂ = −(∆0 ⊕∆1 ⊕∆2) .

J∂ can be interpreted as a multisymplectic Dirac operator.

In standard coordinates

J∂ J∂ = (J1
∂

∂x1
+ J2

∂
∂x2

)(J1
∂

∂x1
+ J2

∂
∂x2

)

= J2
1

∂2

∂x2
1

+ (J1J2 + J2J1)
∂2

∂x1∂x2
+ J2

2
∂2

∂x2
2

= −( ∂2

∂x2
1

+ ∂2

∂x2
2
)I .

since
J2

1 = −I , J2
2 = −I , J1J2 + J2J1 = 0 .

Kernel(J∂) = the harmonic forms in
∧0⊕

∧1⊕
∧2
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PDEs on the total exterior algebra of M = R2

Θ = P ∧Fdq + R ∧FdP

Consider the first variation of the functional

TS(Z) =

∫
V

Θ(Z)− S(Z) vol .

where Z = (q, P, R) ∈
∧

(M)

d

dε
TS(Z + εξ)

∣∣
ε=0

=

∫
V

〈〈J∂Z, ξ〉〉 − 〈〈∇S(Z), ξ〉〉 vol .

Setting the first variation to zero: J∂Z = ∇S(Z), or
0 δ 0

d 0 δ

0 d 0




q

P

R

 =


Sq

SP

SR


or

δP = Sq

dq + δR = SP

dP = SR
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Elliptic PDEs generated by Θ

J∂Z = ∇S(Z) :


0 δ 0

d 0 δ

0 d 0




q

P

R

 =


Sq

SP

SR


Consider two examples of S(Z)

S(Z) = 1
2
〈P, P 〉1 + V (q) and S(Z) = 1

2
〈P, P 〉1 + F (q, R) ,

where 〈·, ·〉k is the induced inner product on
∧k(T ∗

xM). Then

δP = V ′(q)

dq + δR = P

dP = 0

δP = Fq(q, R)

dq + δR = P

dP = FR(q, R)

Eliminating P = dq + δR from both equations leads to

∆q = −V ′(q)

∆R = 0

∆q = −Fq(q, R)

∆R = −FR(q, R)

The first is obtainable by a (variant of the) Legendre transform, the
latter is not.
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Generalities – n−dimensional manifolds

Starting point: an n−dimensional orientable Riemannian manifold M ,
orientable.

For illustration, take M = Rn. The total exterior algebra at each point
m ∈ M has dimension 2n and is of the form∧

(T ∗
mM) =

∧0(T ∗
mM)⊕ · · · ⊕

∧n(T ∗
mM).

with mappings ∧
(M) =

∧0(M)⊕ · · · ⊕
∧n(M).

On
∧

(M) take a point

Z = (α(0), . . . ,α(n)) , α(j) ∈
∧j(M) ,

and define

Θ(Z) =
n∑

j=1

α(j) ∧Fdα(j−1)

Then
Θ(Z) = 1

2
〈〈J∂Z,Z〉〉vol + dΥ

where Υ is an n− 1 form and

J∂ =



0 δ 0 0 · · · 0

d 0 δ 0 · · · 0

0
. . . 0

. . . · · · 0

0 · · · 0 d 0 δ

0 · · · 0 0 d 0
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Properties of J∂ on n−dimensional manifolds

J∂ is a multisymplectic Dirac operator, satisfying

J∂ ◦ J∂ = δd ⊕ δd + dδ ⊕ · · · ⊕ δd + dδ ⊕ dδ

= −I⊗∆ .

• A generalized Cauchy Riemann operator

• Kernel of J∂ = ∪n
k=1H

k(M) (the harmonic forms).

In standard coordinates

J∂ =
n∑

j=1

Jj
∂

∂xj

with JiJj + JjJi = −2δijI ,

i.e. {J1, . . . ,Jn} are isomorphic as an associative algebra to the Clifford
algebra C `0,n.

Adding a function S :
∧

(M) → R generates a class of elliptic PDEs
J∂Z = ∇S(Z) where ∇ is defined with respect to the induced inner

product on
∧

(T ∗
mM) ∼= RN , N = 2n.
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Legendre Transformation

Consider the standard form for a Lagrangian which generates the PDE

∂2q

∂x2
1

+
∂2q

∂x2
2

= −V ′(q) ,

that is, let L =
∫ ∫

L(q, qx1 , qx2) dx2 ∧ dx2 with

L(q, qx1 , qx2) = 1
2

(
(

∂q

∂x1

)2 + (
∂q

∂x2

)2

)
− V (q) .

Introduce the classical Legendre transformation; i.e. let

p1 = ∂L
∂qx1

and p2 = ∂L
∂qx2

then

S(q, p1, p2) = p1qx1 + p2qx2 − L = 1
2
(p2

1 + p2
2) + V (q).

The governing equations are

−∂p1

∂x1

− ∂p2

∂x2

= V ′(q) ,
∂q

∂x1

= p1 ,
∂q

∂x2

= p2

or 
0 − ∂

∂x
− ∂

∂y

∂
∂x

0 0

∂
∂y

0 0




q

p1

p2

 =


∂S/∂q

∂S/∂p1

∂S/∂p2

 .

• The kernel of the operator on the left hand side is infinite
dimensional!

• What about the constraint ∂p1

∂x2
= ∂p2

∂x1
?
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Legendre transformation on forms

Look at the Legendre-transformation in a coordinate-free form.

dq =
∂q

∂x1

dx1 +
∂q

∂x2

dx2 ,

and

dq ∧Fdq =

(
(

∂q

∂x1

)2 + (
∂q

∂x2

)2

)
vol .

Hence L = 1
2
dq ∧Fdq − V (q)vol.

In the Legendre transform one wants to replace “dq” with “P”

dq = P

But, the Hodge decomposition says there is something missing.

Given P ∈
∧1(M),

P = dq + δR (modulo harmonic forms)

for some R ∈
∧2(M)

Reconsider the Legendre transform on differential forms, using the
above observations about the Hodge decompostion.
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Towards a “Legendre-Hodge” Transformation

Consider ∆q = −V ′(q) in coordinate-free form dδq = V ′(q),

with Lagrangian

L =

∫
L and L = 1

2
dq ∧Fdq − V (q) vol .

Transform as follows. Let dq = P for some P ∈
∧1(M),

L = 1
2
P ∧FP − V (q) vol + α ∧F(dq − P ) + R ∧Fdα .

Note the additional constrant dα = 0.

Now ∂L
∂P

= 0 ⇒ α = P , hence

L = P ∧Fdq + R ∧FdP − 1
2
P ∧FP − V (q) vol

But this is L = Θ(Z)− S(Z)vol, and its first variation is

δP = V ′(q)

dq + δR = P

dP = 0 .

or

J∂Z = ∇S(Z) , Z ∈
∧

(M)

The Hodge decomposition of P is a byproduct of the transformation.
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Hyperbolic PDEs – change the metric

Take M = R2 with coordinates (x1, x2),
volume form vol = dx1 ∧ dx2, but inner product

〈u, v〉 = εu1v1 + u2v2

The natural form on
∧

(M) is still

Θ = P ∧Fdq + R ∧FdP

The first variation of the functional
∫

Θ− S(q, P, R)vol leads to
0 δ 0

d 0 δ

0 d 0




q

P

R

 =


Sq

SP

SR


The metric reappears when we take coordinate representations for F

and d. In coordinates, J∂ = J1
∂

∂x1
+ J2

∂
∂x2

with

J1 =


0 −ε 0 0

ε 0 0 0

0 0 0 −ε

0 0 ε 0

 , J2 =


0 0 −1 0

0 0 0 ε

1 0 0 0

0 −ε 0 0

 .

J2
1 = −I, J2

2 = −I – but now J1J2 + εJ2J1 = 0.

Taking S(Z) = 1
2
〈P, P 〉1 + V (q) provides a multisymplectic formulation

for

ε
∂2q

∂x2
1

+
∂2q

∂x2
2

+ V ′(q) = 0 .
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Discretizing multisymplectic structures on the TEA
bundle

Discretizing multisymplectic structures on the total exterior algebra
(TEA) bundle reduces to discretizing differential forms on a discretized
Riemannian manifold.

Consider the case of M = R2 with S in standard form

δP = Vq(q)

dq + δR = P

dP = 0 .

where V :
∧0 → R is any smooth function.

Introduce a lattice for R2, for example
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�����������������������
�����������������������
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������������������������
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�
�
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�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

0−form

1−form

2−form

and discretize q as a zero form, P as a one form and R as a two form,
and introduced discretizations for d and δ.
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Simplest multisymplectic TEA discretization

The simplest discretization leads to the staggered box scheme, which is
a concatenation of Störmer-Verlet in space and time

r
i+1/2,j+1/2 p

2

i+1,j+1/2i,j+1/2p
2

i,jq
i+1,j

q
i+1/2,jp

1

p
1

i+1/2,j+1

−
(

p
i+1/2,j
1 −p

i−1/2,j
1

∆x1

)
−

(
p

j,j+1/2
2 −p

i,j−1/2
2

∆x2

)
= Vq(q

i,j)(
qi+1,j−qi,j

∆x1

)
+

(
ri+1/2,j+1/2−ri+1/2,j−1/2

∆x2

)
= p

i+1/2,j
1

−
(

ri+1/2,j+1/2−ri−1/2,j+1/2

∆x1

)
+

(
qi,j+1−qi,j

∆x2

)
= p

i,j+1/2
2(

p
i+1,j+1/2
2 −p

i,j+1/2
2

∆x1

)
−

(
p

i+1/2,j+1
1 −p

i+1/2,j
1

∆x2

)
= 0

The full power of discrete differential forms or difference forms has yet
to be applied in this context.

What is the appropriate geometric structure which is preserved or
conserved?

Easy to show that the above scheme satisfies discrete conservation of
symplecticity, but it is of interest to relate the structural properties of
the discretization to the discrete properties of Θ.
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Distortion of waves by dispersive truncation error

An interesting area is the effect of multisymplectic discretization on the group
velocity of waves. There is recent interesting work on this by ASCHER &
MCLACHLAN, MOORE & REICH and FRANKS & REICH.

An example. Suppose that a discretization of the wave equation

ut + c ux = 0 , c > 0 (c constant) ,

leads to a modified equation with dispersive truncation error

ut + c ux − ε2utxx = 0 , 0 < ε << 1 .

The modified dispersion relation is

ω =
ck

1 + ε2k2

which speeds

Cp =
ω

k
=

c

1 + ε2k2
and Cg =

dω

dk
=

c(1− ε2k2)
(1 + ε2k2)2

.

Cp

k

c

C

k

c

g

1/ε
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Short waves have negative group velocity!

In two space dimensions new features arise. For example, consider the
generalization of the above model problem to a modified equation with
isotropic dispersion in two space dimensions,

ut + c ux − ε2(utxx + utyy) = 0 ,

The modified dispersion relation is now

ω =
ck

1 + ε2(k2 + `2)
.

In two space dimensions there may be directional error as well as
magnitude error.

For the above example

Cg = (ωk, ω`) =
c

1 + ε2(k2 + `2)

(
1 + ε2(−k2 + `2),−2ε2k`

)
.

In the exact equation, the waves and the wave energy (dictated by the
group velocity) travel in the same direction. But, when ε > 0, there is
error in the direction of propagation of the wave, and error in the
direction of propagation of the energy and the two forms of error are in
different directions.
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Action and symplectic periodic orbits

Consider a finite dimensional Hamiltonian system on R2n

JUt = ∇H(U) , U ∈ R2n

Periodic solutions can be characterized as relative equilibria: critical
points of the Hamiltonian function restricted to level sets of the action

A(U) =
1

2π

∫ 2π

0

1
2
〈JZθ, Z〉dθ ,

with Euler-Lagrange equation ∇H(U) = ω∇A(U),

where ω, the frequency, is a Lagrange multiplier.

The constrained variational principle is said to be non-degenerate if
dA
dω

6= 0,

where A is the value of the level set of A(U).

Action

ω

Homoclinic bifurcation in nonlinear normal form near points Aω = 0.
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Action and multi-symplectic periodic patterns

Consider a elliptic operator of the form J∂Z = ∇S(Z) with M = R2 and
standard coordinates and metric, i.e.

J1
∂Z

∂x1

+ J2
∂Z

∂x2

= ∇S(Z) .

Multi-periodic patterns can be characterized as critical points of∫ ∫
Sdθ1 ∧ dθ2 restricted to level sets of the actions

Aj(Z) =
1

(2π)2

∫ 2π

0

∫ 2π

0

1
2
〈〈JjZθj

, Z〉〉dθ1 ∧ dθ2 ,

with Euler-Lagrange equation ∇S(Z) = κ1∇A1(Z) + κ2∇A2(Z),

where the wavenumbers (κ1, κ2) are Lagrange multipliers.

The constrained variational principle is said to be non-degenerate if

det

∂A1

∂κ1

∂A1

∂κ2

∂A2

∂κ1

∂A2

∂κ2

 6= 0 ,

where Aj is the value of the level set of Aj(Z).

Points of degeneracy correspond to points of bifurcation of the
Floquet-Bloch exponents.

“Spatial homoclinic bifurcation” near points where det = 0 ?
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Hyperbolic PDEs, periodic orbits and action

Consider a hyperbolic operator of the form J∂Z = ∇S(Z) with M = R2,
coordinates (t, x) and minkowski metric i.e.

J1Zt + J2Zx = ∇S(Z) , J1J2 = J2J1 .

Periodic travelling waves, i.e. solutions of the form Ẑ(θ), θ = κx + ωt

can be characterized as critical points of
∫

S dθ restricted to level sets of
the actions

Aj(Z) =
1

2π

∫ 2π

0

1
2
〈〈JjZθ, Z〉〉dθ ,

with Euler-Lagrange equation ∇S(Z) = ω∇A1(Z) + κ∇A2(Z),

where (ω, κ) appear as Lagrange multipliers.

The constrained variational principle is said to be non-degenerate if

det

∂A1

∂ω
∂A1

∂κ

∂A2

∂ω
∂A2

∂κ

 6= 0 ,

where Aj is the value of the level set of Aj(Z).

Theorem: under suitable (reasonable) hypotheses, the travelling wave
Ẑ(θ; ω, κ) is spectrally unstable (there exists a branch of unstable essential

spectrum) if the above determinant is positive.

Zero determinant is related to bifurcation of Floquet-Bloch exponents.

Interesting relation between the generation of homoclinic orbits in in
the the nonlinear problem and the points of zero determinant of the

action determinant.
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