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Given a vector space V of dimension n, there are a number of other vector

spaces that can be built on it: the dual space V ∗, the spaces of k−vectors∧k(V ), and k−forms
∧k(V ∗), for k = 0, . . . , n. Given a linear ordinary

differential equation (ODE) on V it is often of interest to numerically

integrate the induced systems on
∧k(V ) or

∧k(V ∗). Such systems arise in

the linearization of nonlinear ODEs about trajectories where V is a model

for the tangent space of the phase space. These lectures will discuss the

theory behind such equations and the implementation of numerical

algorithms for their integration. Applications of the theory to the stability

of solitary waves, solution of boundary value problems, and

hydrodynamic stability will be presented.
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A model problem

Consider the linear boundary value problem

ux = A(x, λ)u , u ∈ V , −1 < x < +1 , (1)

where V ∼= C2, λ ∈ Λ ⊂ C, with boundary conditions

〈a,u(−1, λ)〉1 = 0 and 〈b,u(+1, λ)〉1 = 0 , (2)

where a ∈ V ∗ and b ∈ V ∗ are given. The bracket

〈·, ·〉1 : V ∗ × V → C ,

is the natural pairing between V ∗ and V .

A numerical strategy: for any fixed λ ∈ Λ, integrate

u+
x = A(x, λ)u+ , x ≥ −1 , 〈a,u+(−1, λ)〉1 = 0

u−x = A(x, λ)u− , x ≤ +1 , 〈b,u−(+1, λ)〉1 = 0

λ is an eigenvalue if these two solutions are linearly dependent,

u−(x, λ) ∧ u+(x, λ) = 0 ∀ x , i.e. det[u− |u+] = 0 ,

i.e. vanishing Wronskian. Let τ(x, λ) = Tr(A(x, λ)), then λ ∈ C is an
eigenvalue if

D(λ) = 0 where D(λ) = e−
∫ x
0 τ(s,λ)ds u−(x, λ) ∧ u+(x, λ) ,

since

(u− ∧ u+)x = Au− ∧ u+ + u− ∧Au+ = τ(u− ∧ u+) .
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The model problem on
∧

(V )

Let’s look at some aspects of the exterior algebra of V for this
problem. The total exterior algebra on V is∧0(V ) = C

∧0(V ∗) = C∧1(V ) = V = span{ξ1, ξ2}
∧1(V ∗) = V ∗ = span{η1, η2}∧2(V ) = span{ξ1 ∧ ξ2}
∧2(V ∗) = span{η1 ∧ η2}

The wedge product can be viewed in this case in term of bases. For
example, if

a = a1ξ1 + a2ξ2 and b = b1ξ1 + b2ξ2 ,

then
a ∧ b = (a1b2 − a2b1)ξ1 ∧ ξ2 .

Fix a volume form Ω ∈
∧2(V ∗); for example, Ω = η1 ∧ η2. Define

v = u Ω , u ∈
∧1(V ) , v ∈

∧1(V ∗) .

The mapping u 7→ u Ω is the interior product It is defined by

〈u Ω, a〉1 = 〈Ω,u ∧ a〉2 , ∀ a ∈
∧1(V ) ,

where 〈·, ·〉k is the induced pairing on
∧k. In coordinates

〈Ω,u ∧ a〉2 = det

〈η1,u〉1 〈η1, a〉1
〈η2,u〉1 〈η2, a〉1

 ,

Hence
v = u Ω = 〈η1,u〉1η2 − 〈η2,u〉1η1

What equation does v = u Ω satisfy when u satisfies
ux = A(x, λ)u, u ∈

∧1(V )?
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The differential equation for u Ω

What equation does v = u Ω satisfy?

vx = ux Ω = Au Ω .

but
Au Ω = (τI−AT )u Ω . (3)

Hence,
vx = τv −ATv , v ∈

∧1(V ∗) , τ = Tr(A) .

A proof of (3) is as follows. For any a ∈
∧1(V ),

〈(Au) Ω, a〉1 = 〈Ω,Au ∧ a〉2
= 〈Ω,Au ∧ a〉2 + 〈Ω,u ∧Aa〉2 − 〈Ω,u ∧Aa〉2
= τ 〈Ω,u ∧ a〉2 − 〈u Ω,Aa〉1
= τ 〈u Ω, a〉1 − 〈AT (u Ω), a〉1
= 〈(τI−AT )u Ω, a〉1

where we have used Au ∧ a + u ∧Aa = τu ∧ a.

Let
ṽ = e−

∫ x
0 τ(s,λ)ds v = e−

∫ x
0 τ(s,λ)ds u Ω ,

then clearly
ṽx = −A(x, λ)T ṽ , ṽ ∈

∧1(V ∗) .
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Revised model problem using v = u Ω

How does ṽ− = e−
∫ x
0 τ(s,λ)ds u− Ω appear in the model problem?

D(λ) = e−
∫ x
0 τ(s,λ)ds u−(x, λ) ∧ u+(x, λ)

= e−
∫ x
0 τ(s,λ)ds 〈Ω,u−(x, λ) ∧ u+(x, λ)〉2 ξ1 ∧ ξ2

= e−
∫ x
0 τ(s,λ)ds 〈u− Ω,u+〉1 ξ1 ∧ ξ2

= 〈ṽ−,u+〉1 ξ1 ∧ ξ2

Hence eigenvalues satisfy D(λ) = 0 where D(λ) = 〈ṽ−,u+〉1.

Numerical strategy: for any fixed λ ∈ Λ integrate

u+
x = A(x, λ)u+ , x ≥ −1 , 〈a,u+(−1, λ)〉1 = 0

for −1 ≤ x, and for x ≤ 1 integrate

ṽ−x = −A(x, λ)T ṽ−x , x ≤ +1 , ṽ−(+1, λ) = b̃ Ω ,

where

b̃ ∈
∧1(V ) is any vector satisfying 〈b, b̃〉1 = 0 .

Then, at some convenient value of x evaluate D(λ) = 〈ṽ−,u+〉1.
Eigenvalues satisfy D(λ) = 0.
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Introduction to the interior product on
∧

(V )

Let V be an n−dimensional vector space, and let Ω be a fixed
volume form, i.e. a fixed element of

∧n(V ∗). The mapping

u 7→ u Ω u ∈
∧k(V )

which takes u ∈
∧k(V ) to u Ω ∈

∧n−k(V ∗) is a duality mapping. It
is a special case of the interior product which is defined in general by

〈u U,v〉`−k = 〈U,u∧v〉` , U ∈
∧`(V ∗) , v ∈

∧`−k(V ) , u ∈
∧k(V ) ,

where 〈·, ·〉k is the induced pairing on
∧k. The interior product is

also denoted iuU or i(u)U.

Example of the interior product in R3 (V = V ∗ = R3). Let

Ω = e1 ∧ e2 , ξ = ξ1e1 + ξ2e2 + ξ3e3 ,

then
ξ Ω = −ξ2e1 + ξ1e2

e

e

e

3

2

1

ξ Ω

ξ
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2D subspaces of 3D vector spaces

Let A(λ) : V → V be a linear transformation depending analytically
on λ for all λ ∈ Λ ⊂ C. Suppose that the spectrum of A(λ)

{µ ∈ C : det[µ(λ)I−A(λ)] = 0} ,

is of the qualitative form shown in the figure for all λ ∈ Λ.

Re(    )

Im(    )µ

µ

Generically the two eigenvalues with positive real part (denoted
µ2(λ) and µ3(λ)) may collide for some λ, resulting in a square root
singularity. But the subspace is analytic. If

[A(λ)− µj(λ)I]ξj(λ) = 0

then the cross product of ξ1(λ)× ξ2(λ) can be analytic and

A(2)(λ)ξ1 × ξ2 = (µ1 + µ2)ξ1 × ξ2 ,

where
A(2)(λ)ξ1 × ξ2 := A(λ)ξ1 × ξ2 + ξ1 ×A(λ)ξ2 .

In fact
A(2)(λ) = τI−A(λ)T , τ = Tr(A) .
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Introductory example: linear stability of pulses

Consider the parabolic PDE

ut = uxx − 4u+ 6u2 ,

which has the steady solution û(x) = sech2(x). Linearising about û

ut = uxx − 4u+ 12û(x)u ,

with associated spectral problem on the real line

L u = λu with L :=
d2

dx2
− 4 + 12û(x) .

continuous spectrum

Re(    )

Im(    )λ

λ

Dynamical systems view of the spectral problem

Let u = (u1, u2), with u1 := u and u2 = ux

ux = A(x, λ)u , A(x, λ) =

 0 1

λ+ 4− 12û(x) 0

 ,

with

lim
x→±∞

A(x, λ) = A±(λ) =

 0 1

λ+ 4 0

 .

λ = −4 λ > −4λ < −4

7
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An “Evans function” formulation

ux = A(x, λ)u u ∈ C2

with spectrum of A∞(λ) of the form:
λ = −4 λ > −4λ < −4

Using standard results for linear ODEs, there exist functions
u+(x, λ) and u−(x, λ) for all λ ∈ C such that Re(λ) > −4 with

limx→+∞ e−µ+(λ)xu+(x, λ) = ζ+(λ) , (A∞(λ)− µ+(λ)I)ζ+(λ) = 0

limx→−∞ e−µ−(λ)xu−(x, λ) = ζ−(λ) , (A∞(λ)− µ−(λ)I)ζ−(λ) = 0

u+ is bounded as x→ +∞ and u− is bounded as x→ −∞. When
they are linearly dependent for some λ, they are bounded (and
decay exponentially) as x→ ±∞, and that value of λ is an
eigenvalue. Define

D(λ) = det[u−(x, λ)
∣∣u+(x, λ) ]

• D(λ) is independent of x.

• D(λ) is an analytic function of λ for Re(λ) > −4.

• D(λ) is real if λ is real.

• D(0) = 0, D′(0) < 0 and D(λ) > 0 for λ real and large.

D(    )λ

λ
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Numerical integration of model problem

Strategy for numerical integration on the interval −L < x < L

For any fixed λ, integrate

du+

dx
= A(x, λ)u+ L > x > 0 with u+(L, λ) = ζ+(λ)

using any standard numerical integrator. Similarly, integrate

du−

dx
= A(x, λ)u− − L < x < 0 with u−(−L, λ) = ζ−(λ)

At x = 0 construct

D(λ) = det[u−(0, λ)
∣∣u+(0, λ) ]

Now study the function D(λ)

• Along the real axis (if only real unstable eigenvalues are
anticipated)

• Along a contour in the complex λ plane; then use Cauchy’s
theorem to count complex eigenvalues with positive real part.

Contrast with matrix methods where uxx + a(x)u = λu, u ∈ L2(R) is
replaced by a discretization using exact asymptotic b.c.

uxx + a(x)u = λu − L < x < L

ux ±
√
λu = 0 at x = ±L

Hence matrix eigenvalue routines not applicable. Can also apply
articial (λ−independent) boundary conditions, but other problems
may arise (see later discussion).

9



11.

'

&

$

%

Stability of pulses – when n = 3

The Fitzhugh-Nagumo equation, which models the transmission of
nerve impulses, can be written in the form

φt = φxx + f(φ)− ψ and ψt = b(φ− dψ)

where f(φ) is some smooth cubic function. Linearizing this PDE
about a pulse solution leads to a spectral problem of the form

ux = A(x, λ)u u ∈ C3

with
lim

x→±∞
A(x, λ) = A∞(λ)

where A∞(λ) has one eigenvalue with negative real part and two
with positive real part, for all λ ∈ C such that Re(λ) > 0.

Re(    )

Im(    )µ

µ

Using standard results for linear ODEs, there exist functions
uj(x, λ), j = 1, 2, 3 for all λ ∈ C such that Re(λ) > 0 with

lim
x→+∞

e−µ1(λ)xu1(x, λ) = ζ1(λ) , (A∞(λ)− µ1(λ)I)ζ1(λ) = 0

lim
x→−∞

e−µj(λ)xuj(x, λ) = ζj(λ) , (A∞(λ)− µj(λ)I)ζj(λ) = 0 j = 2, 3

But (a) µ2(λ) and µ3(λ) may not be analytic for all admissible λ
(eigenvalue collisions); (b) when integrating from x = −L to x = 0

there will be problems with computing two independent
exponentially growing solutions.

10
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Integrating the stability equation on two-planes

How do we numerically integrate

ux = A(x, λ)u u ∈ C3 − L < x < 0

when there are two eigenvalues of A∞(λ) with positive real part?

One can use continuous or discrete orthonormalization, but
orthonormalization converts a linear ODE to a nonlinear ODE, and
orthonormalization does not preserve analyticity in general.

Integrate the ODE on two planes. Let

ξ1 = e2 × e3 , ξ2 = e3 × e1 , ξ3 = e1 × e2 ,

be a basis for the 2-planes in C3, and define

A(2)(a× b) := Aa× b + a×Ab

Then, with w = w1ξ1 + w2ξ2 + w3ξ3,

A(2)w = τ w −ATw

where τ = Trace(A). Hence

u−x = −ATu− when u− = e−
∫ x
0 τ(s) dsw(x)

Hence, the numerical strategy is: for any fixed λ, integrate

du+

dx
= A(x, λ)u+ L > x > 0 with u+(L, λ) = ζ1(λ)

using any standard numerical integrator. Similarly, integrate

du−

dx
= −A(x, λ)Tu− − L < x < 0 with u−(−L, λ) = ζ2(λ)× ζ3(λ)

At x = 0 construct D(λ) = u−(0, λ) · u+(0, λ).

11
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Exterior algebra of a vector space V

Let ξ1, . . . , ξn be a basis for the n−dimensional vector space V ; then the d
distinct combinations

ξi1 ∧ · · · ∧ ξik , where d =
n!

k!(n− k)!

form a basis for
∧k(V ). Label and introduce an ordering for this basis,

ω1, . . . , ωd. Then any element U ∈
∧k(V ) can be represented as

U =
d∑
j=1

Uj ωj .

Similarly, any element V ∈
∧n−k(V ) can be represented as

V =
d∑
j=1

Vj αj ,

where α1, . . . , αd is a basis for
∧n−k(V ).

Now, when studying the linear stability of solitary waves, one would like
to integrate the ODE,

ux = A(x, λ)u , u ∈ V ∼=
∧1(V ) . (∗)

on the various spaces
∧k(V ),

∧n−k(V ), as well as
∧k(V ∗), when

lim
x→±∞

A(x, λ) = A∞(λ) ,

and the spectrum of A∞(λ) has a k × (n− k) splitting.

12
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The wedge product on
∧2(V ) and

∧k(V )

Let V be an n−dimensional vector space. For u,v,w ∈
∧1(V ), the

wedge product satisfies the four rules

• (au + v) ∧w = au ∧w + v ∧w for all scalars a

• u ∧ (bv + w) = bu ∧ v + u ∧w for all scalars b

• u ∧ u = 0

• If u1, . . . ,un is a basis for V , then the nonzero elements of
{ui ∧ uj 1 ≤ i, j ≤ n} form a basis for

∧2(V ).

Note that (u + v) ∧ (u + v) = 0 implies

u ∧ v = −v ∧ u for any u,v ∈
∧1(V ) .

These properties have natural generalizations to any
∧k(V ) for

1 ≤ k ≤ n with properties

• associativity: (u ∧ v) ∧w = u ∧ (v ∧w)

• U ∧V = (−1)k`V ∧U when U ∈
∧k(V ) and V ∈

∧`(V ).

• u1 ∧ · · · ∧ uk = 0 if ui = uj for some i 6= j

• dim
∧k(V ) = n!

k!(n−k)!

• dim
∧

(V ) =
∑n

k=0
n!

k!(n−k)! = 2n

13
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Fundamentals of
∧

(V )

There are various starting points for an axiomatic construction of
the exterior algebra of a vector space. One can start with the tensor
product of vector spaces, and project onto the anti-symmetric
tensors. More directly, one can start with alternating multilinear
mappings

Let V,W be vector spaces. A mapping h : V × · · · × V → W is called

• multilinear if h(u1, . . . ,uk) is linear in each argument

• alternating (or anti-symmetric) if

h(uπ(1), . . . ,uπ(k)) = sgn(π)h(u1, . . . ,uk)

here π is a permutation on k−symbols.

Denote the space of k−linear alternating maps by Ak(V,W ). An
important property of multilinear alternating mappings is the
universal factorization property:

Consider a k−linear mapping g(u1, . . . ,uk). There exists a unique linear
mapping ĝ :

∧k(V ) → W such that

g(u1, . . . ,uk) = ĝ(u1 ∧ · · · ∧ uk)

such that the following diagram commutes

Vx ... x V ( V )k

g ĝ

W

14
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Integrating ODEs on
∧k(V )

The system

ux = A(x, λ)u , u ∈
∧1(V ) ∼= V .

with a k × (n− k) splitting of A∞(λ) where

lim
x→±∞

A(x, λ) = A∞(λ) ,

generates induced systems

Ux = A(k)(x, λ)U , Vx = A(n−k)(x, λ)V ,

where A(k)(x, λ) and A(n−k)(x, λ) are d× d matrices.

• Integrate on
∧n−k(Cn) from x = −L∞ to x = 0

• Integrate on
∧k(Cn) from x = L∞ to x = 0

• Starting vector: at x = −L∞ choose ξ−(λ) as starting vector: it is the
eigenvector corresponding to the *simple* eigenvalue of A(n−k)

∞ (λ) of
largest real part. (With a similar construction at x = +L∞.)

• How to match at x = x0 ? One uses the “Evans function”

D̃(λ) = e−
∫ x0
0 τ(s,λ) dsU(x0, λ) ∧V(x0, λ) .

• One can use metric-free duality
∧n−k(V ∗) ∼=

∧k(V ) or Hodge duality:∧k(Cn) ∼=
∧n−k(Cn) to simplify the Evans function. For example, let

F :
∧n−k(Cn) →

∧k(Cn) be the Hodge star operator; then

D̃(λ) = D(λ) Vol D(λ) = [[FV,U]]d .

15
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Total exterior algebra when V is three-dimensional

Let V be a 3−dimensional complex vector space. The total exterior
algebra is∧0(V ) = C

∧0(V ∗) = C∧1(V ) = V = span{ξ1, ξ2, ξ3}
∧1(V ∗) = V ∗ = span{η1, . . .}∧2(V ) = span{ξ1 ∧ ξ2, ξ1 ∧ ξ3, ξ2 ∧ ξ3}
∧2(V ∗) = span{η1 ∧ η2, . . .}∧3(V ) = span{ξ1 ∧ ξ2 ∧ ξ3}
∧3(V ∗) = span{η1 ∧ η2 ∧ η3}

Given a linear ODE on
∧1(V ), we are interested in the induced

ODEs on
∧k(V ) for k = 2, 3. They are determined as follows.

Consider
Vx = A(2)V , V ∈

∧2(V ) .

The linear operator A(2) :
∧2(V ) →

∧2(V ) is defined by

A(2)u ∧ v = Au ∧ v + u ∧Av , for any u,v ∈
∧1(V ) ,

and then extended by linearity to any element in
∧2(V ). By the

universal factorization theorem, there is an induced linear operator
on

∧2(V ).

A matrix representation for A(2) acting on
∧2(V ) is obtained by

computing A(2) on a basis for
∧2(V ); i.e. let

ω1 = ξ1 ∧ ξ2 , ω2 = ξ1 ∧ ξ3 , ω3 = ξ2 ∧ ξ3
θ1 = η1 ∧ η2 , θ2 = η1 ∧ η3 , θ3 = η2 ∧ η3

then
(A(2))i,j = 〈θiA(2)ωj〉2 .

16
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Induced matrix A(2) on
∧2(V )

Compute
(A(2))i,j = 〈θiA(2)ωj〉2 .

For example

(A(2))1,1 = 〈θ1,A(2)ω1〉2

= 〈η1 ∧ η2,Aξ1 ∧ ξ2 + ξ1 ∧Aξ2〉2

= det

〈η1,Aξ1〉1 〈η1, ξ2〉1
〈η2,Aξ1〉1 〈η2, ξ2〉1

 + det

〈η1, ξ1〉1 〈η1,Aξ2〉1
〈η2, ξ1〉1 〈η2,Aξ2〉1


= 〈η1,Aξ1〉1 + 〈η2,Aξ2〉1

= a11 + a22 .

Given A(k) on
∧k(V ), the linear mappings on

∧k(V ∗) can be
obtained directly, in a coordinate free way, using the duality
mapping,

U 7→ U Ω ∈
∧n−k(V ∗) , U ∈

∧k(V ) .

17
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The duality map on
∧k(V )

Let V be an n−dimensional vector space, and consider the ODE

ux = Au , u ∈
∧1(V ) .

On any
∧k(V ) there is an induced ODE,

Ux = A(k)U , U ∈
∧k(V ) .

Fix the volume form Ω ∈
∧n(V ∗). The duality map

U 7→ U Ω ∈
∧n−k(V ∗)

takes elements from
∧k(V ) to elements in

∧n−k(V ∗).

To deduce the induced equation on
∧n−k(V ∗), let

V = U Ω ,

then
Vx = Ux Ω = A(k)U Ω .

But, for any W ∈
∧n−k(V ),

〈A(k)U Ω,W〉n−k = 〈Ω,A(k)U ∧W〉n
= 〈Ω,A(k)U ∧W〉n + 〈Ω,U ∧A(k)W〉n − 〈Ω,U ∧A(k)W〉n
= τ〈Ω,U ∧W〉n − 〈U Ω,A(k)W〉n
= τ〈U Ω,W〉n − 〈(A(k))TU Ω,W〉n

Hence
Vx = −(A(k))TV + τV , V ∈

∧n−k(V ∗) .

18
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Additonal properties of the interior product

Main formula: for U ∈
∧`(V ∗), v ∈

∧`−k(V ) and u ∈
∧k(V ),

〈u U,v〉`−k = 〈U,u ∧ v〉` .

Further properties

u v = 〈v,u〉1 u ∈
∧1(V ) , v ∈

∧1(V ∗)

For any scalars c1 and c2,

u (c1v1 + c2v2) = c1 u v1 + c2u v2) .

For U ∈
∧k(V ∗) and V ∈

∧`(V ∗),

u (U ∧V) = (u U) ∧V + (−1)kU ∧ (u V) .

Remark. One can also talk about right interior products versus left
interior products, and interior products taking

∧
(V ∗) to

∧
(V ). They

are all defined using the dual pairing.

19
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∧
(V ) for four-dimensional vector spaces V

Let V be a 4−dimensional complex vector space. The total exterior
algebra is∧0(V ) = C 1−dimensional∧1(V ) = V = span{ξ1, ξ2, ξ3, ξ4} 4−dimensional∧2(V ) = span{ξ1 ∧ ξ2, ξ1 ∧ ξ3, . . .} 6−dimensional∧3(V ) = span{ξ1 ∧ ξ2 ∧ ξ3, . . .} 4−dimensional∧4(V ) = span{ξ1 ∧ ξ2 ∧ ξ3 ∧ ξ4} 1−dimensional

and
∧k(V ∗), k = 0, . . . , 4, with

∧1(V ∗) = V ∗ = span{η1, . . . , η4}.

Example: consider the boundary-value problem

ux = A(x, λ)u , u ∈ V , −1 < x < 1 ,

with homogeneous boundary conditions

〈aj,u(−1, λ)〉1 = 0 , 〈bj,u(+1, λ)〉1 = 0 , j = 1, 2 .

This system has natural two-dimensional subspaces, defined by the
boundary conditions. Integrate the induced system on

∧2(V )

Ux = A(k)(x, λ)U , U ∈
∧2(V ) .

When integrating from x = −1 to any value of x, what is the initial
condition? Let

W = { u ∈
∧1(V ) : 〈a1,u〉1 = 0 } .

W is a 2D subspace of V . The starting vector is

U(−1, λ) = Σ

where Σ is any Grassmann representative for the subspace W .
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A Grassmann representative of a subspace

Let V be an n−dimensional complex vector space with basis
{ξ1, . . . , ξn}, and suppose W is a k−dimensional subspace with basis
{w1, . . . ,wk}. The subspace is an equivalence class of bases.

{w̃1, . . . , w̃k} is also a basis for W if

[w̃1 | · · · | w̃k] = [w1 | · · · |wk]m

where m is any k × k invertible matrix, i.e. m ∈ G`(k,C).

A Grassmann representative of W is

Σ = { Cw1 ∧ · · · ∧wk , C ∈ C }

since a change of basis for W induces a scalar multiple of the
Grassmann representative. For example

w̃1 ∧ · · · ∧ w̃k = det(m)w1 ∧ · · · ∧wk

In other words k−dimensional subspaces of V are associated with
lines in

∧k(V ). It is sometimes said that Σ is the Plücker line
representing the subspace W .
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Decomposability and the Grassmannian G2,4

An arbitrary element U ∈
∧2(V ) does not necessarily represent a

two-dimensional subspace of V . If U represents a 2−dimensional
subspace of V it is called decomposable and can be expressed in the
form

U = u ∧ v for some u,v ∈
∧1(V ) .

It is a result from algebraic geometry that U ∈
∧2(V ) for any vector

space V is decomposable if and only if

U ∧U = 0

Now, U ∧U ∈
∧4(V ) and so

U ∧U = 〈Ω,U ∧U〉4Vol

= 〈U Ω,U〉2Vol

:= I(U)Vol .

The manifold I−1(0) is the Grassmannian, G2,4. The manifold of two
dimensional subspaces of V . It is an invariant manifold of the
induced ODE on

∧2(V ) since

Ix = 〈Ux Ω,U〉2 + 〈U Ω,Ux〉2
= 〈A(2)U Ω,U〉2 + 〈U Ω,A(2)U〉2
= 〈Ω,A(2)U ∧U〉4 + 〈Ω,U ∧A(2)U〉4
= Tr(A)〈U Ω,U〉2
= τI .

Hence Ix = 0 for all x if I = 0 for some value of x.
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The Grassmannian G2,4 and the manifold S2 × S2

In standard coordinates,

ω1 = ξ1 ∧ ξ2 , ω2 = ξ1 ∧ ξ3 , ω3 = ξ1 ∧ ξ4 ,

ω4 = ξ2 ∧ ξ3 , ω5 = ξ2 ∧ ξ4 , ω6 = ξ3 ∧ ξ4 .

and any U ∈
∧2(V ) can be expressed in the form

U =
6∑
j=1

Ujωj .

In these coordinates the Grassmannian is associated with the
quadric

I = U1U6 − U2U5 + U3U4 .

Consider the following alternative basis for
∧2(V )

ω1 = ξ1 ∧ ξ2 − ξ3 ∧ ξ4 , ω2 = ξ1 ∧ ξ3 + ξ2 ∧ ξ4 ,
ω3 = ξ1 ∧ ξ4 − ξ2 ∧ ξ3 , ω4 = ξ1 ∧ ξ4 + ξ2 ∧ ξ3 ,
ω5 = −ξ1 ∧ ξ3 + ξ2 ∧ ξ4 , ω6 = ξ1 ∧ ξ2 + ξ3 ∧ ξ4 . (4)

The quadric I is transformed to

I = U2
1 + U2

2 + U2
3 − U2

4 − U2
5 − U2

6 = 0 ,

and so I = 0 corresponds to U2
1 + U2

2 + U2
3 = U2

4 + U2
5 + U2

6 . By a
suitable scaling of the magnitude, these coordinates illustrate the
result in algebraic geometry that when V is a real vector space,
G2,4 = S2 × S2.
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Finding a basis for a decomposable 2−vector

For illustration, take V = R4 with the canonical basis {e1, e2, e3, e4}.
Let U be a decomposable element of

∧2(R4). If U =
∑
Ujωj with the

standard basis for
∧2(R4), then U1U6 − U2U5 + U3U4 = 0. Another

way to characterize decomposability is the given by

Lemma. A nonzero U ∈
∧2(R4) is decomposable if and only if there

exists linearly independent vectors a,b ∈
∧1(R4) such that

U ∧ a = U ∧ b = 0.

Let a ∈
∧1(V ), then a ∧U ∈

∧3(V ). Taking the standard basis for∧3(V ),

a ∧U = 0 ⇔


U4 −U2 U1 0

U5 −U3 0 U1

U6 0 −U3 U2

0 U6 −U5 U4




a1

a2

a3

a4

 =


0

0

0

0

 .

For non-triviality, a 6= 0, and hence the determinant of the
coefficient matrix is required to vanish,

det(M) = (U1U6 − U2U5 + U3U4)
2 , M :=


U4 −U2 U1 0

U5 −U3 0 U1

U6 0 −U3 U2

0 U6 −U5 U4

 .

U is decomposable if and only if det(M) = 0, recovering the usual
condition for decomposability.

How to find a basis for the decomposable form ?

24



26.

'

&

$

%

Finding a basis for a decomposable 2−vector

How to find a basis for the decomposable form U ∈
∧2(V ), with V

four dimensional ?

The subspace is given by Ker(M). The kernel of M is spanned by
{φ1, φ2, φ3, φ4}, where

φ1 =


−U3

−U5

−U6

0

 , φ2 =


U2

U4

0

−U6

 , φ3 =


−U1

0

U4

U5

 , φ4 =


0

−U1

−U2

−U3

 .

These vectors satisfy

φ1 ∧ φ2 = U6 U , φ1 ∧ φ3 = −U5 U , φ1 ∧ φ4 = U3 U ,

φ2 ∧ φ3 = U4 U , φ2 ∧ φ4 = −U2 U , φ3 ∧ φ4 = U1 U .

For a fixed nonzero U ∈
∧2(R4) it is straightforward to find a basis

for the two-dimensional subspace. For example, if U6 6= 0 then take

U = u ∧ v with u =
1

U6

φ1 , v = φ2 .

Now suppose U depends on x or λ. How can one construct a
smoothly varying basis ? Theoretically the existence is assured
under suitable hypotheses, but how to construct this smoothly
varying basis numerically?
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Making the Grassmannian G2,4 attracting

For ODEs on the real line of the form arising in spectral problems for
pulses, the Grassmannian can be made attractive in a natural way. When
the Grassmannian is always attractive, one has greater freedom in
choosing the numerical integration scheme.

Consider the integration of U+(x, λ) with V = C4

d

dx
U+ = A(2)(x, λ)U+ U+ ∈

∧2(V ) L > x > 0

Introduce the transformation

U+(x, λ) = eσ+(λ)x Û+(x, λ)

where σ+(λ) is the sum of the eigenvalues of A∞(λ) with negative real
part. Then Û+ satisfies

d

dx
Û+ = [A(2)(x, λ)− σ+(λ)I]Û+ L > x > 0

The Grassmanian is still an invariant manifold of this equation: when τ is
constant, the Grassmannian is attracting. Let

Î = 〈Û+ Ω, Û+〉2 .

Then
Îx = τ Î − 2σ+Î .

If τ is constant, then τ = σ+ + σ− with Re(σ+) < 0 and Re(σ−) > 0. Hence

Îx = (σ− − σ+)Î = (|σ−|+ |σ+|)Î

and so Î is strictly decreasing when integrating from x = L to x = 0. A
similar argument can be constructed for integration on the interval
−L < x < 0. In this latter case

Îx = −(|σ+|+ |σ−|)Î .
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Forcing the Grassmannian G2,4 to be attracting?

Consider the pair of equations

Ux = A(2)(x, λ)U , U ∈
∧2(V )

Ix = τ(x) I , I = 〈U Ω,U〉2 .

Using an idea of ASCHER & REICH we can try to force the
Grassmannian to be attracting. Replace the above equation by

Ux = A(2)(x, λ)U + γ IU , U ∈
∧2(V )

with γ some constant to be determined. The modified equation for I
is

Ix = τ(x) I + 2γ I2 .

If τ(x) = 0 then the idea fails since Ix = 2γI2 blows up.

If τ(x) 6= 0 is there a choice of γ such that I = 0 is attracting?

Suppose the exponential part is also subtracted off as well:

U+(x, λ) = eσ+(λ)x Û+(x, λ)

where σ+(λ) is the sum of the eigenvalues of A∞(λ) with negative
real part. Then Û+ satisfies

d

dx
Û+ = [A(2)(x, λ)− σ+(λ)I]Û+ + γ IÛ+ L > x > 0

Then
Îx = τ(x)Î − 2σ+Î + 2γÎ2 .

or
Îx = (τ(x)− τ∞)Î + (σ− − σ+)Î + 2γÎ2 .

Can γ be chosen so that I = 0 is attracting when τ is nonconstant?
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The Hodge star operator

The Hodge star operator can be introduced when the vector space
has both an orientation and an inner product, denoted by [[·, ·]] (or
[[·, ·]]1). It enables one to relate the spaces

∧k(V ) and
∧n−k(V ) and

F :
∧n−k(V ) →

∧k(V ) can be defined by

V ∧U = [[FV,U]]kVol ,

where [[·, ·]]k is the induced inner product on
∧k(V ).

Properties of Hodge star

• U ∧FV = V ∧FU for U,V ∈
∧k(V )

• FFU = (−1)k(n−k) when U ∈
∧k(V )

• [[U,V]]n−k = [[FU,FV]]k

Another way to define the Hodge star operator, which shows its
connection with the duality operator is

[[FU,V]]k = [[Ω,U ∧V]]n where U ∈
∧n−k(V ) , V ∈

∧k(V ) ,

and Ω ∈
∧n(V ) is a volume form.

Another identity which is useful for constructing induced systems is

FA(k) + (A(n−k))TF = Tr(A)F

With the Hodge star operator the Grassmannian G2,4 is defined by
the zero set of the quadric

I(U) = [[FU,U]]2 .
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Stability of pulse solutions of the cGL equation

Consider the complex Ginzburg-Landau equation

At = b1 Axx + b2 A + b3 |A|2A , x ∈ R .

Suppose there exists a pulse solution. An example is the
Hocking-Stewartson pulse, which exists for a subset of values of b1,
b2 and b3 and has the form:

A(x, t) = a0L eiνt(sechαx)1+iω

Are such solutions stable? The LSE is

Bt = b1 Bxx + b2 B + 2b3 |A|2B + b3A
2B ,

Introduce real coordinates B = û1 + i û2 and a spectral ansatz
û(x, t) = Re(eλtu(x)), the result is a system of ODEs which can be
written as a first-order system

ux = A(x, λ)u , u ∈ C4 .

where limx→±∞A(x, λ) = A∞(λ) and the spectrum of the matrix
A∞(λ) (for all λ ∈ C with Re(λ) > 0) is of the form

Im(     )

Re(     )  

µ

µ
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Integrating the linearized CGL on
∧2(C4)

The system

ux = A(x, λ)u , u ∈ C4 .

with a 2× 2 splitting of A∞(λ) generates induced systems

Ux = A(2)(x, λ)U , Vx = A(2)(x, λ)V ,

where A(2)(x, λ) and A(4−2)(x, λ) are 6× 6 matrices.

• Integrate U equation on
∧2(C4) from x = −L∞ to x = 0.

• Integrate V equation on
∧2(C4) from x = L∞ to x = 0.

• Starting vectors. At x = −L∞ choose ξ−(λ) as starting vector. It is the
eigenvector corresponding to the *simple* eigenvalue of A(2)

∞ (λ) of
largest real part. (With a similar construction at x = +L∞.)

• At x = 0

D̃(λ) = D(λ) Vol , D(λ) = [[FV,U]]6 ,

where the Hodge star operator in standard coordinates is

FV = SV with S =



0 0 0 0 0 1

0 0 0 0 −1 0

0 0 0 1 0 0

0 0 1 0 0 0

0 −1 0 0 0 0

1 0 0 0 0 0
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Instability of the Hocking-Stewartson pulse

The cGL equation associated with spanwise modulation of PPF (Afendikov
& Mielke, 1999) in scaled form

ρ eiψ At = Azz − (1 + iω)2 A + (1 + iω)(2 + iω) |A|2A ,

has the exact Hocking-Stewartson solution

A(z, t) = Â(z) = (coshz)−1−iω .

5772.22...

ppf unstable

α

R

Computed unstable exponent along the neutral curve

α ρ ψ ω λ

1.0973 .069720 -1.219908 -3.399210 0.650261

1.09 .072627 -1.306955 -4.228913 0.896550

1.08 .074454 -1.356560 -4.946956 1.120561

1.06 .077080 -1.422892 -6.462923 1.628036

1.05 .078173 -1.449108 -7.377601 1.957210

1.03 .080122 -1.494230 -9.803213 2.914473

1.02055 .080965 -1.513175 -11.39539 3.609562

1.00 .082672 -1.550681 -16.86346 6.400421

0.988 .083603 -1.567483 -21.51673 9.270247
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Orr-Sommerfeld equation and Bickley jet

The stability of fluid flows in unbounded domains, such as jets,
wakes and mixing layers, is often studied using the
Orr-Sommerfeld equation. An example is the Bickley jet.
Mathematically, the stability problem for the Bickley jet is identical
to the stability problem for a solitary wave such as the HS pulse.

�����

�������

�������������

�����������

�������

���

In scaled variables, the horizontal velocity field for the Bickley jet
takes the form

U(x) = sech2x , −∞ < x <∞ . (5)

The Orr-Sommerfeld equation can be expressed in the form,

Ux = A(2)(x, λ)U , (6)

where λ = −iαc is the stability exponent. For interesting parameter
values, A∞(λ) has two eigenvalues with positive real part.
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Computing the neutral curve for the Bickley jet

The eigenvectors of A
(2)
∞ (λ) associated with σ±(λ) can be explicitly

calculated.

The system (6) is integrated from x = L∞ to x = 0 with starting
vector ξ+(λ), and L∞ is taken to be L∞ = 10 in the results reported
here. Call this solution U+(x, λ). The system (6) is then integrated
from x = −L∞ to x = 0 with starting vector ξ−(λ). Call this solution
U−(x, λ).

A value of λ ∈ C is an eigenvalue if D(λ) = 0 where

D(λ) = [[U+,SU−]]2 , (7)

where S is the Hodge star operator in standard coordinates.

Numerical calculation of the neutral curve for the Bickley jet using
the above algorithm is shown in the figure, and the curve agrees to
graphical accuracy with known results.

10 31.62 100 316.23 1000
0.01

0.03

0.1

0.32

1

3.16

Reynolds number

α

Neutral Curve for the Bickley jet flow

Newton’s method and continuation were used to compute the
points on the neutral curve. The calculations were done using the
implicit midpoint rule, which is only second-order accurate, but is
clearly adequate for graphical accuracy.
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Other examples on
∧2(V ) when V is 4D

ADROVER ET AL. have computed Lyapunov exponents on wedge
spaces. Exterior algebra is useful for computing LEs for low
dimensional systems, but will be severely limited for large systems
since the dimension of

∧k(V ) increases rapidly with dimension.

For systems of large dimension, orthonormalization and Stiefel
manifold integrators are much more practical for computing LEs in
general.

• A. ADROVER, S. CERBELLI & M. GIONA. Exterior algebra-based
algorithms to estimate liapunov spectra and stretching statistics in
high-dimensional and distributed systems, Int. J. Bifur. Chaos 12
353–368 (2002).
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Two-dimensional subspaces of 5D vector spaces

Going from 2D subspaces of 4D vector spaces to 2D or 3D

subspaces of 5D vector spaces is predominantly straightforward.

Given an ODE on V , a 5D vector space, constructing the induced
system on

∧2(V ),

Ux = A(2)(x, λ)U , U ∈
∧2(V ) ,

follows the usual algorithm. The space
∧2(V ) has dimension 10, so

the linear operator A(2)(x, λ) is represented by a 10× 10 matrix.

A representation for the Hodge star operator is constructed as
follows. Starting with an orthonormal basis for V ∼= C 5, fix a
volume form, for example, the standard volume form

Vol = e1 ∧ · · · ∧ e5 ,

and let a1, . . . , a10 be the induced orthonormal basis on
∧2(C5).

Using a standard lexical ordering, this basis can be taken to be

a1 = e1 ∧ e2 , a2 = e1 ∧ e3 , a3 = e1 ∧ e4

a4 = e1 ∧ e5 , a5 = e2 ∧ e3 , a6 = e2 ∧ e4 ,

a7 = e2 ∧ e5 , a8 = e3 ∧ e4 , a9 = e3 ∧ e5 ,

a10 = e4 ∧ e5 .

Any U ∈
∧2(V ) can be expressed as U =

∑10
j=1 Ujaj .

Now, let {b1, . . . ,b10} be an orthogonal basis for
∧3(V ). The action

of Hodge star is defined by its action on basis vectors

[[?bj, ai]]k Vol = bj ∧ ai , for i, j = 1, . . . d .

where the conjugation on the left nullifies the conjugation in the
Hermitian inner product.
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Using a standard lexical ordering for the basis of
∧3(V ), a matrix

representation for the star operator, denoted by S ∈ R10×10, is then
defined by

?bj =
10∑
l=1

Sjlal , j = 1, . . . , 10 , (8)

with

S =

 0 S1

S1 0

 , S1 =



0 0 0 0 1

0 0 0 −1 0

0 0 1 0 0

0 −1 0 0 0

1 0 0 0 0


. (9)

Remarks.

• Note that S is symmetric, isometric, and an involution.

• In contrast to the case of G2,4 there does not appear to be any
relation between Hodge star and the Grassmannian G2,5.

• How to characterize the Grassmannian G2,5 ?
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The Grassmannian in
∧2(C5)

The set of all decomposable 2-forms is a quadratic submanifold of
the projectified ambient space

∧2(V ) ∼= C 10. This manifold is the
Plücker embedding of the Grassmannian G2,5. This submanifold
has dimension 6. Explicit expressions for the quadrics which define
G2,5 are obtained as follows.

An element U ∈
∧2(V ) is decomposable if and only if U ∧U = 0

(note that this simple characterization of decomposability does not
generalize to k > 2). Now, U ∧U ∈

∧4(V ), hence this form will
have 5 components. To obtain explicit expressions, introduce bases
for all the spaces involved.

Take the standard basis for C5, the standard lexicographically
ordered bases for

∧2(C5) and
∧3(C5), and the following

orthonormal basis for
∧4(C5),

c1 = −e1 ∧ e2 ∧ e4 ∧ e5 , c2 = −e2 ∧ e3 ∧ e4 ∧ e5 ,

c3 = e1 ∧ e3 ∧ e4 ∧ e5 c4 = e1 ∧ e2 ∧ e3 ∧ e5 ,

c5 = −e1 ∧ e2 ∧ e3 ∧ e4 .

Then for U =
∑10

j=1 Ujωj ,

U ∧U = 2
5∑
j=1

Ijcj ,
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where I1, . . . , I5 are defined by

I1 = −U1U9 + U2U7 − U4U5

I2 = −U5U10 + U6U9 − U7U8

I3 = U2U10 − U3U9 + U4U8

I4 = U1U8 − U2U6 + U3U5

I5 = −U1U10 + U3U7 − U4U6 . (10)

These quadrics are not all independent, they satisfy the two
relations,

U2 I3 + U3 I4 + U4 I5 = 0 and U5 I3 + U6 I4 + U7 I5 = 0 .

The quadric surface defined by I = 0, where I = (I1, . . . , I5) ∈ C 5, is
the Grassmannian G2,5. The 5× 10 matrix ∇uI has rank 3.

When I is evaluated on a solution of an induced system on
∧2(V ) it

satisfies the equation

d

dx
I = τ(x, λ)I−A(x, λ)T I . (11)

It is immediate from (11) that – mathematically – if I = 0 at the
starting value, it is preserved by the differential equation on

∧2(V ):
G2(C 5) is an invariant manifold of the induced system on

∧2(V ).

On the other hand, numerically these invariants may not be
preserved. The vectorfield Ix is not identically zero, but vanishes in
general only when I = 0. Hence, the Grassmannian G2,5 is a weak
constraint.

What is the appropriate numerical integrator?

Gauss-Legendre Runge-Kutta methods appear to work for this problem,
but theoretical justification is lacking.

Magnus integrators also appear to have natural properties for integration
on

∧k(V ).

38



40.

'

&

$

%

Stability of solitary waves – fifth order KdV

The fifth-order KdV equation or Kawahara equation is a model
equation appearing in water waves, plasma physics, etc,

ut + uux + αuxxx + β uxxxxx = 0 ,

or more generally

ut + ∂xf(u, ux, uxx) + αuxxx + β uxxxxx = 0 .

Travelling solitary wave states u(x, t) = û(x− ct) satisfy,

β ûxxxx + αûxx + f(û, ûx, ûxx)− cû = 0 .

The linearization about solitary waves leads to a system of the form

ux = A(x, λ)u , u ∈ C5 , with lim
x→±∞

A(x, λ) = A∞(λ) ,

and dependent on parameter values, k = 1 or k = 2 and n = 5.

0

1

ρ
3

ρ

Most interesting case is k = 2. Hence, integrate

Ux = A(2)(x, λ)U , x ≥ 0 (12)
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Vx = A(3)(x, λ)V , x ≤ 0

on
∧2(C5) and

∧3(C5) which have dimension 10.

One can also use Hodge duality to simplify:

SA(3) + [A(2)]TS = τ S ,

and then integrate the adjoint of (12) for x ≤ 0. For the former case,
the computable expression for the Evans function is

D(λ) = [[SV,U]]2 .

Results: For the classical KdV equation (nonlinear uux) we find that
all one-pulse solitary waves are stable using numerical
implementation of Cauchy’s Theorem, and stability of multi-pulses
in progress.

For the nonlinearity upux there is an exact solution for one value of
c(p), and we find instability of this one pulse for p > 4.80... which is
in agreement with an analytical conjecture of Karpman, and
suggests that Karpman’s conjecture is sharp.
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Analyticity of starting vectors

One of the issues that arises when the dimension of V is 5 or greater
is that the eigenvalues of the “system at infinity” A∞(λ) may not be
computable analytically. Hence, for each λ it may be required to
obtain the eigenvalues numerically.

This computation does not present any numerical difficulties, but it
creates a problem with numerical analytic continuation.

The problem reduces to computing a simple eigenvalue σ(λ) and its
eigenvector ξ(λ) (and adjoint eigenvector η(λ)) along a path in the
complex λ plane of a matrix A(λ) which depends analytically on λ.

Consider two points λ1 and λ2 and compute the eigenvalues and
eigenvectors of A(λ1) and A(λ2). There will be a simple unique
eigenvalue σ(λj) of each, and as λ2 → λ1, σ(λ2) → σ(λ1). The
problem is with the eigenvectors ξ(λ2) and ξ(λ1). This computation
will not in general even be continuous.

Hence an algorithm for numerical analytic continuation of
eigenvectors is needed.
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Analyticity of starting vectors

Pragmatic approach: compute η(λ) and ξ(λ) at isolated values and
normalize: [[η(λ), ξ(λ)]] = 1. Neither ξ(λ) or η(λ) are analytic – but
D(λ) is analytic. This approach is special to computing the Evans
function. See TJB, DERKS & GOTTWALD (2002).

Elegant approach: integrate the following ODE (and a similar one
for η(λ)) along paths in the complex λ plane to obtain analytic
starting vectorsA(λ)− σ(λ)I −ξ(λ)

−η(λ)T 0

 dξ
dλ

dσ
dλ

 =

−A′(λ)ξ(λ)

0


Left hand side is always invertible when σ(λ) is a simple eigenvalue.
Hence this system defines a differential equation with analytic right
hand side. Solution of this equation provides an analytic path.

What is the appropriate numerical integrator? The coupled system
has a quadratic invariant since [[η, ξ]] = 1.

Several people pointed out at Ustaoset that Magnus integrators
might be excellent integrators for this problem.
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3D subspaces 6D vector spaces

The next interesting case is when V is a six-dimensional vector
space, and it is of interest to integrate the induced system for
three-dimensional subspaces.

Starting with
ux = A(x, λ)u , u ∈

∧1(V ) ,

and one is interested integration on

Ux = A(3)(x, λ)U , U ∈
∧3(V ) .

In principle this is straightforward. The major open question is how
to integrate along paths of 3−dimensional subspaces, that is, along
the Grassmannian G3,6 which is now a 9−dimensional submanifold
of the 19−dimensional projective space P(

∧3(V )).

Open questions.

• Algebraic geometry books show that it is the zero set of a large
number of quadrics, not all of which are independent. Find a
nice characterization of the Grassmannian.

• Show that G3,6 is an invariant manifold of the induced system.

• Choose/design an algorithm to preserve G3,6.
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Geometry of three forms on V ∼= R6

The space of three forms (or three vectors) has much more geometry
than two forms. The simplest case is three forms in six dimensional
spaces. For example, HITCHIN shows that there are three
equivalence classes of such forms.

Let U ∈
∧3(V ∗) be any three form and let u ∈ V . Then

u U ∧U ∈
∧5(V ∗) .

There is a natural duality between
∧5(V ∗) and V ⊗

∧6(V ∗). Define
the duality mapping ϕ :

∧5(V ∗) → V ⊗
∧6(V ∗). Using this duality,

define the linear transformation

KU : V → V ⊗
∧6(V ∗)

by
KUu = ϕ(u U ∧U)

Then the following function is defined by HITCHIN to discriminate
between 3−forms

f(U) :=
1

6
Tr(K2

U) .

Every three form U ∈
∧3(V ∗) satisfies either

f(U) < 0 , f(U) = 0 or f(U) > 0

What are the implications for numerics of this property?

• N.J. HITCHIN. The geometry of three forms in six dimensions, J.
Diff. Geom. 55 547–576 (2000).

• See also LYCHAGIN & RUBTSOV (1983), BANOS (2002).
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Stability of the Ekman layer with a coupled compliant
surface

Linearisation of the 3D Navier Stokes equations in a rotating frame
about the Ekman layer coupled to a compliant surface leads to the
sixth order ODE

φxxxx − b(x)φxx − a(x)φ+ 2ψx = 0

ψxx + (γ2 − b(x))ψ − iγRV ′(x)φ− 2φx = 0

for 0 ≤ x ≤ +∞ with compliant surface b.c.’s at x = 0.

Equivalent to the first order system

ux = A(x, λ,p)u u ∈ C6 0 < x < +∞

with continuous spectrum and spectrum of A∞(λ):

λ

λRe(   )

Im(   )

Im(   )λ = − α + 2/Ro

Im(   )λ = − α − 2/Ro

µ − plane

Appropriate space to integrate is
∧3(C6) which has dimension 20.

Integrate from x = L for some large L using appropriate
eigenvector for starting vector. Then at x = 0

D(λ) = 〈b(λ),U(0, λ)〉20

where b(λ) is determined by the boundary conditions at x = 0.
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Neutral curves for rigid wall in the wavenumber(γ) – orientation
angle (ε) plane, with R varying.
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Dolphin Hydrodynamics

The idea is to test the effect of compliance on the stability of the
boundary layer over the fins of a dolphin, using the attachment line
boundary layer coupled to a compliant surface as a model.

Linearising the 3D Navier-Stokes equations about the exact
similarity solution for the attachment line boundary layer leads to
coupled pair of ODEs one fourth order and one second order, which
can be formulated as

ux = A(x, λ,p)u u ∈ C6 0 < x < +∞

with boundary conditions at x = 0, where p represents parameters.

The system at infinity A∞(λ) has three eigenvalue with positive real
part and three with negative, and there are three boundary
conditions at x = 0. Hence the natural space to integrate on is∧3(C6).

In this case the effect of compliance is more pronounced, showing a
substantial stabilizing effect with increased passive compliance.
Indeed, the qualitative affect of stabilization is very similar to the
stabililization of the Blasius boundary layer shown by CARPENTER

& GARRAD (1985).

In other words the effect of compliance on fins is qualitatively the
same as the effect compliance on the body.
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Geometric Integration and the Grassmannian

Consider the general problem of integrating the induced equation
on k−dimensional subspaces of n−dimensional vector spaces

Ux = A(k)(x, λ)U , U ∈
∧k(V ) .

For a path of k−dimensional subspaces, it is required to stay on the
Grassmannian, Gk,n for all x.

Open Questions.

• Find a good characterization of Gk,n

• Show that Gk,n is an invariant manifold.

• Design/choose an integrator that preserves Gk,n

• Under what conditions can the Grassmannian be attracting?

Remark.

• Magnus integrators are showing excellent properties when
applied to integration of the ODEs on

∧k(V ).

• N.D. APARICIO, S.J.A. MALHAM & M. OLIVER. Numerical
evaluation of the Evans function by Magnus integration, BIT (in
press, 2005).
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Induced systems for ux = Au + f

For illustration, take V = C4 and consider the inhomogeneous ODE

ux = A(x, λ)u + f(x) , u ∈
∧1(V ) (13)

with f given. Suppose that with f = 0 it is natural to integrate the
homogeneous solution on

∧2(V ).

Ux = A(2)(x, λ)U , U ∈
∧2(V ) . (14)

How does one obtain the solution to the inhomogeneous problem?

NG & REID suggest integration on
∧3(V ),

Wx = A(3)(x, λ)W + U ∧ f , U ∈
∧3(V ) . (15)

and then to extract the particular solution of (13) from W.

Open questions.

• How to obtain the particular solution of (13) when it is difficult
(impossible) to integrate (13), but possible to integrate (14)?

• What about solvability? If there are non-trivial solutions of the
homogeneous equation, then (13) will only be solvable for a
subclass of f . But (15) will be solvable for any f. How to
reconcile these two issues?

• Generalize to inhomogeneous systems when V is any
n−dimension vector space and the homogeneous euqation is
natural on

∧k(V ).

• B.S. NG & W.H. REID, The compound matrix method for ordinary
differential systems, J. Comp. Phys. 58 (1985) 209-228.
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Gap solitary waves, and bifurcation from the
continuous spectrum

An example of the class of spinor-type equations, nonlinear Dirac
equations, gap models in geophysical fluid dynamics, and the
massive Thirring models is

i(At + Ax) +B + (|B|2 + ρ|A|2)A = 0

i(Bt −Bx) + A+ (|A|2 + ρ|B|2)B = 0

Linearisation about gap solitary waves ... leads to system

ux = A(x, λ)u u ∈ C4

This system has been studied by DERKS & GOTTWALD and they
show that there are interesting bifurcations from the continuous
spectrum.

two branches
continuous spectrum

Im(   )

Re(   )

λ

λ

• G. DERKS & G. GOTTWALD [2004] A robust numerical method to
study oscillatory instability of gap solitary waves, SIAM J. Applied
Dynam. Sys. (in press)
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Krein signature in Geometric Integration

Consider the linear constant coefficient Hamiltonian system

Jut = Au , u ∈ R2

with det(A) > 0. Then the spectrum of J−1A is {±iω} with
ω2 = det(A),

Aξ = iωJξ .

The signature associated with the eigenspace {±iω} is

s = sign
(
iω(ξ, ξ)

)
where ω is the symplectic form, e.g. ω(u,v) = 〈Ju,v〉. It determines
the rotation of the periodic orbit (clockwise or counterclockwise),
and can not be reversed by a symplectic change of coordinates.

History.

• Nineteenth Century: WEIERSTRASS, THOMPSON & TAIT.

• Twentieth Century: WILLIAMSON, KREIN, MACKAY.

Signature is important for Hamiltonian instabilities. A necessary
condition – for a pair of eigenvalues which collide on the imaginary
axis to become unstable – is that the eigenvalues have opposite
signature.

+

+
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Krein signature in Geometric Integration

Suppose that the exact system has two branches of continuous
spectrum and the two branches have opposite Krein signature.

What happens to the spectra under perturbation by discretization?

λ

λRe(    )

Im(    )

?

Open problems.

• Show that the two branches of continuous spectrum in the massive
Thirring model have opposite Krein signature.

• Explain the explosion of unstable eigenvalues in the numerical work
of BARASHENKOV & ZEMLYANAYA (2000).

• Explain why the use of exterior algebra for this problem as in DERKS

& GOTTWALD (2005) does not lead to spurious eigenvalues.

• Geometric integration problem: what are the general principles
involved with designing a numerical discretization so that the
discretized continuous spectrum lies entirely in the exact continuous
spectrum.

• I.V. BARASHENKOV & E.V. ZEMLYANAYA. Oscillatory instabilities of
gap solitons: a numerical study, Comp. Phys. Comm. 126 22–27 (2000).
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Numerics of the Maslov index

Consider a linear time-dependent Hamiltonian system

Jut = A(t)u , u ∈ R2n

and suppose that A(t+ T ) = A(t) for all t. Let Φ(t) be the
fundamental solution matrix. It has a symplectic QR factorization

Φ(t) = Q(t)R(t)

But every symplectic orthogonal matrix (orthosymplectic) is of the
form

Q(t) =

Q1(t) −Q2(t)

Q2(t) Q1(t)

 ,

with Qj(t) n× n matrices satisfying

Q1(t) + iQ2(t) is unitary .

Define
ei2πθ(t) = det[Q1(t) + iQ2(t)]

Then m = θ(T )− θ(0) is an integer: the Maslov index.

Every symplectic periodic orbit has a Maslov index.

The numerical algorithm of LEIMKUHLER & VAN VLECK is
designed to compute Q1 and Q2, and hence can also be used to
compute the Maslov index.

• B.J. LEIMKUHLER & E.S. VAN VLECK. Orthosymplectic
integration of linear Hamiltonian systems, Numer. Math. 77
269–282.
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The Maslov index on
∧2(R4)

Consider a linear time-dependent Hamiltonian system

Jut = A(t)u , u ∈ R4

and suppose that A(t+ T ) = A(t) for all t.

Another way to characterize the Maslov index is as an index of
rotation for Lagrangian planes. In the exterior algebra setting this
leads to a path in the Lagrangian Grassmannian

In standard coordinates, the Lagrangian Grassmannian is the
3−dimensional submanifold of P(

∧2(R2)) defined by

u1u6 − u2u5 + u3u4 = 0 and u2 + u5 = 0 .

In terms of standard coordinates on
∧2(R4) the Maslov index is

determined from (see JONES (1988))

e2iθ(t) =
u1 − u6 − iu3 + iu4

u1 − u6 + iu3 − iu4

.

This expression involves a choice of coordinates, which is required
for the numerical integration, but it can be recast in a
coordinate-free way.

Apply to compute the Maslov index of solitary waves. This leads to
self-adjoint eigenvalue problems of the form

φxxxx + aφxx + b(x)φ = λφ , x ∈ R

where b(x) → 0 exponentially as x→ ±∞.

Reformulate as
ux = JA(x)u , u ∈ R4 ,
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and then construct the induced system on
∧2(R4). The induced

system has the Lagrangian Grassmannian as an invariant manifold.
Using the formula, the Maslov index of a solitary wave is defined by

lim
L→∞

θ(+L)− θ(−L)

2π
.

An example of the computation is shown below in the upper figure.
The lower figure shows the Evans function for the self-adjoint ODE.
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One can also derive formulae for the Maslov index on
∧3(R6) and

other wedge spaces, and we have computed on
∧3(R6), but still

many open theoretical questions.

• TJB, F. CHARDARD & F. DIAS. Computing the Maslov index of
solitary waves, in preparation (2005).
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