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In an oceanographic setting, the shallow water equations are an asymptotic approxima-
tion to the full Euler equations, in the limit ε = h0

L → 0, with h0 being the vertical
length scale and L a horizontal length scale associated with the fluid layer. However,
in arriving at the shallow water equations an additional key step in the derivation is
the condition that at some reference time (e.g. t = 0) the thin-layer horizontal vortic-
ity field is identically zero, which corresponds to the horizontal fluid velocity field being
independent of the vertical coordinate, z, at t = 0. With this condition in place, the
“thin-layer equations” reduce exactly to the shallow water equations. In this paper we
show that this exact condition may be unstable: small, even infinitesimal, perturbations
of the thin-layer horizontal vorticity field can grow without bound. When the thin-layer
horizontal vorticity grows to be of order one, the shallow water equations are no longer
asymptotically valid as a model for shallow water hydrodynamics, and the “thin-layer
equations” must be adopted in their place.

Key Words: shallow water equations, thin-layer equations, thin-layer horizontal vortic-
ity, potential vorticity, instability

1. Introduction

The shallow water equations are one of the most widely used models for oceano-
graphic flows, tidal simulations, and coastal hydrodynamics. In terms of a cartesian
coordinate system (x, y, z) with z pointing vertically upwards, horizontal velocity field
(u(x, y, t), v(x, y, t)) and free surface elevation given by z = h(x, y, t) they take the stan-
dard form

Dh
Dt + h(ux + vy) = 0 ,

Du
Dt + ghx = fv ,

Dv
Dt + ghy = −fu ,

(1.1)

where here and throughout D
Dt represents the horizontal material derivative

D

Dt
:=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
, (1.2)

and f, g are the rotation and gravitational parameters respectively. The shallow water
equations conserve potential vorticity (cf. Salmon 1998; McIntyre 2003). Potential vor-
ticity is associated with the vertical vorticity, P := (vx − uy + f)/h.

The shallow water equations are an approximation to the Euler equations for three-
dimensional inviscid flow with a free surface, and they can be derived using an asymptotic
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argument (e.g. Dingemans 1997; Johnson 1997; Salmon 1998; Stoker 1958). The small
parameter is ε = h0

L , where L is a representative horizontal length scale, and h0 is
representative of the undisturbed water depth. Scaling the dependent and independent
variables in the usual way and taking the limit as ε→ 0 results in a hydrostatic pressure
field. However, the horizontal velocity field still depends on the vertical coordinate. The
asymptotic argument does not lead to a horizontal velocity field that is independent of
the vertical coordinate. An additional assumption is necessary. The usual assumption is
that (uz, vz) are zero at t = 0 and that this property is preserved for all time. In fact
this assumption and its consequence are exact. With this asymptotic argument followed
by the assumption on the horizontal velocity field, the reduction of the full water-wave
problem to the shallow water equations is a precise and rational argument.

However, a question that does not appear to have been addressed heretofore is whether
the initial condition (uz, vz) = (0, 0) is stable. If (uz, vz) is small – even infinitesimal – at
t = 0 will it remain small for all time? It is the purpose of this paper to show that this
property is demonstrably false. First, a simple exact solution of the nonlinear problem
will be presented to illustrate this point. Then the general linear instability problem for
thin-layer horizontal vorticity will be formulated.

Our conclusion is that it appears, in general, to be very difficult to control the growth
of thin-layer horizontal vorticity. Hence in real oceanographic flows, where the solutions
can be quite complicated, and perturbations of horizontal vorticity will invariably be
present, the shallow water equations as a model will rapidly become invalid.

In §2 the standard shallow water scaling and asymptotic argument are reviewed, and
the thin-layer equations derived. In §3 an exact solution is constructed of the thin-layer
equations (shallow water hydrodynamics with the assumption of hydrostatic pressure
field only) which has unbounded growth of horizontal vorticity. Then in §3 the exact
linear stability problem for perturbations of horizontal vorticity is formulated, and its
key properties are identified. When the shallow water equations breakdown, the conser-
vation of potential vorticity (PV) is also lost, and the precise effect of non-zero thin-layer
horizontal vorticity on PV is presented in §6.

2. Asymptotic derivation of the thin-layer equations

The governing equations for three-dimensional, inviscid, incompressible, water waves
in (x, y, z, t) with horizontal coordinates (x, y) and vertical coordinate z, and the free
surface represented by z = h(x, y, t), are the usual Euler equations with the dynamic
and kinematic free surface boundary conditions. The rotation term is neglected since
it does not affect the general argument presented here and can be brought back in as
appropriate.

Let U0 =
√
gh0 be the representative horizontal velocity scale, and introduce the

standard shallow-water scaling (e.g. p. 482 of Dingemans 1997) and (Chapter 2 of Johnson
1997),

ε =
h0
L
, x̃ =

x

L
, ỹ =

y

L
, z̃ =

z

h0
=

z

εL
, t̃ =

tU0

L
,

ũ =
u

U0
, ṽ =

v

U0
, w̃ =

w

εU0
, h̃ =

h

h0
.

(2.1)

Introducing the scalings (2.1) into the governing incompressible Euler equations we arrive
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at

ũx̃ + ṽỹ + w̃z̃ = 0 ,

ũt̃ + ũũx̃ + ṽũỹ + w̃ũz̃ + p̃x̃ = 0 ,

ṽt̃ + ũṽx̃ + ṽṽỹ + w̃ṽz̃ + p̃ỹ = 0 ,

ε2
(
w̃t̃ + ũw̃x̃ + ṽw̃ỹ + w̃w̃z̃

)
+ p̃z̃ = −1 .

(2.2)

with boundary conditions at the free surface

p̃ = 0 and h̃t̃ + ũh̃x̃ + ṽh̃ỹ = w̃ at z̃ = h̃(x̃, ỹ, t̃) , (2.3)

and

w̃ = 0 at z̃ = 0 . (2.4)

The only place that ε appears explicitly is in the vertical momentum equation, and
formally taking the limit ε→ 0 results in a hydrostatic pressure field. With a hydrostatic
pressure field, the terms p̃x̃ and p̃ỹ can be expressed in terms of h̃. The resulting equations
are as follows (the tildes have been dropped since these equations are really the starting
point for the paper)

ux + vy + wz = 0 ,

ut + uux + vuy + wuz + hx = 0 ,

vt + uvx + vvy + wvz + hy = 0 ,

(2.5)

with boundary conditions

w = 0 at z = 0 and w = ht + uhx + vhy at z = h . (2.6)

The equations (2.5) with boundary conditions (2.6) will be called the thin-layer equation
problem (TLEP) in order to distinguish these equations from the further reduction to
the shallow water equations.

In TLEP the horizontal velocity field (u, v) still, in general, depends on z and the
vertical velocity component w is still present in the momentum equations in (2.5). The
typical assumption at this point is to assume that (uz, vz) is zero at t = 0 and that this
property is maintained for all time. With this assumption and the boundary conditions
(2.6),

w(x, y, z, t) = −z(ux + vy) and ht + uhx + vhy = w(x, y, h(x, y, t), t) ,

combine to give the mass equation in the shallow water equations. The reduced shallow
water equations are then

ht + (hu)x + (hv)y = 0 ,

ut + uux + vuy + hx = 0 ,

vt + uvx + vvy + hy = 0 .

(2.7)

The reduced shallow water equations (2.7) are called the shallow water equations problem
(SWEP).

Solutions of SWEP are also (z−independent in u and v) exact solutions of TLEP.
Of interest is whether these solutions are stable as solutions of TLEP, or whether small
z−dependent perturbations in u and/or v may generate growing thin-layer horizontal
vorticity.
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2.1. The horizontal vorticity field

The above-mentioned assumption on (uz, vz) required to reduce TLEP to SWEP can
be made precise by deriving governing equations for the components of the thin-layer
horizontal vorticity in TLEP. Differentiating the second and third equations of (2.5)
with respect to z gives

D
Dtuz + wuzz = vzuy − uzvy ,
D
Dtvz + wvzz = uzvx − vzux ,

(2.8)

where D
Dt is the horizontal material derivative (1.2). This equation can be given a more

illuminating form by noting that (−vz, uz) is the thin-layer asymptotic form of the hori-
zontal vorticity as ε→ 0. Define

Ω :=

(
−vz
uz

)
. (2.9)

Then, via (2.8), Ω satisfies,

D

Dt
Ω + wΩz = DTΩ , (2.10)

where

D :=

[
ux uy
vx vy

]
. (2.11)

It is evident from (2.10) that the assumption

Ω = 0 for all t > 0 when Ω = 0 at t = 0

is fully justified. It is also apparent however, that stability of this assumption may not
in general be assured because of the D term on the right-hand side of equation (2.10).

3. An exact nonlinear unstable solution of TLEP

In this section an exact solution of TLEP (2.5)-(2.6) is constructed. The solution is a
function of α, a real parameter, and when α = 0 it is an exact solution of SWEP (2.7).
When α 6= 0 the thin-layer horizontal vorticity grows algebraically in time.

Introduce the fluid domains

∆ = { (x, y, t) ∈ R3 : 0 < x < S(t) , −∞ < y < +∞ , t > 0 } , (3.1)

and for t > 0,

D(t) = { (x, y, z) ∈ R3 : 0 < x < S(t) , −∞ < y < +∞ , 0 < z < h(x, y, t) } , (3.2)

and

Λ = { (x, y, z, t) : (x, y, z) ∈ D(t) , t > 0 } . (3.3)

The domain occupied by the fluid is, for t > 0, given by D(t). The function S : [0,∞)→
R+ represents the edge of an advancing fluid layer at x = S(t), t > 0, whilst h : ∆ →
R+
⋃
{0} is such that z = h(x, y, t) represents the location of the fluid free surface and

(u, v, w) : Λ → R represent the components of the fluid velocity field in the (x, y, z)
directions respectively. Consider TLEP in Λ with initial conditions

S(0) = 3 , (3.4)
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Figure 1. Schematic of the problem at (a) t = 0 and (b) t > 0.

h(x, y, 0) =
1

9
(3− x2) , (x, y) ∈ [0, 3]× R , (3.5)

u(x, y, z, 0) = 1 +
2

3
x and v(x, y, z, 0) = αzv0(x) , (x, y, z) ∈ D(0) , (3.6)

and boundary conditions

u(0, y, z, t) = 1 , (y, z, t) ∈ R× [0, 1]× [0,∞) , (3.7)

v(0, y, z, t) = αz , (y, z, t) ∈ R× [0, 1]× [0,∞) , (3.8)

w(x, y, 0, t) = 0 , (x, y, t) ∈ ∆ , (3.9)

h(S(t), y, t) = 0 , (y, t) ∈ R× [0,∞) , (3.10)

u(S(t), y, 0, t) = Ṡ(t) , (y, t) ∈ R× [0,∞) . (3.11)

Schematics of the problem at t = 0 and t > 0 are shown in Figure 1. We consider
classical solutions to TLEP, (u, v, w) : Λ → R, h : ∆ → R, and S : [0,∞) → R.
The function v0 : [0, 3] → R is a prescribed continuously differentiable function with
maxx∈[0,3] |v0(x)| = 1, and α is a real-valued parameter.

Now, when α = 0, then both u(x, y, z, 0) and v(x, y, z, 0) are independent of z on D(0).
It then follows from the argument in §2.1 that u, v remain independent of z on Λ, and
are thus solutions of the associated SWEP reduction of TLEP. In fact, when α = 0, the
solution to TLEP (which is reduced to SWEP) is obtained as

S(t) = 3(1 + t) , t > 0 , (3.12)

h(x, y, t) =
1

9

(
3− x

(1 + t)

)2

, (x, y, t) ∈ ∆ , (3.13)

u(x, y, z, t) = (3− 2
√
h(x, y, t)) = 1 +

2

3

x

(1 + t)
, (x, y, z, t) ∈ Λ , (3.14)

v(x, y, z, t) = 0 , (x, y, z, t) ∈ Λ , (3.15)

w(x, y, z, t) = −2

3

z

(1 + t)
, (x, y, z, t) ∈ Λ . (3.16)

This solution is readily verified by direct substitution. Before proceeding to considering
TLEP when α 6= 0, we first consider the thin-layer horizontal vorticity in TLEP. In TLEP
the thin-layer horizontal vorticity Ω : Λ→ R2 is defined in (2.9) and satisfies (2.10) and
is subject to the initial conditions

Ω(x, y, z, 0) :=
(
− vz(x, y, z, 0), uz(x, y, z, 0)

)
=
(
− αv0(x), 0

)
, (3.17)

for (x, y, z) ∈ D(0). Note that when α = 0 then Ω(x, y, z, 0) = 0 on D(0) and so
Ω(x, y, z, t) = 0 on Λ.
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Figure 2. Schematic of the function Φ(x).

3.1. Nonlinear solution of TLEP when α 6= 0

We now consider TLEP when α 6= 0; the case where TLEP does not reduce to SWEP.
In fact the exact solution may be obtained as S(t) = 3(1 + t), t > 0,

h(x, y, t) =
1

9

(
3− x

(1 + t)

)2

, (x, y, t) ∈ ∆ , (3.18)

u(x, y, z, t) = 1 +
2

3

x

(1 + t)
, w(x, y, z, t) = −2

3

z

(1 + t)
, (x, y, z, t) ∈ Λ , (3.19)

with v : Λ→ R being the solution to

∂v

∂t
+

(
1 +

2

3

x

(1 + t)

)
∂v

∂x
−
(

2

3

z

(1 + t)

)
∂v

∂z
= 0 , (x, y, z, t) ∈ Λ ,

subject to v(x, y, z, 0) = αzv0(x) for (x, y, z) ∈ D(0) and v(0, y, z, t) = αz for t > 0 and
(y, z) ∈ R× [0, 1]. The solution to the problem for v, after using (3.18)-(3.19), is readily
obtained as

v(x, y, z, t) = α(1 + t)2/3zΦ

(
3 +

(
x

(1 + t)
− 3

)
(1 + t)1/3

)
, (x, y, z, t) ∈ Λ ,

and with Φ : (−∞, 3]→ R given by

Φ(x) =


9

(3− x)2
; x 6 0

v0(x) ; 0 6 x 6 3

.

Now choose v0(x), x ∈ [0, 3], so that Φ has the form shown in Figure 2, with Φ continu-
ously differentiable, Φ(0) = 1 and Φ(x) = 1 for x ∈ [δ, 3], with 0 < δ � 1. The horizontal
vorticity field is then Ω = (Ω1, 0) with

Ω1(x, y, z, t) = −α(1 + t)2/3Φ

(
3 +

(
x

(1 + t)
− 3

)
(1 + t)1/3

)
, (3.20)

for (x, y, x, t) ∈ Λ. From this construction, we conclude that the solution with α = 0 to
TLEP (which is also a solution to SWEP) is nonlinearly unstable to small perturbations
in the thin-layer horizontal vorticity in the x−direction. The solution to TLEP when
α 6= 0 undergoes blow-up in the thin-layer horizontal vorticity (in particular in the
x−direction) as t → ∞, with the blow-up algebraic in t, like αt2/3 as t → ∞. On the
other hand, the horizontal inlet (at x = 0, t > 0) and initial (at t = 0, 0 6 x 6 3)
thin-layer horizontal vorticity is bounded, of O(α), in the solution to TLEP.

At this stage it is worth making some additional observations on the exact nonlinear
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solution (3.18)-(3.20). First, for t� 1, and a ∈ (−∞, 3] we introduce

x(t; a) = 3(1 + t)− (3− a)(1 + t)2/3 , (3.21)

and the closed, cross-sectionally bounded region D(t; a) ⊂ R2, via

D(t; a) =
{

(x, y, z) ∈ R3 : x(t; a) 6 x 6 3(1 + t) , 0 6 z 6 h(x, y, t) , −∞ < y <∞
}
,

and the cross section of D(t; a), labelled A(t; a) ⊂ R2, with,

A(t; a) =
{

(x, z) ∈ R2 : (x, 0, z) ∈ D(t; a)
}
. (3.22)

It now follows, via (3.18)-(3.20), and the structure of Φ : R→ R, that,

|Ω1(x, y, z, t)| > |α|min(Φ(a), 1)(1 + t)2/3 , (3.23)

for all (x, y, z) ∈ D(t; a) and t > T (a) with,

T (a) = max

(
0,

1

27
(3− a)3 − 1

)
.

In addition, we have

1 6 |u(x, y, z, t)| 6 3 (3.24)

0 6 |v(x, y, z, t)| 6 1

9
|α|min(Φ(a), 1)(3− a)2 (3.25)

0 6 |w(x, y, z, t)| 6 2

27

(3− a)2

(1 + t)5/3
, (3.26)

0 6 h(x, y, t) 6
1

9

(3− a)2

(1 + t)2/3
, (3.27)

for all (x, y, z) ∈ D(t; a) and t > T (a). The inequalities (3.23)-(3.27) hold on each spatial
region D(t; a) for each fixed a ∈ (−∞, 3]. Moreover, the bounds in the inequalities (3.23)-
(3.27) are achieved on D(t; a). Finally, it is straightforward to establish that, for each
fixed a ∈ (−∞, 3], the area of the cross section of D(t; a), that is |A(t; a)|, remains
constant for each t > T (a), so that

|A(t; a)| = |A(T (a); a)| ,

for all t > T (a). Thus the blow-up of Ω1, as t→∞, via (3.23), occurs in the spatial region
D(t; a), with D(t; a) being a cylindrical region (axis parallel to the y−axis) which has
finite cross-sectional area |A(T (a); a)| as t→∞. The inequalities (3.24)-(3.27) establish
that u, v, w and h remain bounded on D(t; a) as t→∞. A sketch of the structure of Ω1

for t� 1 is shown in Figure 3, where σ(t) := 3(1 + t)− (3− δ)(1 + t)2/3.

4. Linear stability of thin-layer horizontal vorticity

In this section we let (hs(x, y, t), us(x, y, t), vs(x, y, t)) be a solution of SWEP (2.7).
This solution is also an exact solution of TLEP (2.5), with zero thin-layer horizontal
vorticity. The vertical velocity field is then ws(x, y, z, t), given by,

ws = −z
(
∂us
∂x

+
∂vs
∂y

)
, (4.1)

for x, y, z in the domain occupied by the fluid at each t > 0. We now linearize the equation
for the thin-layer horizontal vorticity (2.10) about this solution to SWEP, which becomes

Ωt + usΩx + vsΩy + wsΩz = DT
s Ω , (4.2)
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2/3
(1+t)α

α

0

α

σ (t) 3(1+t)

x

Ω1

2/3
(1+t)δ(3−  )

Figure 3. A schematic of the structure of Ω1 versus x for t � 1.

for (x, y, z) ∈ Ds(t), t > 0, with Ds(t) being the domain occupied by the fluid in the base
flow to SWEP and Ds is D in (2.11) evaluated on the base flow (us, vs).

When Ds ≡ 0, then (4.2) reveals that the thin-layer horizontal vorticity is simply
convected along particle paths of the base flow (us, vs, ws) and so the thin-layer horizontal
vorticity field at any time t > 0 is simply a re-arrangement of the thin-layer horizontal
vorticity field at t = 0. Thus if Ω

∣∣
t=0

is bounded, then Ω
∣∣
t>0

is bounded for t > 0.
However, when the base flow is such that Ds 6= 0, then this may not be so. In particular,
we say that the solution of SWEP given by (hs, us, vs) is linearly unstable to perturbations
in thin-layer horizontal vorticity if the trivial solution Ω = 0 is an unstable solution of
(4.2).

4.1. The Jacobian of the horizontal velocity

The Jacobian of the horizontal velocity field evaluated on a solution of SWEP, Ds, is
also important in determining instability of Lagrangian particle paths in SWEP. Particle
paths in SWEP associated with (hs(x, y, t), us(x, y, t), vs(x, y, t)) satisfy

ẋs(x
0
s, y

0
s , t) = us(x, y, t) and ẏs(x

0
s, y

0
s , t) = vs(x, y, t) , (4.3)

where (x0s, x
0
s) ∈ R2 are coordinates for the initial data in a Lagrangian reference space.

It is Ds, the Jacobian of the horizontal velocity field (us, vs) with respect to (x, y),
that controls the linearization of the dynamical system (4.3). Hence there is a close
connection between unstable Lagrangian pathlines in SWEP and unstable thin-layer
horizontal vorticity in TLEP. Unstable pathlines are in abundance in planar flows, and
indeed are the key to mixing (e.g. Ottino 1989), and so provide a general mechanism for
generating unstable thin-layer horizontal vorticity in TLEP.

An additional point to note is that by differentiating (2.7), a governing equation is
obtained for Ds, namely the matrix Riccati equation

D

Dt
Ds + D2

s = −
[
hsxx hsxy
hsyx hsyy

]
, (4.4)

for (x, y) in the domain occupied by the fluid, and t > 0. This Riccati equation is very
similar to the matrix Riccati equation for the full Euler equations, with the Hessian of
hs replaced by the Hessian of the pressure (cf. Ohkitani 2010, and references therein). It
may be possible to determine some general results on Ds by analyzing this equation.

The linearized stability problem for the thin-layer horizontal vorticity has now been
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reduced to studying the linear problem (4.2), and we next consider the specific case when
the base flow solution to SWEP leads to the matrix Ds being dependent upon t alone.

5. The case when Ds depends only on time t

When Ds depends only upon time, the linearized thin-layer horizontal vorticity equa-
tion (4.2) can be further simplified. This case is of interest since there is a class of exact
solutions of SWEP with a corresponding Ds depending upon time t alone. These solutions
of SWEP are linear functions of x and y, with t−dependent coefficients, namely,

us(x, y, t) = a10(t) + a11(t)x+ a12(t)y

vs(x, y, t) = a20(t) + a21(t)x+ a22(t)y ,
(5.1)

with an associated free surface at z = hs(x, y, t). This form for the velocity field is
known to generate an exact solution of SWEP (cf. Ball 1965; Cushman-Roisin 1987;
Ripa 1987; Thacker 1981; Young 1986). Moreover, Ripa (1987) has shown that they are
stable solutions of SWEP.

However, it does not appear to have been considered heretofore that the class of so-
lutions (5.1) may be unstable to perturbations in the thin-layer horizontal vorticity field
in TLEP. Indeed, the fully-nonlinear unstable example studied in §3 is an exemplar of
this class of solutions.

Now, for (5.1) the matrix Ds is just

Ds(t) =

[
a11(t) a12(t)
a21(t) a22(t)

]
. (5.2)

We now write the solution to (4.2) in the form

Ω(x, y, z, t) = Q(t)F(x, y, z, t) , (5.3)

where the 2×2 matrix Q(t) is the fundamental matrix of the homogeneous linear system

Q̇ = Ds(t)
TQ , t > 0 , (5.4)

with Q(0) = I. It then follows that

Ft + usFx + vsFy + wsFz = 0 , (5.5)

for (x, y, z) in the domain occupied by the fluid in the base flow (hs, us, vs) at each
t > 0. It follows from (5.5) that F(x, y, z, t) is simply a re-arrangement of the initial
perturbation in the thin-layer horizontal vorticity, and this remains bounded for all t > 0
by the bound on the initial condition.

In particular, let D(0) ⊂ R3 be a closed, bounded, subregion of the region occupied
by the base flow at t = 0, and let D(t) ⊂ R3 be the correspondingly closed bounded
subregion of the region occupied by the base flow for t > 0, obtained by base flow
convection acting in D(0). It is readily established that the volume of D(t) is equal to
the volume of D(0) for all t > 0, that is,

|D(t)| = |D(0)| ∀ t > 0 . (5.6)

Now suppose that the initial horizontal vorticity field is bounded away from zero on D(0),
that is,

|F(x, y, z, 0)| >MD > 0 , for all (x, y, z) ∈ D(0) . (5.7)

It then follows from (5.3) that,

|Ω(x, y, z, t)| >MD‖Q(t)‖ , (5.8)
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for all (x, y, z) ∈ D(t) and t > 0, with ‖ · ‖ representing the usual matrix norm. Thus, it
follows from (5.6) and (5.8), that whenever the fundamental matrix Q(t) of (5.4) has at
least one temporally-growing entry, then any non-trivial continuous initial perturbation
in the thin-layer horizontal vorticity field will temporally grow in a closed, bounded
subregion of the region occupied by the base flow, which has a finite and constant volume
for all t > 0. In this case, the class of solutions (5.1) to SWEP generates linearly unstable
thin-layer horizontal vorticity. To investigate (5.4) further, we write,

Q(t) =
[
w(1)(t)

∣∣w(2)(t)
]
, (5.9)

where w(1)(t) and w(2)(t) are the two linearly independent solutions to the ordinary
differential equation

ẇ = Ds(t)
Tw , t > 0 , (5.10)

with w(1)(0) = (1, 0)T and w(2)(0) = (0, 1)T . We may conclude that perturbations to the
thin-layer horizontal vorticity in the class of SWEP flows (5.1) are unstable whenever
w = 0 is an unstable solution of (5.10).

An application of the above result is to the case studied in §3, where the full nonlinear
problem was solvable. The above linearized theory should predict instability of the SWEP
base flow (5.1) when

a10(t) = 1 , a11(t) =
2

3(1 + t)
, a12(t) = 0 (5.11)

and a20(t) = a21(t) = a22(t) = 0 for all t > 0. In this case, using (5.2), we obtain, on
solving (5.10)

w(1)(t) =
(
(1 + t)2/3, 0

)T
and w(2)(t) =

(
0, 1
)T
, (5.12)

in t > 0, and conclude that the base flow to SWEP given by (5.1) with (5.11) and vs = 0
is linearly unstable to perturbations in the thin-layer horizontal vorticity, in accord with
the fully nonlinear example in §3.

6. Induced instability of the shallow-water potential vorticity

In this section the conservation of PV in the shallow water equations is derived from
the viewpoint of TLEP. From this viewpoint the effect of growth of thin-layer horizontal
vorticity on the shallow water PV can be analysed. Let

P =
vx − uy

h
.

Then differentiating, and using TLEP, the governing equation for P in TLEP is

DP
Dt

= −P
h

(
Dh

Dt
+ h(ux + vy)

)
− wPz +

1

h
(Ω1wx + Ω2wy) . (6.1)

If (h, u, v) satisfy SWEP then Ω ≡ 0 and the shallow water PV is conserved: DP
Dt = 0.

In order to reduce from PV in TLEP, via (6.1), to PV in SWEP three assumptions
are required: (a) h must satisfy shallow water conservation of mass, (b) P must be
independent of z and (c) the thin-layer horizontal vorticity must vanish. On the other
hand, if the shallow water equations are perturbed, leading to growth of the thin-layer
horizontal vorticity, then it is clear from (6.1) that a source term for potential vorticity
is created, and this source term can create an instability in the PV field.



Breakdown of the shallow water equations 11

7. Concluding remarks

For a thin layer of inviscid, incompressible fluid above a rigid, horizontal boundary,
with a free surface, and under the action of gravity, the thin-layer equations (2.5) and
(2.6) are the formal limit of the Euler equations and boundary conditions as ε→ 0, where
ε = h0/L. It is shown that when the thin-layer horizontal vorticity field Ω – defined in
(2.9) – is identically zero, then it remains zero for all subsequent times t > 0. When this is
so, TLEP reduces exactly to SWEP, which are the usual shallow water equations, (2.7).
The question we have addressed here, is whether or not this reduction is stable. That is,
if we consider TLEP, when initially Ω is small, is it the case that Ω remains small for all
subsequent times t > 0? When this is so, we are justified in using SWEP as a rational
and uniform approximation to TLEP, but not otherwise. We have produced a specific
solution to TLEP which has Ω uniformly small initially and on the inlet boundary, but
subsequently Ω grows without bound and algebraically in time t as t → ∞. Thus it is
the case that there are solutions to SWEP which are unstable, particularly in Ω, when
embedded as solutions to TLEP. This situation is considered in more generic form via
a linearized theory, which provides a criterion for the occurence of this instability in
base flow solutions to SWEP. The consequences for conservation of potential vorticity in
SWEP are significant.
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