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— Abstract —

Cooker’s sloshing experiment is a prototype for studying the dy-
namic coupling between fluid sloshing and vessel motion. It involves
a container, partially filled with fluid, suspended by two cables and
constrained to remain horizontal while undergoing a pendulum-like
motion. In this paper the fully-nonlinear equations are taken as
a starting point, including a new derivation of the coupled equa-
tion for vessel motion, which is a forced nonlinear pendulum equa-
tion. The equations are then linearized and the natural frequencies
studied. The coupling leads to a highly nonlinear transcendental
characteristic equation for the frequencies. Two derivations of the
characteristic equation are given, one based on a cosine expansion
and the other based on a class of vertical eigenfunctions. These
two characteristic equations are compared with previous results in
the literature. Although the two derivations lead to dramatically
different forms for the characteristic equation, we prove that they
are equivalent. The most important observation is the discovery of
an internal 1 : 1 resonance in the fully two-dimensional finite depth
model, where symmetric fluid modes are coupled to the vessel mo-
tion. Numerical evaluation of the resonant and nonresonant modes
are presented. The implications of the resonance for the fluid dy-
namics, and for the nonlinear coupled dynamics near the resonance
are also briefly discussed.
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1 Introduction

In Cooker’s sloshing experiment [11], a rectangular vessel containing fluid is suspended
from a stationary beam by two cables which are free to rotate in a vertical plane. A
schematic of the experiment is shown in Figure 1. The rectangular vessel has length L,
height d, and unit width, and is partially filled with fluid of mean depth hy. The tank
is suspended by two rigid cables of equal length ¢, and the cables make an angle # with
the vertical. The base of the tank remains horizontal during the motion.

Figure 1: Schematic of Cooker’s experimental configuration [11].

It is an experiment in the spirit of TAYLOR [26]: it is simple, easy to construct, robust
and illuminates a fundamental question in fluid mechanics. In this case the question is the
effect of vehicle coupling on fluid sloshing. Indeed, it is one of the simplest configurations
that allows precise study of the coupled dynamics between the fluid motion and the vessel
motion. The problem of sloshing in stationary vessels is already a very difficult problem
to study both experimentally and theoretically (cf. IBRAHIM [19] and FALTINSEN &
TIMOKHA [12] and references therein). The coupled dynamics between fluid sloshing and
vessel motion brings in a new dimension and the potential for enhancing or diminishing
the sloshing motion through vehicle dynamics. The coupled problem is of great practical
interest in the transport of liquids along roads, maritime fluid transport, and industrial
applications. Hence a prototype for understanding the fundamentals of coupling is of
great interest.

Cooker developed a linear theory of the coupled problem with a shallow-water model
for the fluid. The theory showed that the coupling changed the set of natural frequencies,
and the theory showed very good agreement with experimental results. Cooker’s theory
was extended by ALEMI ARDAKANI & BRIDGES [3] to include a nonlinear shallow water
model for the fluid, but the vessel model was still linear. A numerical algorithm for the
simulation of the coupled problem was developed with careful attention taken to maintain
the overall energy conservation and energy partition between fluid and vessel.

A related problem is that of tuned liquid dampers (TLDs). IBRAHIM [19] gives a
history of the many applications of TLDs with extensive references in §10.3.1 of [19]. The
particular models of TLDs considered by IKEDA & NAKAGAWA [20] and FRANDSEN [13]
are of interest here as their linearized models are equivalent to the linearized Cooker model.
A schematic of a TLD is shown in Figure 2. A TLD consists of a vessel containing fluid,
but constrained to move in the horizontal direction only, with the vessel motion governed
by a linear spring-mass-damper model, and may include a horizontal forcing function. The
nonlinear characteristics of TLDs are very different from Cooker’s experiment, but at the
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Figure 2: Schematic of a TLD system following Figure 1 of [13].

linear level the two systems are equivalent. Neglecting damping and forcing, and taking
the fluid to be irrotational, the governing equations are exactly equivalent to the linearized
equations governing Cooker’s experiment. This equivalence is shown in §2.2. However the
nonlinear equations are very different since the vessel motion in Cooker’s experiment is
fully nonlinear, governed by a forced pendulum equation (see equation (1.1) below), and
includes vertical as well as horizontal motion.

Experiments for the case where the spring constant is zero have recently been reported
by HERCZYNSKI & WEIDMAN [18]. Spring constant zero corresponds to Cooker’s exper-
iment in the limit as the suspension length goes to infinity. These experiments are quite
difficult because there is no restoring force and so the vessel may drift in addition to
harmonic motion. Using a special low-friction cart, and carefully-controlled initial con-
ditions, the experiments showed excellent agreement with the theory. However, without
the spring force a 1:1 resonance, which is of great interest here, can not occur.

IKEDA & NAKAGAWA [20] used a modal expansion to study the nonlinear problem for
TLDs. They included one anti-symmetric fluid mode, one symmetric fluid mode and the
vessel mode, resulting in a 6— dimensional system of nonlinear ODES. Their linear analysis
is reviewed in §3. An infinite modal expansion for the linear TLD problem was first given
by FRANDSEN [13]. The linearized TLD model in [13] is exactly equivalent to the linearized
model for Cooker’s experiment (cf. §2.2). The linear model and results of FRANDSEN [13]
can be interpreted as the first reported results on the natural frequencies of a linear finite-
depth model for Cooker’s experiment. A cosine expansion is used and an infinite-product
representation for the characteristic equation is presented, and numerical simulations of
the nonlinear problem are presented. A key assumption in [13] is that symmetric modes
are neglected since they exert no horizontal force on the vessel. We extend FRANDSEN’s
analysis by giving a new explicit sum representation for the characteristic equation and
show moreover that the symmetric modes can be important when they couple to the
vessel motion at resonance.

Independently, YU [28] extended Cooker’s model to include a fully two-dimensional
model for the fluid, but restricted to linear fluid motion and linear vessel motion. Implic-
itly, an expansion in terms of “vertical eigenfunctions” [21] was used but the characteristic
equation gives the same results as [13]. A range of results on the effect of fluid depth and
mass ratio on the first mode were presented, showing a dramatic effect of finite but non-
shallow depth.

The cosine expansion has as its organizing centre the cosine-eigenfunctions in the
horizontal direction (x—direction) and the vertical eigenfunction expansion has as its
organizing centre a class of eigenfunctions in the vertical direction (y—direction). The



two representations of the solution are very different. However, we prove, by constructing
an explicit transformation, that the two representations are exactly equal. With this
transformation we are able to show that the results of FRANDSEN [13] and YU [28] are
equivalent.

In previous work (e.g. [11, 20, 13, 28, 3]) there was some mystery about a “resonance”.
Cooker noted a curious resonance, where the second mode of the coupled problem res-
onated with the natural frequency of the dry vessel, but the resonance did not satisfy
the characteristic equation. FRANDSEN [13] acknowledges that a resonance exists, but
only considers the asymptotic case of small mass ratio (where the vessel mass is much
greater than the fluid mass). YU [28] disputed the role of resonance noting that there is
no mechanism for continued energy input (see §3.5 of [28]).

In this paper the theory of Cooker’s experiment in particular, and the theory of reso-
nance in dynamic coupling in general, are extended in three directions. First, for the case
of Cooker’s experiment, a fully nonlinear model for the vessel motion is derived. It turns
out to be a forced pendulum equation, with the forcing determined by the fluid pressure
p(z,y,t) on the vessel walls

1 L h(zx,t)
f/ / (py cos @ + pysinf) dyde, (1.1)
vt Jo Jo
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where y = h(x,t) is the position of the fluid free surface in the vessel, and g is the gravita-
tional constant. Secondly, the coupled fluid-vessel equations for Cooker’s experiment are
linearized and a new derivation of the coupled characteristic equation is given. The cosine
expansion approach is compared with the vertical eigenfunction approach and shown to
be equivalent. Thirdly, we have discovered that there is a resonance, where the uncoupled
symmetric fluid mode resonates exactly with an anti-symmetric fluid mode joined with
the vessel motion. It is an internal resonance, where two natural frequencies are equal and
have linearly independent eigenvectors. In the dynamical systems literature it is called a
1 : 1 resonance, or sometimes the 1: 1 semisimple resonance (e.g. [16]). This resonance
was implicit in the shallow water analysis in [11] and here we give an explicit proof of the
existence of the resonance and extend it to the finite depth model.

COOKER |[11] showed that the natural frequencies in shallow water, for dynamic cou-

pling between the vessel motion and an anti-symmetric fluid mode, are determined by the
roots of DSW(s) = 0 where

G
DW(s) = — — Rs —tans, (1.2)
5
where s is the dimensionless natural frequency
w
gho

, (1.3)

S =

Dot~

and w is the dimensional natural frequency. The dimensionless parameters G and R
were first introduced in [11] and they are defined by

R="" and G=——, (1.4)



where m, is the mass of the dry vessel, and m; = phoL is the mass of the fluid per
unit width. The parameter v is the spring stiffness parameter due to the gravitational
restoring force,

Y= %(mf+mv). (1.5)

The characteristic function (1.2) can not have a 1 : 1 resonance since all the roots are
simple. In fact there is a missing term in (1.2) [6]. The characteristic equation should be
the product of two terms

AV (s) = PW(s) D"W(s) with P5W(s) = sin(s). (1.6)

With the additional term there is an explicit 1 : 1 resonance when both factors vanish
simultaneously. This occurs precisely when GG and R satisfy

G =s> R, with s, =mmr forany m € N. (1.7)

This observation makes explicit the resonance noted in [11]. A detailed analysis of the
1 : 1 resonance in the shallow water case is given in the technical report [6].

We show in general that the characteristic function in all cases (the shallow water
model [11, 3], the finite modal expansion [20], the cosine expansion [13], and the vertical
eigenfunction expansion [28]) is the product of two functions

A(s) = P(s) D(s) | (1.8)

where s is the dimensionless frequency (1.3) in all cases. The roots of D(s) = 0 are the
modes which couple an anti-symmetric fluid mode with the vessel mode, and the roots of
P(s) = 0 are associated with the symmetric fluid modes.

The product structure of the characteristic equation (1.8) arises because the eigenvalue
problem for the natural frequency has a block diagonal structure. An important conse-
quence of this structure is that the eigenfunctions associated with the roots of P =0 are
always linearly independent from the eigenfunctions associated with the roots of D = 0.
The product structure (1.8) has three principal solutions:

1. D(s) =0 but D'(s) # 0 and P(s) # 0: anti-symmetric fluid mode coupled to vessel
motion.

2. P(s) =0 but P'(s) # 0 and D(s) # 0: symmetric fluid mode decoupled from vessel
motion.

3. D(s) =0 and P(s) =0 but D'(s) # 0 and P’(s) # 0: internal 1 : 1 resonance with
a symmetric and anti-symmetric fluid mode coupled to the vessel motion.

The third condition is equivalent to A(s) = A’(s) = 0 which is the necessary condition
for a 1 : 1 resonance. The second class of solutions are symmetric modes which do not
generate any coupling with the vessel motion. Figure 3 shows the first two mode shapes
for the free oscillations of the fluid, and it apparent why the symmetric mode can generate
free oscillations without affecting the vessel motion. The pressure is symmetric and so
the force on the right vessel wall exactly balances that on the left.

It is important to emphasize that the resonance here is an internal resonance between
normal modes: two linearly independent eigenfunctions corresponding to the same natural
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Figure 3: Mode shapes for the (a) first anti-symmetric and (b) first symmetric free oscil-
lation modes

frequency. There is no forcing present. The theory of resonance due to external forcing
requires different methods (e.g. OCKENDON ET AL. [23, 24|, Chapter 2 of [19]). Adding
external forcing to an internal resonance would greatly enhance the range of response but
external forcing is not considered in this paper. The internal resonances are of interest for
two reasons: at the linear level it is a mechanism for excitation of symmetric fluid mode
coupling to the vessel motion, and at the nonlinear level a 1 : 1 resonance can give rise to
much more dramatic fluid-vessel motion. A 1: 1 resonance in a different physical setting
(Faraday experiment) is analyzed by [15, 16] and it gives some idea of the dramatic effect
of the 1: 1 resonance in the weakly nonlinear problem. The effect of nonlinearity on the
resonance is not considered in this paper (some comments on nonlinearity are in §8).

There are other potential internal resonances as well. For example the roots of either
P(s) = 0 or D(s) = 0 may have modes with integer ratio, the most common of which is
the 1 : 2 resonance. For example in the case of free oscillations of the sloshing problem —
with surface tension — it is shown by VANDEN-BROECK [27] that a 1 : 2 resonance occurs.
A generalization of that 1 : 2 resonance may also occur in modified form in the coupled
problem if surface tension is added to the fluid. There is also the potential for rational
ratios of any order: that is solutions of the form

A(ms) = A(ns) =0 for some natural numbers (m,n) .

These higher-order resonances are not considered in this paper.

In this paper we extend all three classes of solutions identified above to the finite-
depth model. When the depth is not small, the characteristic equation is much more
complicated and will also depend on a third parameter: the depth ratio
ho
T
In this paper a new derivation of the coupled characteristic equation for finite depth
is presented, using both the cosine expansion as in [13] and the vertical eigenfunction
expansion as in [21, 28]. We find that the generalization of the shallow water resonance
condition (1.7) is

5= (1.9)

G = 3
= Rsy + s ng_l ) tanh($k,L). (1.10)
with
h (2
Sm = M M, for any m € N (1.11)
2mmo



The various parameters in this expression are defined in §5.2. In the finite depth case,
the range of physically-realizable values of parameters for the 1 : 1 resonance is greatly
extended. Both (1.7) and (1.10) are straight lines in the (R,G)—plane for each fixed
m, but the slope for (1.7) is quite large whereas the slope decreases with increasing
and becomes horizontal, and the G—intercept decreases, in the limit 6 — oco. Graphs
illustrating the d—dependence of the resonance lines are presented in §7.4.

An outline of the paper is as follows. In §2 the nonlinear equations are summarized,
with the details of the derivation of the vessel equation give in Appendix A. The linearized
equations and the equations for the characteristic frequencies are derived in §2.1 to §2.3.
The remainder of the paper is then the study of the time-harmonic solutions in order to
determine the natural frequencies of the coupled problem. Section 4 presents the details of
the cosine expansion approach to determining the characteristic equation and §5 presents
the details using the vertical eigenfunction expansion. The explicit proof that the two
representations are equivalent is given in §6.

Numerical for the non-resonant characteristic equation are presented in §7 and for the
resonant case in §7.4. In the concluding remarks §8 some speculation on the implications
of the 1:1 resonance for the nonlinear problem is given.

2 Governing equations — finite depth model

The nonlinear equations for the fluid motion in Cooker’s sloshing experiment are the Euler

equations relative to a moving frame. Detailed derivations are given in [2] and [8]. The

main new result is that the vessel motion is governed by the nonlinear pendulum equation

forced by the fluid motion (1.1), and a derivation of that equation in given in Appendix A.

The final form nonlinear equations with an irrotational velocity field are recorded here.
With a potential, ¢, for the velocity field

u=¢,—q and v=0¢, — (2, (2.1)
where ¢(t) = ¢sin(0(t)) and ¢o(t) = —Lcos(0(t)), mass conservation gives
A= pp+ by =0, 0<y<h(z,t), 0<z<L. (2.2)

Using the momentum equations to derive a Bernoulli equation, and then evaluating at
the free surface gives the dynamic free surface boundary condition

G+ 5 (07 +0)) — Q10s — doy + gh+ 5(d + @) =0, at y=h(zt).  (2.3)
The kinematic free surface boundary condition is
ht + (¢x - Q1)hx = be - QQ at y = h(l‘,t) . (24)

The boundary conditions at the vessel walls are
¢y=¢ at y=0 and ¢,=¢ at z=0,L. (2.5)

For the vessel equation, with (%, %>) defined in Appendix A,
L rh
G =ov—mgir, with o= [ [ po.dyda,
o Jo
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and
L ph
Gy =09 —mysGe, with o9 = / / po, dydz .
0o Jo

Substitution into the vessel equation (A-2) gives

. 1 1
my0 + %(mv +my)sinf = —7 coso; — 7 sin 0 . (2.6)

In summary, the governing equations for the nonlinear coupled problem with irro-
tational velocity field are A¢ = 0 in the interior, the free surface boundary conditions
(2.3)-(2.4), the bottom and side wall boundary conditions (2.5), and the vehicle equation
(2.6).

2.1 Linear dynamically-coupled equations

The starting point for the linear analysis of the coupled problem, is obtained by linearizing
the boundary conditions (2.3)-(2.4), (2.5), and the vehicle equation (2.6).
To leading order, the vessel velocity coordinates are approximated by ¢; ~ 00 and
G2 ~ 0. The governing equation for ¢ in the linear approximation is still Laplace’s
equation
Gre + Py =0, 0<y<hy, 0<ax<L, (2.7)

and the bottom and sidewall boundary conditions simplify to
o, = 0 at y=0,
by = 0 at z=0andz =1L, (2.8)
¢y = h and ¢ +gh=0 = ou+god,=0, aty=he.

The linearized vessel equation is
d L ho .
7 {/ / po, dyda + myl0| + g(m, +my)0 = 0. (2.9)
0o Jo

2.2 Comparison with Frandsen’s TLD model

To show that the linear equations (2.7)-(2.8) are equivalent to Frandsen’s linearized TLD
model, let '
o(x,y,t) =0z + P(z,y,t),

and define X (t) = ¢0(t). Then substitution into (2.7)-(2.8) gives a boundary value
problem for ®(z,y,t),

¢, + 0, =0, 0<y<hy, 0<z<L, (2.10)
with boundary conditions

o, = 0 at y=0
¢, = 0 at x=0,L, (2.11)
9P, = —Dy— X at y=hg.

8



The linearized vessel equation is

=0
: (2.12)
z=L

. L ho ho
(my +mp) X +vX = —/ / p®,, dydx = / p®, dy
o Jo 0

with v defined in (1.5). These equations for ¢ are precisely equations (2.6) for ¢ on page
312 of [13], with the appropriate change of notation, and setting the damping coefficient
¢ and the forcing function F(t) to zero. In summary, the linear equations for the TLD
model in [13] and [20] are exactly equivalent to the linearized equations for Cooker’s
sloshing experiment.

2.3 Natural frequencies of the linear coupled problem

To determine the natural frequencies of the linearized coupled problem, express ¢, h and
0 as time-periodic functions with frequency w,

¢ =¢coswt, h=hsnwt, 6=0snwt. (2.13)
Then .
Yy=ho
h="Y , (2.14)
9

and a and 0 satisfy the boundary value problem
Guw+ 0y =0, O<y<hy, O<z<L, (2.15)
with boundary conditions
by = 0 at y=0,
oy = L0 at y=ho, (2.16)
¢ = twbh at x=0,L,

and vessel equation

N L ho -
(g(mv +my) mv&d) i / / o, dyda (2.17)
0 0

w

The coupled equations (2.15)-(2.17) form an eigenvalue problem for the natural frequency
w of the coupled problem. The equation (2.15) with the boundary conditions (2.16) is
well studied in the case where #(t) is given — the forced problem (see §2.2.2 of [21] and
§2.6 of [19]). In the coupled problem, an additional equation (2.17) has to be solved for
the vessel motion.

3 Method 1: finite modal expansion

The first approach proposed for the coupled linear finite depth problem (2.7)-(2.9) was a
finite modal expansion by IKEDA & NAKAGAWA [20]. They expressed the fluid motion
in terms of the first anti-symmetric and first symmetric fluid mode, coupled to the vessel

9



motion (see equation (15) in [20]). Their motivation was to study the nonlinear problem
by modelling it with 3 coupled nonlinear ODEs. However, for the purposes of this paper
we review the linear version of their modal expansion as it provides a simplified model
of the full infinite expansion considered in §4, and has the three principal solutions in
simplified form.

Consider the three term approximation

cosh(ay)
cosh(aghy)

cosh(f1y)
cosh(f1ho)

where X (t) = €0(t), ap = /L and 5y = 2w /L. Substitution into the boundary condi-
tions (2.8) and vessel equation (2.9) gives the three coupled equations

oz, y,t) = X(t) (v — S L) +ao(t) cos(apx) + by (t) cos(frz), (3.1)

61 -+ gﬂl tanh(ﬁlho) b1 = 0

.. 4 ...
o + gog tanh(agho) ag = L_ong (3.2)
B} 9
(my +mp) X +vX = i tanh(aghg) ao -
Qo

With appropriate change of notation, these are the linear parts of equations (18a)-(18e)
in [20]. The second and third equations are equivalent to equations (20)-(21) in [20]. The
notation (ay,as,x1) there corresponds to (ag, by, X) here. The first equation in (3.2) is
dropped from the linear analysis in [20]. All three modes are retained here.

Look for time-periodic solutions of frequency w,

X(t) = X sin(wt), ao(t) = ap cos(wt) and  by(t) = by cos(wt).

Substitution into (3.2) reduces the ODEs to a homogeneous matrix equation

—w? + g tanh(B1ho) 0 0 bAl 0
0 —w? + gag tanh(aphg) %ﬁoﬁ al|l =10

0 P
0 3—’;w tanh(aphy) —(my +mpw? +v]| \X 0

(3.3)
Vanishing of the determinant of the coefficient matrix then gives the characteristic equa-
tion A™N(w) =0 with

A () = PN (@)DN(w), (3.4)
where
P™(w) = —w? + gB tanh(B1hy), (3.5)
and
D™(w) = ( — w? + gag tanh(aghg)) (— (my + my)w® + v) — %cf tanh(aghg) . (3.6)
0

The decoupling of the b; mode is reflected in the block diagonal structure of the coefficient
matrix in (3.3). As a consequence, the eigenvector associated with the b; mode is linearly
independent from any of the eigenvectors of the other modes. A fact which is important
for the internal 1: 1 resonance.

10



The conditions for the first class of solutions are
D™N(w)=0 and P™(w)#0.

This class of solutions is the one considered in [20]: see equation (23) in [20] where the two
roots of DN (w) = 0 are labelled ¢ and ¢3. These modes consist of an anti-symmetric
fluid mode coupled to the vessel motion.

The conditions for the second class of solutions are

PNw)=0 and D™(w)#0.
With s as in (1.3), the condition P™N(w) = 0 gives

22 tanh(279)

270

Since D™ (w) # 0, it follows that @y = X = 0 but by # 0 and so the mode is a symmetric
fluid motion uncoupled from the vehicle motion.

3.1 1:1 resonance in the finite mode case

Since the third class of solutions requires both DN = PN = ( to vanish it puts a
constraint on parameter space. For comparison with other methods in this paper, first
put the factors in (3.4) into dimensionless form using (1.3) and (1.4),

2 7T2 tal’lh(ﬁlho)

PN(s) = —s*+
(s) Bihg
- (3.7)
0
DN(s) = [— s+ (3a0L)’To|[G — (1 + R)s*| — (aoL)2S4’
with h(aoho)
tanh(aghg
=— 3.8
)= e (3.5)
Now substitute the solution of P™N(s) =0,
tanh(ﬁlho) (3 9)
So =T ———F, .
’ Bihg
into D'N(s) = 0 giving, after some rearrangement,
G 870 Sg
— — Rsg =59+ . 3.10
So %0 %0 (O./()L)z (%OéoL)QTO - 83 ( )

This condition is the analogue of the condition (1.7) for the shallow water model and

the analogue of the condition (1.10) for the finite-depth model. It gives a §—dependent

straight line in the (R, G)—plane by noting that aghg = Lagd in dimensionless form.
To compare with (1.7) take the limit § — 0 giving Ty = 1 and sy = 7 and so

2
G:ﬂ2R+W2—%, (3.11)

11



which has the same slope as the line in (1.7) but with a slightly lower value of the
G—intercept.

For finite ¢, it is not obvious that (3.10) is related to the exact finite depth condition
(1.10). However, it is related, and the relationship between the two is easier to see once
the infinite cosine expansion is introduced and is therefore considered in §4.

The resonance (3.10) is not considered in [20]. However, they consider two other forms
of resonance. The first resonance considered in [20] is a resonance between the dry vessel
(\/k/Q17 in the notation there) and the first anti-symmetric mode (see discussion in the
beginning of §3 on page 31 of [20]). They also bring in a second form of resonance by
introducing a forcing function, and then a resonance can be introduced by choosing the
forcing frequency near one of the system frequencies. The principal aim in [20] is to study
the effect of nonlinearity.

4 Method 2: an infinite cosine expansion

In the absence of the coupling equation, the linear problem (2.15)-(2.16) is equivalent to
the problem of forced oscillations with 6(t) specified. This problem was first considered
by GRAHAM & RODRIGUEZ [17] (see also §2.6.1 of [19] and §5.2 of [12]). Their strategy
for solving (2.15)-(2.16) is to transform ¢ so that the inhomogeneous boundary conditions
at © = 0, L are moved to y = hy. Then a cosine expansion in the z—direction can be
used. Let R

oz, y) = lwd (x—3L)+ D(z,y). (4.1)

The function Cf(x, y) then satisfies Laplace’s equation and the boundary conditions

2 3
q)y:w_q)+€§w_ (x— %L) .y =hg, (4.2)
g g
o, =0, y=0, (4.3)
®,=0, z=0,L. (4.4)

The inhomogeneous term at y = hy has the following cosine expansion

x——— g Pn, cos(a,x)

This form of the boundary condition suggests that the following form for the ® solution

ii =2tz (45)

2
an

hl»h

n=0

~ = cosh(ﬂny cosh( any
P = by, WL nt) 4.
(z,9) ; cosh(Buho) cos(fx) + Z " cosh{aho) cos(a, ) (4.6)

where (3, = 2n7m/L. The first term gives the homogeneous solution and the second term

gives the particular solution associated with the f term in (4.2). The coefficients a,, and
b, are determined by substitution into the boundary condition at y = hy, giving

W2
(Bn tanh(8,ho) — ?) b, =0, (4.7)

12



and

2 ~ 4 2
(an tanh(a,ho) — %)an = —(wb L_a?l% ) (4.8)

This completes the solution of the forced problem. Now substitute the general form for
¢(z,y) in (4.1) into the coupling equation for 0,

L rho
(my +my) (2 — &U)H = / / p®, dydz,
w 0o Jo

g n - G,
= — 0 =—-2 E — tanh(a,hy) . 4.
(my, + my) (w éw) pn:0 o anh (o, hg) (4.9)

n

or

~

The three equations (4.7)-(4.9) are three homogeneous equations for the unknowns @,
ag,ai, ..., and by, by, - -- . The first equation (4.7) is homogeneous, diagonal and decouples
from the other equations. Its characteristic function is

[e.o]

P(w) =[] <w2 — gﬂmtanh(ﬁmho)) . (4.10)

m=1

The complete characteristic function is
A (w) = P®(w)D**®(w) . (4.11)

Now derive the characteristic function D** for the coupled modes. It is this charac-
teristic equation which was first studied in [13]. Set b, = 0 for all n and assume 6 # 0.
Then (4.8) can be solved for a,, and substituted into (4.6)

~ ~40? K (ay, tanh (o ho) — w?/g) ™' cosh(ayy)
P = — . 4.12
(z,y) lwb Iy ; oz cosh(cv, o) cos(a, 1) (4.12)

Substitution into the coupling equation (4.9) then gives D%(w) = 0 with

g 80m; w? o= 1 tanh(a,ho)
D (w) = [(m, +m¢)| = —bw | — — — . 4.13
W)= | 2 (w ) L?hgy g ; @ (o, tanh(anho) — %) (4.13)

This characteristic equation is implicit in [13]. The strategy there is to use an infinite
determinant expansion resulting in a product formula (see equation (4.1) in [13]).

Here the explicit form (4.13) will be used. Exact solutions are still impossible, but
the explicit form is useful for numerical computation of the frequencies. First transform
(4.13) to dimensionless form. Let

Y= (2n+1)r and T, = tanh(a,hg) = tanh(y,0).

Then, using the Cooker parameters (1.4), dividing by wmL, noting that

40 G

(1.
¢ 1(1+R)
L
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replacing w with s in (1.3), and multiplying by s,

T,
D%(s) = G (1+R)s—3233z =

- 233 (T — 2057 (4.14)

where for brevity the same symbol, D, is used for the dimensionless characteristic
function (4.14). The complete characteristic function in dimensionless form is the product

A®S(s) = PeS(s) DS(s) | (4.15)

with P°»®(s) the dimensionless form of (4.10),

P3(s) = ﬁ (52 — m%ZM) : (4.16)

2mmd
m=1
Setting D°®(s) = 0 with P°®(s) # 0 gives the non-resonant coupling between the vessel
motion and an anti-symmetric fluid mode. Setting P(s) = 0 with D®(s) # 0 gives a
symmetric fluid mode, decoupled from the vessel motion.

4.1 1:1 resonance in the cosine formulation

The 1 : 1 resonance in the cosine formulation is obtained by setting the two factors
in (4.15) to zero simultaneously. Setting the first factor to zero amounts to choosing a
symmetric fluid mode; that is, for some m € N, b,, # 0 and b, = 0 for all n # m, and

wﬁl = g0, tanh(B,,ho) -

In dimensionless form,
tanh(2mmd)

- tanmammo). 41
S mi Sy (4.17)

The expression for a, in (4.8) then becomes

a, = —4—wh—= : (4.18)

where

- (2n + 1)7r ? tanh(anho) i
2 O./nho

Substitution into (4.9) and scaling gives

L%—R—l 83 Z anho‘"ho}g—o. (4.19)
Since we are interested in coupled modes, divide by . Then there is a line in the
(R,G)—plane where a resonance between the vessel motion and the symmetric mode
exists,

8 4 =, tanh((2n + 1)70)
5om — (2n+ 1’7 omyn

G=s R+s +- (4.20)
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This expression is the analogue of (1.10). It is not obvious that they are equivalent. Using
an explicit transformation it is proved in §6 that (4.20) and (1.10) are equivalent.

To show that the resonance line (4.20) reduces to the resonance line in the Ikeda-
Nakagawa formulation (3.10) truncate the sum to the first term in (4.20) and take s, = so,
where sg is defined in (3.9),

G soRt = s §Sgtanh(7r6)
S0 d 7 mogo

Jo
(%7?270 —s3)’

3
= 50+ 855
T

which agrees with (3.10), noting that agL = 7.

We will show in §6 that the representation of the eigenfunctions is equivalent in the
cosine and vertical eigenfunction expansions and therefore the eigenfunctions in the res-
onance case will be discussed in §5.

5 Method 3: vertical eigenfunction expansion

Another approach to computing the natural frequencies is to use a vertical eigenfunction
expansion. This strategy is suggested in §2.1 of LINTON & MCIVER [21], and is used there
to solve the forced problem (see §2.2.2 in [21]); that is, (2.15)-(2.16) with 6(¢) considered
as given. The boundary value problem (2.15)-(2.16) is solved using the eigenfunction
expansion,

S, y) =D An(@)¥u(y), (5.1)
n=0
where the vertical eigenfunctions satisfy the eigenvalue problem

_1/}yy - /\¢7 0<y<h0)

) (5.2)
Y, = 0 aty=0 and wy:%gb at y = hg .
For given w this boundary value problem has an infinite number of eigenvalues \,,
and the associated eigenfunctions form a complete set. The first eigenvalue is negative,
Ao = —k2 and the rest are positive, A\, = k2, n = 1,2,.... The first eigenfunction
Yo(y) is associated with the wave mode and the eigenfunctions ¥, (y), n = 1,2,..., are
associated with the evanescent modes. The other properties of the eigenfunctions needed
here are recorded in Appendix B.
Laplace’s equation and the properties of the eigenfunctions give

Ap(z) = Aél) cos ko + A((]Q) sin kox

(1) (2) (5:3)
Ap(x) = Ap’coshk,x+ Ay’ sinhk,x, n=12,....

The coefficients are determined by imposing the boundary conditions at * =0 and z = L
AL (0) = AL (L) =Llwhc,, n=01,---, (5.4)

where the expansion 1 = 3> ¢,1),,(y) is used. The coefficients (using (B-9) in Appendix
B) are
1 Sinh(koho)

. iSln(knho)
Ny koho

d ¢, =
and c N, koho

Co
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The critical equations in the set (5.4) are the ones for n = 0 since they contain
information associated with the resonance. The condition (5.4) with n =0 gives

1 ~
AE)Z) = —lwlcy .
ko

The condition at z = L and n = 0 requires
—ZkOAél) sin %/{:OL coS %kOL = 2€w§co(sin2 %kOL) )

At this point there is a temptation to impose the assumption

sin ($koL) #0. (5.5)
If this assumption is imposed then
A = =22 tan (S ko) £ (5.6)
0

In this case the wave mode (n = 0) is intrinsically coupled to the evanescent modes
(n > 1). However, this assumption rules out important resonant solutions (cf. §5.2).

Hence the strategy at this point is to leave both parameters A(()l) and 0 free with the
relation

ko sin(koL) A + €wBeo(1 — coskoL) =0, (5.7)
and Ag(x) is left in the general form
1 -
Ag(x) = A(()l) cos ko + k—ﬁw@co sin kox . (5.8)
0

Solving the systems (5.4) for n > 1 is much simpler as there are no singularities.
Solving these equations for the coefficients AV and AP results in

Ap(x) = Ew@\Z—" (sinh(k,z) — tanh(3k,L) cosh(k,z)) . (5.9)

n

In this case there is no additional assumption like (5.5) required, since
sinh (1k,L) #0 forall n>1. (5.10)

The evanescent modes (5.9) are proportional to 0 and so are intrinsically coupled to the
vessel motion. R R

This completes the construction of the function ¢(z,y) satisfying A¢ = 0 and the
three boundary conditions (2.16). This solution agrees with the expression for the poten-
tial in (2.29) in §2.2.2 of [21].

-~ A~

5.1 Coupling between 6 and ¢

Substituting the expansion for gg into the coupling equation (2.17) gives

~ 14 >
<g(mv +my) m, m) 0 = peoho AW (cos(koL) — 1) + pho—wct sin(ko L)
w 0

= (5.11)
+2phglwt Z k—" tanh(k, L) .
n=1 "
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The two equations (5.7) and (5.11) are two homogeneous equations for the two unknowns

ALY 0
RGN

2
— mv&u) + 2pholw Z ]z—” tanh(1k,L). (5.13)
n=1 "

Aél) and 0. They can be expressed in matrix form

kosin(koL) (1 — cos(koL))lwcy
pcoho(cos(koL) — 1) S)

) ho&ucg sin(koL) — (M

= pk_o o

The homogeneous equation (5.12) has a solution if and only if the determinant of the
coefficient matrix vanishes. This condition provides the characteristic equation AY"*(w) =
0 where

ko sin(koL 1 — cos(koL))lwe
A () = dot osin(koL) ( (koL))lweq |
pCOho(COS(k0L> — 1) ©

or
A" = o sin(koL)O + pholwci(1 — cos(koL))?.
After some algebra, this expression can be written in the form
Avert(w) = 2k sin (%kOL) cos( % k‘oL) DVert(w) :
with 3
Dvert(w) - _ (M — mU€w> —+ ka—()&ucg tan(%k‘oL)
w 0
2 (5.14)
+2pholw Y o tanh(1k,L).
n=1""

The factor kg cos (%kDL) is never zero. This property follows by noting that ky = 0 is not
a solution of the characteristic equation (B-3) for w # 0 and the product cos (§koL) DY
is strictly positive when %k:oL is an odd multiple of %ﬂ'. Hence the appropriate charac-
teristic equation is AY"*(w) = 0 where

A (w) = P (w) D" (w), with P""(w):=sin(3koL). (5.15)

The characteristic function is a bit easier to interpret if it is made dimensionless.
Introduce the scaling (1.4) into (5.14) and divide by —2m¢L~'\/gho,

vert G 26(2) 1 - 26% 1
D¥'(s)=(— —Rs | — SkO_L tan(gkoL) — s Z i tanh( sk, L), (5.16)
n=1""

where for brevity the same symbol D' is used.

The factor DY in (5.16) agrees with the result derived by YU [28]. The derivation in
[28] implicitly uses a vertical eigenfunction expansion. By translating the notation in [28§]
to the notation here it can be shown that the expression for the characteristic equation in
[28] agrees with D¥'*. However, the characteristic equation in [28] is missing the factor
sin( 2 ko(s)L) in (5.15).

17



The complete dimensionless characteristic equation is A¥'*(s) = 0 where
AV (s) = P (s) D" (s), with PY*(s) :=sin (1 ko(s)L), (5.17)

with DV*(s) defined in (5.16). It is remarkable that the two representations of the
characteristic equation (5.16) and (4.14) are exactly the same. A proof of this equivalence
is given in §6.

5.2 1:1 resonance in the vertical eigenfunction representation

The 1 : 1 resonance occurs when the two factors in the product representation (5.17)
vanish simultaneously,

P*'(s)=0 and D""(s)=0. (5.18)
Vanishing of the first factor gives

koL = 2mm for any integer m . (5.19)

Using (B-3), the value of s is

tanh (2mmd)

) 2
2mmd (5.20)

Sm = M
This sequence of values of s is associated with symmetric sloshing modes.

With the condition (5.19) the equation (5.7) is exactly satisfied. The second equation
(5.11) is equivalent to the the vanishing of the second factor in (5.18). With 6 # 0, the

required condition is
o0 2

G .
—=Rs+ > 7 tanh(Lk,L) . (5.21)

n=1 217
In this equation s is fixed by the choice of m in (5.20) and this choice in turn determines
the values of k,, for n > 1 via
122 tan(dk, L) _ _4m2ﬂ2tanh (2mmo) '
" ok, L 2mmd

Hence for fixed m in (5.19) and fixed § the condition (5.21) gives a line in the (R, G)
plane along which there is a resonance. Calculations for a range of § values are shown in
Figure 4. In all cases the resonance curve is a straight line. In the limit of shallow water
it has a steep slope and passes through the origin. As ¢ increases the slope decreases and
the G—intercept increases, to the point where the line is almost horizontal in the limit of
deep water. As ¢ ranges from shallow water to deep water, a dense region of the (R, Q)
parameter space is covered.

5.3 The eigenfunctions at resonance

At resonance, there are two linearly independent eigenfunctions parameterized by A(()l)

and 0. The eigenfunctions for 0(t) and ¢(x,y,t) for each m are
0,,(t) = f'sin wmt),

(t) ’ (wWmt) (5.22)

qu(l’, Y, t) = ¢(1’7 y) COS(Wmt) )
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Figure 4: Plot of the (a) the first (m = 1) and (b) the second (m = 2) resonance curve
in the (G, R)—plane, for 6 = 0.01, 0.1, 0.5, 1.0 and 5.0 numbered 1 — 5 respectively.

with w,, = %\/ghgsm, and $($,y) = > A (@)Y, (y). Now separate g/g into two parts,

one proportional to A((]l) and the other proportional to /9\,

o(a,y) = ALV Y (2, y) + (b o3 (z, y)

with N
& (x,y) = cos(kox)tho(y), (5.23)
and
E;G“(x,y) = k—osm kox) oly) + Z Z” (sinh(k,2) — tanh(3 k,L) cosh(k,z)) ¢, (y) .
0 n
(5.24)

At the 1:1 resonance, the two parameters A(()l) and 0 are arbitrary. The solutions with
§ = 0 are the free oscillations with the vessel stationary and no contribution from the
evanescent modes. The solutions with Aél) = 0 are quite different in that the fluid motion
and vessel motion are coupled. There is then a continuum of mixed modes obtained by
taking arbitrary values of A[()l) and 0 (determined by the choice of initial data).

6 Proof of equivalence of the two representations

The strategy for showing equivalence between the cosine expansion (4.6) and the vertical
eigenfunction expansion (5.1) is to expand the y—dependence of (4.6) in terms of the
vertical eigenfunctions and expand the x—dependent functions A, (z) in (5.1) in terms
of a cosine series, and then compare the two. This strategy for the proof was suggested
to the authors by MCIVER [22].

For simplicity restrict to non-resonant modes. The extension to resonant modes follows
the same lines.
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The cosine expansion with b, = 0 can be written in the form

o(z,y) = &ué\z Pm fm(y) cos(amx), (6.1)
m=0
with % h( )
B cosh(ay,y
fm(y) =1+ (Km — K) cosh(a,hg)’ (6.2)
where

K:=2 and K, := au, tanh(a,,hy)
)

and p,, = —4/La? are the coefficients of the cosine expansion of x—L/2 in (4.5). Expand
fm(y) in terms of the vertical eigenfunctions

fm(y) =1+ (K }i K) COSh Oémy iF m)w (63)

cosh(ay,ho)
n=

The coefficients F\™ are determined using the formulae (B-9)

(m) az, (m) oy,
FO = Cp Og%n — k‘% and Fn = Cnm . (64)

Similarly expand the functions Ag(x) in (5.8) (using (5.6)) and A, (z) in (5.9). For Ay(z),
Ap(z) = Ew@é—z (sin(kox) — tan (4 koL) cos(koz)) Z U, €OS( Q) (6.5)

with
2

oL,
2 _k2'

U = (wBcopm (6.6)

Similarly, using (5.9),

Ay(x) = Ewglz—n(sinh(knx) — tanh (4 k,L) cosh(k,z) Z U™ cos(amz) (6.7)
m=0

n

with
2

UM = w0, pm (6.8)

_Tm
k2 +a2,
To show equivalence between the two representations start with the cosine expansion.

Substitute the vertical eigenfunction expansion for f,,(y), reverse the order of summation,
and then substitute the cosine expansion of the sequence of functions A,(x). The result
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is the vertical eigenfunction representation. Carrying out the above steps:

~ B 17 cosh(any)
o(x,y) = fw@ r— 5L —I—Z " cosh Oénh[)> cos(a,x)

K cosh(a,y)
= (wb an cos(a,x) + lwb an <Kn — K) cosh(aho) cos(a,x)

= &ué’anfn cos(a, )

= (wb Z Z o F (")¢m ) cos(a,x)

n=0 m=0
co 00

= w0 puFuly) cos(anz)

mOnO

- ewezpm "oy cos(amx>+éw522pmﬂsmwn<y> cos(aa)

nlmO
(o9

= &u@codzo Z = cos(ozmm + lwb Z Z Pmnis " o 5 Un(y) cos(amr)

m=0 n=1 m=0 m

= Yo(y) Z U, cOS(0, T) + Z Z UT(:)l/)n(y) cos(apm)

= Ao(@)to(y) + Y Au(@)tu(y)

which is the representation of gg in terms of vertical eigenfunction expansion. This com-
pletes the transformation from the cosine expansion to the vertical eigenfunction expan-
sion.

A similar argument can show that characteristic functions D®*(s) and —D¥'*(s) are
equivalent (the form of DY(s) in (5.14) must be multiplied by —1 in order to show
equivalence). The main aspect of the proof is to show that the horizontal momentum of
the fluid M™* is equivalent for each expansion. The detailed proof of this is given in the
technical report [7], and the main result quoted here is

1 P KK
MBOTZ — [ 1——— ) 252 " = 2—" tan (1 koL 2 ”t h(ik,L
[nr 2 (5 o) | =l on (v (1)

The equivalence of the two characteristic functions (4.13) and (5.14) is now clear by
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writing

D — 8€mfw3 =1 tanh o, ho

L2hgog d Oz_ian tanh ap,hg — w? /g’

1 . ( KK,
_gwmf|:1_ho_LZ2O(_%<—Kn—K):|’

n=0

c? = 2
(m, + mf)% — mylw | — lwmy [2]{:0—(2 tan (%kOL) + ; 2l<:n_nL tanh (%knL)} ,

c 1
L tanh (§knL) ,

2 [ee]
g
(my, + mf)a —mylw) — TRl an (%koL) = Z&umf;

7 Numerical evaluation of the characteristic equation

The roots of P(s) = 0 in all cases can be determined analytically. Finding the roots of
D(s) = 0 for the full cosine expansion or the vertical eigenfunction expansion requires
numerical solution. The simplest way to get approximate values for the real roots D(s) is
to plot them as functions of s. The approximate values can then be refined if necessary
using Newton’s method.

Either D and D' can be used to study the roots since they are equivalent. Even
though they are equivalent there are some contexts where one or the other is better suited
for analysis. For example the vertical eigenfunction expansion converges faster than the
cosine expansion. When looking at weakly nonlinear theory (see comments in Concluding
Remarks section below) the vertical eigenfunction expansion may be simpler. Hence it is of
value to have a numerical algorithm for finding the roots of both D = 0 and D¥'* = 0.
Finding the roots of D = 0 is much easier than finding the roots of D" = 0 and so
we will present the results for that case.

The principal difficulty in the search for roots of DY'* = () is computing the wavenum-
bers ko(s) and k,(s), for n = 1,2,.... The obvious numerical strategy is to solve the
transcendental equation C(A) = 0 in (B-1). Firstly, this approach requires an accurate
initial guess for each wavenumber for the iterative method to converge, and secondly one
must be certain that no wavenumbers are missed.

Other approximate and numerical methods for computing these wavenumbers have
been developed. For example, CHAMBERLAIN & PORTER [10] compute approximations
for the wavenumbers by constructing an integral equation for the eigenfunctions and then
solving the integral equation both analytically and numerically. We use a similar strategy,
except we approximate the differential equation (5.2) directly. Since the domain is finite,
Chebyshev polynomial expansions can be used to approximate the ,(y) eigenfunctions
for each n with high accuracy.

7.1 Spectral solution of the vertical eigenfunctions

Fix G, R and 6. Then at each value of s, the values of ky(s) and k,,(s) need to
be determined for m = 1,.., M, where M is a large enough integer such that D is
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independent of M. The strategy here is to expand the eigenfunctions v, (y) in a series of
Chebyshev polynomials (cf. BoyD [9]), converting (5.2) to a matrix eigenvalue problem.
Then a global eigenvalue solver gives all the eigenvalues up to the degree of the Chebyshev
polynomial. In this approach the y—domain is transformed from y € [0, ho| to ¥ € [—1, 1]
and we express ¢ as

$) = YA T),

where T;(y) are Chebyshev polynomials, and ; are undetermined parameters. Evaluating
this expression at the No — 1 collocation points

i
yi=cos | — |, 2=1,...,No—1,

Y ( Nc) l C
and at the two boundaries y = —1 and y = 1, gives N¢ + 1 algebraic equations for the
eigenvalues A, reducing (5.2) to the matrix eigenvalue problem

AU = \T, ¥ e RNH

The eigenvalues of A are then found via a standard QR-algorithm. We used the standard
QR eigenvalue solver from LAPACK. The main benefit of this approach is that all the
required eigenvalues, and hence the values of kg, k1, ... are calculated in one go, without
missing any. By choosing N, large enough, the first M modes can be calculated to the
desired accuracy.

The results in this paper use M = 10 evanescent modes, and so using N¢ = 50 in the
spectral collocation approach above is sufficient to calculate the values of kg, ki, ... to 12
significant figures. These computed values were checked against values calculated via an
iterative solution of (B-1).

7.2 Plotting D"*'(s) as a function of s

Fix the resonance number at m = 1. D" is plotted in Figure 5 as a function of s. Once
a root of D¥**(s) = 0 is found, the values of kg, k,... at that point can then be used to
plot other features such as the surface elevation h(x,t). The function DY is infinite at
the singularities which occur at the values

s = W tanh((2n + 1)md) . (7.1)
We have also plotted D°*(s) as a function of s and the graphs are identical to the graphs
in Figure 5.

In the shallow water limit, Figure 5(a), the roots of the dispersion relation are evenly
spaced, as there is negligible contribution from the evanescent modes in this limit. While
for a finite depth fluid in Figure 5(b), the spacing between the roots of the characteristic
function reduces as s increases due to the presence of evanescent modes.

7.3 Effect of coupling on free surface mode shapes

The free surface mode shapes for the first anti-symmetric and first symmetric free oscil-
lation modes are just simple cosine functions (cf. Figure 3).
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Figure 5: Characteristic function DY*(s) plotted as a function of s with G = 5 and
R =1 for (a) § =0.01 and (b) § =0.1.

When the fluid motion is coupled to the vessel motion the free surface can be much
more complicated since the full Fourier series or full eigenfunction expansion comes into
play. In this section some mode shapes for the free surface when it is fully coupled are
presented. The free surface mode shapes are defined in (2.14). Using the representation
in terms of the vertical eigenfunctions the non-dimensional free surface mode shape is

[e.9]

ha/L) . (1 + R
he ;) (/L) (ho) -

In the fully coupled non-resonant case,
Ao(z/L) = ek— (sin(Lkoz/L) — tan(1koL) cos(Lkoz/L))
oL
A (x/L) = 5;

n

7 (sinh(Lk,x/L) — tanh(1k, L) cosh(Lk,z/L)) , n>1.

Examples are shown in Figure 6. Although a very large number of terms is included the
effect of the higher modes on the free surface shape is minor. The free surface shape for
the coupled modes is still very close to a cosine function.

7.4 Numerics of the resonant characteristic equation

Consider the full characteristic function A" with both products included. Then a 1: 1
resonance occurs when AVt and its first derivative vanish

d—A"ert(s) =0.

Avert(s) — ds

In Figure 7 the function AV is plotted as a function of s. The first zero is simple, and
the second zero is double since the curve is tangent to the horizontal axis. This second
root is an example of the 1 : 1 resonance. The parameter values are given in the caption.
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Figure 6: A plot of the free surface when G =5, R = 0.5, § = 0.5, and 6 = 7/20 for (a)
the 1st root of the characteristic function D¥*(s) and (b) the second root of DY(s).
The solid line is the profile including evanescent modes and he dashed line is just the wave
mode and the dotted line is y = 1.

8 Concluding remarks

To get some idea of the implications of the 1 : 1 resonance for the nonlinear problem we
can appeal to other problems with a 1 : 1 resonance. The physical problem closest to the
current model is the 1 : 1 resonance in the Faraday experiment, when the vessel has a
square or nearly-square horizontal cross-section. This configuration has been studied by
FENG & SETHNA [15]. The 1 : 1 resonance is caused there by the square cross section,
so physically it is very different from the mechanism for 1 : 1 resonance here. However,
mathematically it is very similar. To simplify notation, let

A= Agl) and B:=0.

Then the strategy for analyzing the weakly nonlinear problem is to introduce a slow time
parameter
T =¢%,

where ¢ is a measure of the amplitude of motion. Then let A and B depend on the
slow time variable: A(7) and B(7). Then substitution into the nonlinear equations and
carrying out an amplitude expansion leads to amplitude equations at third order of the
form

iAT = alA + GQ‘APA + a3|B|2A + CL4BQA

iB, = biB+by|B|?B+ a3|A|?B + a4A*B,

with real parameters a;,b;. At resonance a; = by, and so b; — a; is a measure of the
unfolding from resonance. According to results in [15] and [16] an analysis of solutions of
this normal form shows that the weakly nonlinear solutions near resonance can be expected
to include pure modes, mixed modes, secondary branches, connecting heteroclinic orbits,
and heteroclinic cycles. Since A is associated with fluid motion and B is associated with
vessel motion, a heteroclinic orbit is a mechanism for energy transfer between fluid and
vessel.

(8.1)
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Figure 7: Plot of the characteristic function A¥(s) for G = 4.376, R = 0.5 and 6 = 0.1.
The double root of the dispersion relation at s = s,, = 2.958 denotes a 1 : 1 resonance.

Another example, which has similarities to the Cooker experiment, and shows how
weakly nonlinear analysis near a resonance causes energy transfer between modes, is the
problem of a suspended elastic beam (STRUBLE & HEINBOCKEL [25]). In this model an
elastic beam is suspended by two rigid cables free to rotate in the plane. The elastic beam
is the analogue of the fluid in Cooker’s experiment. The governing equations are quite
different (for example the linearized equations completely decouple in [25]). However,
there is a resonance, and their weakly nonlinear analysis shows that there are heteroclinic
connections between solutions which are pathways to energy transfer.

Transfer of energy from non-symmetric to symmetric modes can also arise without
resonance when forcing and nonlinearity are added. An example in the context of sloshing
is the analysis of FENG [14], where a modal expansion with one symmetric and one
nonsymmetric mode under the influence of forcing is studied. This mechanism, and its
analysis, is however very different from the internal resonance mechanism without forcing.

Electronic version of the technical reports [6, 7, 8] can be downloaded at the website

[1].
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— Appendix —

A Derivation of the vessel equation

In this appendix the form of the vessel equation (1.1) is confirmed. First note that the
Euler equations for the fluid relative to the moving frame are [8]

Du 10p . Dv 10p .

— == d —+-——=—¢g— A-1
Dt Ty = 0 and prt oo =g~ (A-1)
where ¢;(t) = £sin(0(t)) and qo(t) = —fcos(A(t)). Substitute the Euler equations into
(1.1), and use Reynold’s transport theorem, to eliminate the pressure giving

1

(mv + mf)ﬁ

L h L h
€ = / / pudydr and % = / / pv dydz . (A-3)
o Jo o Jo

The equation (1.1) can be confirmed by using Newton’s law with constraints. Here we will
derive the equivalent version (A-2) using a variational principle (cf. Chapter 7 of ALEMI
ARDAKANTI [2]).

The kinetic energy of the system is

0+ % sinf) = — (%1 cosf + G, sin 0) : (A-2)

where

1 (L b ' _ 1 . :
KE = 5/ / pllu+¢)* + (v + ¢2)?] dydx+§mv(qf+q§),
0o Jo

and the potential energy is

L rh
PE = / / p9(y — d + qo) dydz + // ,Ovesselg(y —d+ q2) dady.
0 0 vessel

Let ¥ = KE — PE and express ¢; and ¢y in terms of 6, and use the identities

L h
my = / / pdydr and m, = / / p el dady .
0 0 vessel

The Euler-Lagrange equation for € is then
d (0L 0L d :
pr (%) %0 T & ((mv +m )20 + () cos O + (6, siné’)

- (—‘KJ sin 00 + 6yl cos 00 — (m, + my)glsin 9)
= (my +mp)0%0 + 6 L cos O + Colsin @ + (my, + mys)glsind .

Dividing by (m, + my)¢* then confirms the form of the vessel equation (A-2).

This Lagrangian is quite satisfactory for deriving the equations for the vessel motion,
but it does not give the correct equation for the fluid motion. The Lagrangian can be
modified by adding constraints to give the fluid equations (see [2]), but a variational
principal for the fluid motion will not be needed in this paper.
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B The vertical eigenfunctions

The eigenvalue problem for the vertical eigenfunctions is recorded in (5.2) with A the
eigenvalue parameter, and w?/g is treated as a given real parameter. Here the properties
of the eigenvalues and eigenfunctions are recorded following [21].

This eigenvalue problem can be solved analytically, but the characteristic equation,
C(A\) =0, for the eigenvalue A is transcendental, where

w2h0

C(A) = cos (ho\/X) + (ho\/X) sin (ho\/X) . (B-1)

9

The function C()\) is real for all A, C(0) > 0 and C(\) — —oo0 as A — —oo. There is
exactly one negative eigenvalue

Ao = _ktz) ) (B_2)
where kg is the unique root of

2p,
koho tanh (koho) — “’g 0 —o, (B-3)

for any fixed w?hg/g. The mode kq is associated with the wave mode.
In addition there is a countable number of positive eigenvalues

M=k, n=12..., (B-4)
(see Figure 2.1 in [21]) with the sequence k, determined by

w2h0
knho tan(knho) + = 0, n = 1, 2, cee (B—S)
g

The modes k,, for n > 1 are associated with evanescent modes.
The associated eigenfunctions are

1 1
Uoly) = ~—cosh(koy) and  v(y) = ~—cos(kuy), n=12,...,  (B6)
N() Nn
with
1 sinh 2kghg 1 sin 2k, ho
0 \/2< T kol ) an \/2< ok ho ) (B-7)

The coefficients Ny and N,, are chosen so that the eigenfunctions have unit norm,

1 [ho
i Vo(y)Pdy=1, n=0,1,2,.... (B-8)
0

The set {¢o(y), ¥1(y), ...} is complete on the interval [0, ho|. Hence any square-integrable
function g(y) on this interval can be expanded in a series

9) =D gntbn(y), with g, = hio /0 0g(y) Un(y) dy. (B-9)
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