MATM106 Theory of Water Waves Semester 1, Autumn 2010

— Guide to solutions for the assessed coursework —

Q1. Consider the KdV equation in the form
Ut + Uy + Uggy = 0.
The conservation laws for mass and momentum are
Mi+Q, = 0, M=u, Q= %u2+um
L+S, = 0, I= %u2, S = —%u%%—uuw—kéug.

Show that there also exists a conservation law of the form

0 0
&(xM—tI) + %(Flux) =0.

Determine an expression for Flux.
S1. Differentiating
9 (xM —tl) = aM,—tl,—1
= —2Q, +1tS, — 1
= —(2Q)s +Q+ (t5), — I
= —(zQ—-t9).,+Q—1I.
But @ — I = u,, and so

%(zM —tl) = —(2Q — t9), + Uys ,

giving

Flux = 2Q — tS — u, .

Q2. Consider the nonlinear wave equation
Utt + Upz + Usaze + U+ av’ + bu’ =0, (1)
for the scalar-valued function u(z,t).
e Find the dispersion for the linear problem (a =b=0),

o Let u(x,t) =U(0), with 0 = kx —wt. Reduce the PDE (1) to an ODE for U(f), with w
and k appearing in the equation as coeflicients.

Take k > 0 to be fixed, and expand U(#) and w in a Taylor series in a small parameter ¢,
UO) = eU()+e2Us(0) +3U3(0) + - - -
w = w0+5w1+52w2+~-.

By requiring U(f) to be a 2r— periodic function of 6,



solve for wy(k),

show that wy =0,

determine w- as a function of ¢ and b, and

determine the particular solution for Us(#), when

Ui(0) = Ael? + Ae71
where A is a complex constant of order unity.

S2. The dispersion relation for the linear problem is obtained by substituting a normal
mode solution u = Ae'**=“Y into the linear equation

0 = Uy + Ugg + Uggae + 1 = (—w? — k2 + k* 1) Aelthe—wt)
giving
wi=1-—k+k.
Let u(z,t) = U(0) with 0§ = kx — wt. Substitution into (1) gives
0 = Ust + Uy + Uggew + U + at® + bu® = W2U" + E2U" + E*U™ + U + aU? + bU?.

Take k£ > 0 to be fixed and expand U(f) and w in a Taylor series in a small parameter
87
U) = eUi(8) +eUs(0) 4+ 3Us(0) + - -

w = w0+6w1+€2w2+--- .
Substitution into the ODE governing U,
(u)o + ewq + 62WQ + - )2<€U1” + €2U2” + €3U3H + - )
FR2 (U, + 20y + U5 4 - - -)
—l—k4(€U1”” + 82U2//// + 83U3W 4. ) + €U1 + 82U2 + €3U3 + ..
+a(eUy + Uy + Uz + -+ > + b(eU;y + e*Us + 30Uz + - -+ )?
Define
L‘b: (wg +k2)¢//+k4¢m/+¢.

Then the equations proportional to €, for n = 1,2,3 are

LUl - 0
LU2 = —2&]0&)1(]1// - aU12
LU3 = —W%Ul/l - ZwOwIUQ” - 2CUOW2U1” - QCLUIUQ - bUf .

Using the proposed form for U;(6),
0=LU = (—wj - kK +k'+ 1)U,
showing that wy(k) is determined by the dispersion relation of the linear problem

wolk) = £vV1— k2 + KA. 2)



Now consider the equation for U, with U; substituted into the right-hand side
LU, = 2wowi (Ae? + Ae ) — q( A% 4 2| A2 + A" 2). (3)

There is a homogeneous solution U} and a particular solution U}. The homogeneous
solution has the same form as Uq,

h i0 A .—if
U2 :Azlel +A21€ ! s

with Ag; an arbitrary complex constant.
The particular solution has the form

Ug = AQQQ@iG + A_Qgﬁe_ie + A23|A|2 + A2462w + A_24€_2w .
Substitution then gives

L(Agzeeie) = 21(&)8 + k’2 — 2]{4)1422619 = 2w0w1Aei9 s

and so Agy = —im wowi A _ wow1 A '
wi + k% — 2k4 (1 — k%)
Similarly,
Aoz = —2a,
and aA? a A2
Ay = _¢

1 —4wd —4R2 416k 3 (1 —4kY)
However, the requirement that U;(6) be 2m—periodic in 6 forces Ag to be zero, which
can only be satisfied if w; = 0. In summary the general solution for Usy(6) is

a 1

A2p210 ZZ ~2i0y
sa g AT

U2 = Agleie + A_glefig — 261/|A‘2 +
With As; an arbitrary complex constant.
Now we are in a position to solve the equation for Us. Substituting for U; and U,
into the equation for Uz gives

LU; = 2wowy(Ae? + Ae )
—Qa(Aeia + Zefia) (A21ei9 + A_Qle—ie . 2a|A|2 + gm(AzeQie + Z2ezie)>
—b(A3%H 4 3| A2 Ae + 3| A]FAe7 + de_?’ie) :
To determine w, only the terms on the right-hand side proportional to e need to be
retained, giving

2 1 .
LU; = (Qwowg + 4a®| A]* - §a2m|A|2 — 3b|A|2) Ael ...

The term on the right-hand side generates a particular solution for Uz that is not
2m—periodic. Setting it to zero then gives an expression for wo

1 2 1
= — | —4a®+ Za®—— +3b | |A 4
wo 2w0< ¢+ 3a (1—4k4)+ )] | (4)



Hence, the frequency has the form
w:w0—|—wQ52+... ,
with wy one of the roots of (2) and w, given in (4).

Q3. Consider the NLS equation in the form
1A + Ape + |APA=0,

for the complex-value function A(z,¢). Show that there exists a solitary wave solution of the
form

A(z,t) = e“t Ay sech(Bx),
with w, B and Ag real parameters. Find expressions for B and Ay as functions of w.

S3. Starting with the assumed form for A(z,t),
At = wA
A, = —DBtanh(Bz)A
A,e = B?A—2B%sech’(Bz) A
|A|? = AZsech®(Bz).
Substituting into the NLS equation,

0 = iA+ A+ |APPA
= —wA+ B?A —2B%sech®(Bx)A + Alsech?(Br) A
= (B?—w)A+ (A2 —2B?) sech?(Bz)A.

Hence there exists a solution of NLS of the form proposed if
B=+yw and A)=+V2w,

with the additional requirement that w > 0. There are four solutions depending on the
sign choices

AL (z,t) = V2wsech(£v/wz) and AZ(z,t) = —V2wsech(+y/wr),

but they are related by AL(z,t) = —AL(x,t), and the two sign choices for the argument
are obtained by reversing the sign of x:

Af(z,t) = AZ(—x,1).

Q4. A weakly nonlinear dispersive wave is described by the equation
Ut + Ugy + Ugprr T U = EUS . (5)
Introduce variables X =ex, T = et and 6 where

0, =k(X,T) and 6, =-w(X,T) = kr+wx=0.

4



Seek a solution of (5) in the form
u=ug(0, X, T)+eu1(0,X,T)+--- as e—0.

Write ug = A(X,T)e? + c.c. and obtain the equation for A(X,T) at first order which ensures
that u; is periodic in 6.
Using the dispersion relation of the linearised problem, simplify the solvability condition in
order to show that )
Ar + o/ (k) Ax — %AMP ~ Ly (R)A. (6)

From (6) derive the following form of conservation of wave action for (5),

0

0
87 (|A’2) + (97 (Cg A|2) =0.

S4. With new variables X, T and 6, the derivatives transform to

9 :ka—+€a— and 9 = —wa——l—ea—.
ox 06 0X ot 06 or
Hence
Uy = wugy — cwrug — 2ewugr + 2upy
Upe = Kk2upp + ckxug + 2ckugyx + 2uxx
Upzee = K uggos + 4ek>uggex + 6ek?kxugos + O(€?).

Substitute into the governing equation,
(w2 + k?)ugp + k*ugoge + u — cu?
—5(wTU9 + 2wugr — kxug — Qkugx) (7)
+e(4kPugox + 6k kxuggy) + O(e2) = 0.
Now expand u in a perturbation series in ¢,
(0, X,T,¢) = up(0, X, T) +cu (0, X,T) + O(?) .

Substitute into (7) and then equate terms proportional to like powers of ¢ to zero. The
equation proportional to €V is

L'LLO = O,
where o -
(2 Y 4vY
L:=(w+k )802 +k 504 +1.
At first order in ¢,
6”0 82U0 8u0 82u0
Ly, = —wp——0 —2 k 2k
U “To0 T *“agar "X a0 T asax
84U0 63U0
4k3 Ehky——r —ud.
AR Sgmax TN Rx g U

The solution for ug is a normal mode solution

ug(0, X, T) = A(X,T)e" + c.c.,

5



where A(X,T) is to be determined. Lug = 0 then gives
0=Luy = (—w? — k> + k' + 1) A’ + c.c..
Hence the dispersion relation is
w=1-k+k.
Substituting wug into the right-hand side of the uw; equation
—Luy = " (—iwrA — 2iwAr + iky A + 2ikAx — 4ik* Ax — 6ik°kx A)+c.c.—(Ae+A4e?)? .

In order for u; to be a 2wr—periodic function of #, we require the term proportional to
e’ to be zero

—iwpA — 2iwAr + ikx A + 2ikAx — 4ik°Ax — 6ik’kx A — 3|APA = 0. (8)
This equation can be simplified using the dispersion relation
2w’ (k) = —2k +4k* and 2ww”(k) + 20w = —2 + 12k*.
Hence (8) simplifies to
wr A+ 2wAr + 2w (k) Ax + (ww” + W' )kx A — 3i|AI?PA = 0. (9)
Now use the property
wx+kr=0 = kr+dJ(k)kx=0,

and so
wr + u/w’k:X = wr + u/(—k:T) =Wy —WwWr = 0.

Hence (9) simplies to
2WAT + 20w (k) Ax + wwkx A — 3i|APA = 0.
Dividing by 2w then gives the required form
3
Ap + W/ (k) Ay = 2—1|A|2A — 1ukyA. (10)
w

To determine conservation of wave action multiply (10) by A,
ZAT + w'(k)ZAX = 23—1|A|4 — %w”kx|A|2 .
w
The complex conjugate of this equation is
AZT + w/(k?)AZX = —23—1|A|4 — %w”k‘x|A|2 .
w
Adding these two equations
EAT + AZT + w’(k)(ZAX + AZX) = —u)”(k))k})dA‘Q s
or
D 1AP 1 (6) 2| AP + o (kx| AP = 0
oT X . '
The second and third terms combine to give
0 0
—(|AI? -
o1 1) + 55 (

which is the required form of the conservation of wave action.

Cg|A|2) = 07



