L L] ]
[ 1] . I==
[ L]
L

=E_ uk
5 _EE

SpaGBOL.: Spatial-Graph-Based Orientated Localisation
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Cross-View Geo-Localisation SpaGBOL Graph-Based Representation

CVGL - the task of identifying the geographic location of an
oround-level Image by matching it to a corresponding geo-

To leverage graph representa-
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referenced satellite image. - . ons for LVGL, we introduce W
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Graph networks are based on city road networks,
simplified to nodes at junctions:
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3. Process the walk with the
GNN to obtain refined,
low-dimensional
embeddings.
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= Nodes represent junctions; edges are
connecting roads.

Training employs a triplet loss:
the streetview walk as
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This Is a challenging task due to significant variation in image fea- | | anchgr, s CO”@.S?O”O"”E% 4 CNN Feature Walk Subgraph GNN Node

tures across viewpoints. To enhance the Similar'ty of representa- = Fve Panoramas per node Capture Varying satellite walk as positive, and Sample Graph Extraction Construction Embedding .
L L L - seasons, lighting, and weather for enhanced 1 random satellite walk as

ions from corr.espond{ng mages, dataseﬁ.mC.Ude pawepl >dMpPIES learnin . Figure 4. SpaGBOL Network: 2-branch CVGL network with no weight sharing

olobally. Technigues with varying panoramic Fields-of-View (FOV) & negative.

have been developed to balance feasibility and performance.

Evaluation - Top-K Recall Accuracy

Depth-First Graph Walk Sampling Bearing Vector Matching (BVM)

360° 180°
Graph networks emulate vehicle movement via depth-first sam- Orientations to neighbouring nodes are calculated and matched at = SpaGBOL achieves state-of-the-art Model Top-1 Top-5 Top-10 Top-1% Top-1 Top-5 Top-10 Top-1%
dling, generating walks of configurable lengths. Longer walks im- query time to improve localisation. Road positions in panoramas performance with spatially strong node | 2L TR [1] 11.23 31.2/7 42.50 4952 594 18.32 2853 35.23
Drove precision but raise computational complexity. At inference, are quantised into binary encoding for cross-view bearing match- embeddings, improving Top-1 Recall by GeoDTR+ [2] 17.49 40.27 52.01 5941 906 2546 3567 43.33
the database stores all reference walk embeddings. ing. y 11%. SAIG-D [3] 25.6551.44 6229 6822 1512 35.55 45.63 53.10
| 5 1620 58° 30° 141° | | SampledGeo [4] 50.80 74.22 79.96 82.32 3/.52 64.52 7/1.92 76.39
: T * With BVM, performance rises by 2 SpaGBOL ~ 56.48 77.47 83.85 87.24 40.88 63.79 72.88 78.28
010101010] rtherzo%, SpaGBOL+B  64.01 86.54 92.09 94.64 52.01 82.20 89.47 93.62
Adding a compass boosts this by 50% SpaGBOL+YB 76.153 95.21 9/7.96 938.98 66.82 92.69 96.38 9/.50
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Figure 1. Previous CVGL Data Configurations - Sparse & Sequential Querélsim]aag}[;:oad B:Sraergelzggd Retriev_al Ground T_rUthS Table 1. Recall accuracies where edge-aligned streetview FOV 6 € {360°, 180°}
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Figure 3. Calculating and estimating neighbour bearing — quantising into a

binary encoding. Figure 5. Impact of varying No. Panoramas, Walk length, and BVM granularity.

Figure 2. Depth-first walk across the City of London with length 3.
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