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Abstract—In this paper, an algorithm is presented for estimating scene flow, which is a richer, 3D analogue of Optical Flow.
The approach operates orders of magnitude faster than alternative techniques, and is well suited to further performance gains
through parallelized implementation. The algorithm employs multiple hypothesis to deal with motion ambiguities, rather than
the traditional smoothness constraints, removing oversmoothing errors and providing significant performance improvements on
benchmark data, over the previous state of the art.

The approach is flexible, and capable of operating with any combination of appearance and/or depth sensors, in any setup,
simultaneously estimating the structure and motion if necessary. Additionally, the algorithm propagates information over time to
resolve ambiguities, rather than performing an isolated estimation at each frame, as in contemporary approaches.

Approaches to smoothing the motion field without sacrificing the benefits of multiple hypotheses are explored, and a probabilistic
approach to Occlusion estimation is demonstrated, leading to 10% and 15% improved performance respectively.

Finally, a data driven tracking approach is described, and used to estimate the 3D trajectories of hands during sign language,
without the need to model complex appearance variations at each viewpoint.

Index Terms—Scene Flow, Scene Particles, Motion Estimation, 3D, 3D Motion, Particle, Particle Filter, Optical Flow, Hand
Tracking, Sign Language, Tracking, Occlusion Estimation, Probabilistic Occlusion, Occlusion, Bilateral Filter, 3D Tracking, Motion
Segmentation
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1 INTRODUCTION

PTICAL flow is commonly used in many ap-
Oplications, and defines the dense motion field
of points within an image. Scene flow extends this,
incorporating the 3D structure of a scene, as well
as it’s three dimensional motion field (which can be
projected onto the image plane to obtain the optical
flow) as shown in figure 1. Estimating Scene flow
is a challenging task, due to the ambiguity inher-
ent in the observations. In this paper, an approach
to scene flow estimation is proposed, which solves
these ambiguities by propagating multiple hypotheses
through time, and allowing future observations to
resolve them.

Estimating the motion field and structure provides
a high level understanding of the scene, and can be
valuable for a number of tasks such as segmentation
[1], tracking [2], gesture recognition [3] and robot
navigation [4]. The earliest approaches to estimat-
ing 3D scene motion was in the field of structure
from motion. Such techniques tended to focus on
monocular systems, and relied on matching sparse
features between frames [5], [6], [/]. However, such
approaches were often limited to rigidly-deforming
scenes. Vedula et al. introduced scene flow estimation
[8], [9], [10], using multiple viewpoints, to allow dense
motion estimation in a freely deformable scene. More
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Fig. 1: An estimated 3D motion field, from a sequence
of a person performing a kicking action. Motion vec-
tors move from the red to purple vertices.

recently researchers have begun applying scene flow
estimation techniques to depth sensors, known as
“Range Flow” [11], [12], [13], [14]. The techniques pro-
posed in this paper are applicable to both multi-view
scene flow estimation, and combined appearance &
depth sensor estimation.

Most current approaches to scene flow estimation
are based on the optimization of an energy function,
generally an extension of the optical flow constraint
equation, which favors intensity matches between
viewpoints and frames [15], [16]. However, the aper-
ture problem, well documented in optical flow estima-
tion research, also occurs when estimating scene flow.
The most common approach to solving this ambiguity
is to introduce another constraint, as a regularization
term in the energy function, favoring smoothness
of the motion field [17], [18], [19]. However, this
regularization produces over-smoothing artifacts at
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discontinuities.

In [20] a preliminary version of the Scene Particles
algorithm was presented, operating on RGB-D image
sensors (specifically Microsoft Kinect ™). In this pa-
per the approach is extended to a general framework,
capable of using any combination of appearance and
depth sensors in any setup. Additionally, methods
for incorporating probabilistic occlusion awareness,
and artifactless motion field smoothing are discussed.
Finally we provide a more comprehensive analysis
of the algorithms properties, including robustness to
noise, propagation of information and sparsity.

The paper is organized as follows. Initially an
overview of current scene flow estimation techniques
is provided in section 2. Next, a probabilistic formal-
ization of scene flow estimation with any collection
of input sensors is presented in section 3. This is
then related to the discrete, particle based, approach,
during section 4. Sparsity issues are discussed in
section 4.2, and approaches to occlusion awareness
and motion smoothing are presented in sections 4.3
and 4.4 respectively. Section 6.1 compares the accuracy
of the algorithm to other contemporary approaches, in
both multimodal and appearance only settings. The
performance on longer sequences and the benefits of
information propagation are discussed in section 6.2,
and the various smoothing schemes are explored
quantitatively in section 6.3. The performance of the
algorithm in relation to sampling sparsity and sensor
noise is explored in sections 6.4 and 6.5 respectively.
Section 7 presents an example application, using the
Scene Particle algorithm to calculate hand trajectories
in 3D during sign language. Finally conclusions are
drawn in section 8.

2 RELATED WORK

As mentioned, many previous techniques for esti-
mating scene flow have focused on optimization ap-
proaches, incorporating smoothness constraints on
both the structure and motion. However, some au-
thors [21], [22], [23] avoid this, by tracking only
a sparse number of feature points, relating to the
vertices of a known mesh. The dense structure and
motion of the scene can then be interpolated along the
mesh. In these approaches there is no smoothing over
object boundaries, as discontinuities are inherently
modeled. However, an initialization is required to
compute the mesh topology, and motions leading
to topology changes can generally not be handled.
Devernay et al. take this a step further [24] and
estimate a sparse scene flow only at the tracked surfels
(originally proposed by Carceroni and Kutulakos [25])
without fitting a mesh. This removes the need for
initialization but provides a very sparse estimate.
Alternatively, a number of techniques have been
proposed for employing standard, optimization
based, estimation, while mitigating the oversmooth-
ing effects. One of the simplest [15], [16], relies on

reducing the weighting of the regularization term,
based on local image gradients. This is intended to
reduce smoothing at object boundaries, but can lead
to poor performance in highly textured regions.

Another approach, employed by Zhang et al. [26]
(among others [27], [28]), is to remove the smoothness
term from the optimization, and instead to define the
data matching term to incorporate a neighborhood
around each pixel. Such approaches are useful, as the
region of oversmoothing at discontinuities is limited
by the neighborhood size. A related approach is pre-
sented in [29] employing image segmentation, and
estimating consistent motions within each segment,
while not enforcing smoothness between segments.
Matching segments in this manner assumes that the
surface normal is roughly constant between views and
between frames, implying the cameras are in a near
parallel setup, and the scene exhibits little rotational
motion. These assumptions about the camera setup
are later loosened in [30], [31] by fitting the parameters
of a motion model to each segment. Assuming the
segmentation correctly finds discontinuities, this ap-
proach has the potential to eliminate over-smoothing
artifacts altogether, however if segments become too
small (as in highly textured regions), they may not
contain enough information to be unambiguous.

The techniques most closely related to the Scene
Particle algorithm, are those based on voxel coloriza-
tion. This was initially developed by Vedula et al.[9],
[10], and focuses on the brute force analysis of pos-
sible motions. Due to the inherent complexity, such
approaches often explore a coarsely quantized space
in order to remain tractable, resulting in a loss of
fidelity. Ruttle et al.[32] reduced the complexity of
the approach by introducing a number of additional
heuristic constraints. In contrast, the Scene Particle
algorithm operates in the original continuous space,
using a collection of discrete samples.

More recently Basha et al.[33] developed a highly
scalable, voxel based approach, where structure se-
lection is deferred, until motion has been estimated.
This bears some similarities to the ability of the Scene
Particle algorithms to avoid making a hard decision
as to the single “best” motion estimate (although
no method is provided for utilizing this information
during future estimates). The Scene Particle algorithm
achieves this by maintaining all hypothesis, with asso-
ciated probabilities, between frames. Ambiguities can
then be resolved via the accumulation of observations,
rather than by relying on smoothness assumptions to
select the single smoothest hypothesis at each frame.

3 PROBABILISTIC SCENE FLOW

For a given scene, there is a 3 dimensional set of
possible structure points. A particular location within
this continuous space is referred to with the vector
r = {z,y,z}. In addition, at every possible r, there
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is also a continuous 3 dimensional space of possible
motions. The vector v refers to one possible velocity
from this space (v = {vy,vy,v,}). The goal of scene
flow estimation, is to extract the most probable set
of structure points r and corresponding motions v,
given a set of input observations i. To this end, the
6 dimensional Scene Probability distribution p(r, v|i)
is estimated, the peaks of which provide an estimate
of the structure and motion field. The resulting es-
timate is not restricted to a single peak per optical
ray, instead providing a multi-hypothesis estimate for
every pixel. Note that “observations”, in this paper,
refer to the set of images obtained from a number
of synchronized appearance and/or depth sensors, in
a known but unrestricted configuration. In this work,
we do not consider the case where the configuration of
the sensors changes over time, however the technique
directly extends to this situation as long as calibration
information is available.

The Scene Probability distribution p(r,vl|i) at any
frame (i.e. for a particular set of observations), is
estimated as follows.

p(r,vli) oc p(r,v)p(iJr,v) 1)

The prior probability p(r,v) is obtained by
propagating the posterior distribution from the
previous frame, using a constant velocity motion
model. By modifying this transition model, velocities
may be defined either in meters per frame, or (if
the framerate is known) in meters per second. The
likelihood p(i|r,v) is defined by the product of 2
terms based on appearance pa(ilr,v) and depth
pa(ilr,v), assuming independence between the two
modalities.

Appearance Sensors

When the observations include the outputs A; s
of M appearance sensors (RGB or greyscale), the
probability of a structure point at a given r and
v can be estimated using the brightness constancy
assumption, which states that the color of a point
remains the same over time, and when viewed from
any direction. If we assume the true color of a point
is the average of the colors observed in each image
(referred to as EW defined in equation 2), then the
squared error (divergence from brightness constancy)
is equivalent to the variance of the projected color
across all sensors at both the previous and current
frame (A'"! and A’ respectively). Using this cost
function, a likelihood can be obtained as in equation 3,
where II,,(r) is the projection function for camera
m (returning the 2D pixel location vector), r* is the
current structure estimate and r*~! is determined by
r — v (not by re-using the previous r estimate). This
means the likelihood depends only on the current r
and v values (i.e. it is memoryless). Also note that
the employed cost function has a tighter peak and
heavier tail (controlled by the parameter e,), than the

traditional Gaussian model of measurement noise.
These characteristics have previously been found
to more accurately reflect the statistics of motion
estimation tasks [34]. In this paper e, is set to 1,
however training data could in principle be used to
learn a more representative value.

_y A7 ( ( ) @
T=t—1m=1
pa(ilr,v) = !
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Depth Sensors

When depth information is present, the task is sim-
plified, as most ambiguity in r is removed, and depth
sensors can contribute to the likelihood calculation.
Given observations D, j, from a collection of L depth
sensors, the likelihood of a true structural point at
r’ should fit well with the back-projections of all
depth sensors. Similarly r'~! should match the back-
projection of the previous depth observations. To
quantify this, the average square distance between the
position r, and each sensors back-projection, is calcu-
lated as in equation 5, where ¥, is the projection func-
tion for depth sensor I, and ¥’; is the corresponding
back-projection function. This back-projection takes
the pixel position and depth value (defined as the 3
dimensional vector T), obtained from the sensor, and
returns the 3D vector r of the corresponding structure
point.

r) ={¥(xr7), D] (¥;(r7))} 4
1
pa(ilr, v) = o - 06
1+ eq4 Z Z(Wl(rg)L_r )
T=t—1 =1

Note that the e, and e4 parameters may be modified
to control the relative contribution of the appearance
and depth information. Also note that if either M or
L are zero (only one type of sensor is present) the
relevant term is reduced to 1, and p(ir,v) depends
entirely on the remaining sensor modality (assuming
that the sum of an empty set is defined as zero). Thus
the approach is generalizable to any combination of
inputs.

4 SCENE PARTICLES

Evaluating p(r, v|i) densely across even a quantized
6D space is intractable without a severe loss of fidelity.
This is due to the large number of samples required.
As an example, even a simple setup using only 2
cameras of 640 by 480 resolution, leads to millions
of possible structure points, each with an equivalent
number of possible velocities. Instead, a discrete sub-
set of weighted samples (termed “Scene Particles”)
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is maintained. Similar to particle filtering approaches
[35], [36], [37], this allows us to approximate a contin-
uous probabilistic system, while remaining computa-
tionally feasible.

Each of the N Scene Particles (Pg.. ) is comprised
of a 3D spatial location and 3D velocity (i.e. a pair of
r and v such that P,, € R® = {r,,, v, }). Additionally,
each Scene Particle and has a weight w,,, obtained by
analyzing p(i|r,v) at the Scene Particle.

(6)

As new observations are obtained, the Scene Parti-
cles from the previous frame are propagated using a
constant velocity motion model. This provides a sam-
pled approximation of the prior probability p(r,v),
allowing the principled propagation of information
between frames. This is frequently absent in scene
flow estimation, due to long processing times which
place greater emphasis on single frame accuracy. The
density of Scene Particles from the prior, combined
with reweighting by the likelihood, leads to the ap-
proximation of the posterior. The system is initialized
at the first frame with a randomly generated, uni-
formly weighted, Scene Particle cloud (i.e. a uniform
prior).

As in particle filtering systems, a resampling
scheme is employed to concentrate hypotheses into
promising regions of the probability distribution. The
residual resampling scheme [38] is employed, where a
new Scene Particle population ®**! is sampled from
the previous population ©F, with the probability of
choosing Scene Particle P, equal to w,.

When observations from depth sensors are present,
an additional preprocessing stage is performed on the
Scene Particles, to represent the reduction in spatial
ambiguity. The projections of each Scene Particle P,
are calculated in all depth sensors D ;. The subset
of sensors with a valid depth estimate at the projected
location is extracted, and one is randomly selected, to
provide a new spatial location r for P,. In the case
where some sensors observe structure which is oc-
cluded in other sensors, the random selection process
ensures the resulting particle population reflects the
proportions of visibility.

Wp = p(i|rnavn) = pa(ilrnavn)pd(ﬂrnvvn)

4.1 Iterative Estimation

As each new set of observations i is obtained, the
likelihood p(ir,v) is iteratively estimated over s
scales ig.. s, from coarse to fine [31], [39], [40]. This
aids Scene Particles in avoiding small local maxima
from incorrect correspondences. After each scale it-
eration, resampling of the population is performed,
with Gaussian diffusion. To further aid convergence,
an additional iterative estimation is performed at each
scale. For each iteration of this inner loop, the level of
Gaussian diffusion is halved. This allows particles to
begin with a more exploratory behavior, and then to
transition to a more precise convergence.

4.2 Overconvergence

In standard particle filtering algorithms, each hypoth-
esis relates to a complete solution to the task. How-
ever, in the Scene Particle algorithm we wish to obtain
a large collection of high probability samples. This
mismatch leads to problems over time, as it is well
known that repeated iterations will eventually cause
particle filters to converge to a single mode [41]. To
reduce this effect, the resampling scheme is modified
using a technique we refer to as Ray Resampling.

Before resampling, the particle population is par-
titioned into groups based on the optical rays the
particles lie along. Standard residual resampling is
then applied to each partition, in order to fill equally
sized subsets of the following population. More for-
mally, for a system with R rays, I%' new particles are
created by each partition. First, each particle Py, in the
partition is added to the following population wn%
times, where w,, is the particles weight, normalized
by the total weight within the partition. Secondly any
samples remaining to be drawn (due to rounding
errors) are chosen randomly, based on the residual
weights of the particles within the partition [38].

This process is applied simultaneously across all
viewpoints, meaning every input particle is part of
multiple resampling groups. Despite this, the result-
ing population has the same size as the original, as
the number of new samples per partition is the same
regardless of how many particles it contains. This
approach to resampling ensures that every area of
the scene is represented by an equal number of Scene
Particles, guaranteeing coverage. Additionally, the re-
sultant Scene Particle cloud has the valuable property
of being dense in all viewpoints, as opposed to most
scene flow and Stereo Reconstruction schemes, which
are dense in a single, arbitrarily selected, reference
view. Ray Resampling could also be seen as using
a separate particle filter for each ray (similar to the
per-pixel Kalman filters of [19]) while allowing hy-
potheses to exist within multiple particle filters, and
to transition between them across frames.

After the newly resampled population is generated,
the particles are uniformly weighted, such that the
prior is encoded entirely by the density of samples.
This is in contrast to the formulation previously pre-
sented [20], where the prior was present in both
the sampling density, and the sample weights. This
lead to greatly accelerated convergence rates, and
prompted an update rule breaking with the standard
Bayesian formulation, which is not necessary here.

Occasionally no Scene Particles will fall along an
optical ray, in this case, Scene Particles are randomly
selected from those falling on neighboring rays, re-
flecting the surrounding distributions.
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4.3 Occlusion

When employing multiple viewpoints, particularly
with very large baselines and differences in orien-
tation, large areas of the scene may be visible to
only a subset of sensors. Equations 3 and 5 make
no allowances for occlusion, favoring only estimates
which are consistent across all viewpoints.

An estimate of how likely a region is to suffer from
occlusion in a given sensor m at frame #, can be
obtained from the current prior probability p(r,v),
with a high occlusion chance identified if the viewing
ray between the sensor and the region in question
intersects a point of high prior probability. To quantify
this, equation 7 details the calculation of the visibility
probability distribution O,,; where u is the viewing
ray of m intersecting r. As occlusion does not depend
on the instantaneous velocity, v is marginalized out
of the prior to produce p’(r). Again this calculation is
performed solely using the current system state, thus
p'~!(r) is estimated via r — v before marginalization
(not by re-using the prior from the previous frame).

__p'(r)
fOT pt(u)du

As the integral along u to r includes p(r), O, is
limited to 1 when there is no probability along the
ray prior to r. Thus it can be seen that 0 < O,, < 1.
Figure 2 illustrates the behavior of this distribution in
both the continuous and discrete cases. Intuitively, the
visibility probability relates to the weight of a point,
in comparison to the cumulative weight of all points
before it. A separate visibility probability map can be
created for each viewpoint, and may be used in other
tasks. Note that unlike many previous approaches to
motion estimation [29], [42], [40], the evaluation of a
points validity and it’s occlusion status are entirely
separate. Rather than determining occlusions simply
by the lack of observational consistency (which is
employed in the likelihood function, to determine
valid motions), the presented formulation requires
occlusions to be justified by the previously estimated
structure and motion fields, i.e. points are not labeled
as occluded if there is nothing to do the occluding.

To utilize this information and improve scene flow
estimation, the likelihood equation 3 is modified, to
give increased importance to consistency between
viewpoints which are unlikely to be occluded, as
shown in equation 8, where O is the total visibility
probability across all observations.

Opn,i(r) @)

1
pa(i|r7 V) = t M = 2
Om,T (I‘) (A:n (Hm (rT ) )_17'7'“)
Iteq Z Z oMO
T=t—1m=0 (8)
B t M
0=1> > Ou:r) ©)
T7=t—1m=0

A similar modification is applied to the structural
likelihood equation 5. Both the scene flow estimate,
and visibility distributions converge during iterative
estimation. However, the system is susceptible to the
degenerate case, where points are visible in only a
single view, and data consistency is examined only
within that view. To prevent this, an additional factor
could be introduced based on the sum of the squared
visibility probabilities, which would favor points with
uniform visibility scores. In this paper, hard con-
straints are instead used, relating to the constraints
required to determine scene flows. Hypotheses are
eliminated if they do not exhibit greater than average
visibility in at least 3 images (including at least one
from both ¢ and ¢ — 1).

4.4 Motion Smoothing

The maintenance of multiple hypotheses in the Scene
Particles algorithm allows information from past
frames to aid the disambiguation of motion, rather
than relying on smoothness constraints, which pro-
duce artifacts at discontinuities. However, the as-
sumption of smoothness in the motion field is still
valid in many cases, and so we explore a number
of techniques for exploiting this information, without
compromising the benefits of the algorithm.

4.4.1 2D Post Filtering

The simplest approach is to follow the suggestions
of previous authors [43], [42], and apply smoothing
to the image plane projection of the scene. This is
referred to as I, which is an image comprising of
4 channels (vy,vy,v, and z) and is created based
on the projections of the Scene Particle cloud onto
camera 0. Each pixel in I, is filled by taking the
weighted average of the v, v,,v, and z values of all
Scene Particles along the associated ray, using their
weights w,. It is important to note that filtering I,
does not affect the Scene Particle population, only the
estimated motion field derived from them. As such,
errors occurring from smoothing are not accumulated
over time.

In order to minimize oversmoothing of disconti-
nuities, both in the structure, and the motion esti-
mates, a bilateral filtering technique is used. Bilateral
filtering is biologically inspired and reflects the way
human vision operates. In essence, the bilateral filter
performs Gaussian smoothing within a region, with
an additional reweighting of contributions based on
value dissimilarity. The filtered values I,(j, k) at pixel
J.k can be produced from a ¢ by ¢ image patch
(represented by the set Q2 of 2D offset vectors), with
each motion channel (v, vy,v,) being processed in-
dependently. Equation 10 defines the creation of the
smoothed v, value (the channel of I, is represented in
superscript), with related definitions for the remaining
channels. In addition, g(x,0) refers to a zero mean



IEEE TRANSACTIONS PATTERN ANALYSIS AND MACHINE INTELLIGENCE

1

Continuous
Prior

0
Cumulative

0//

Probability
1

0.1
o
"0.01

0

>
rd

Distance u Along Ray é\

1

Discrete

R . l

1
Cumulative

Probability
1
iy
. . l

W,=0.05

@

Distance v Along Ray é\

W,=0.06 W, =0.4

-0-@

W,=0.4

@—>

Fig. 2: Visibility Probability calculations as discussed in section 4.3, in the case of continuous and discrete
priors. The discrete example is composed of 4 Scene Particles of varying weights. Note that the visibility
probability for particle 2 is high, as its weight is much greater than that of particles in front of it.

Gaussian function with standard deviation of o, eval-
uated at z.

127 (j k) =Y I (w)g (lw|, 0s2) g (157 (. k)-I2" (w), 002)
weQ2(4,k)

(10)
Q5. k) ={("F) i =5l <qand [k - K| <q} (11)

Using bilateral filtering significantly reduces smooth-
ing artifacts when compared to a simple Gaussian
weighted neighborhood. The value of o9 relates to
the size of discontinuities expected in the estimated
values, discontinuities larger than 2 standard devia-
tions will suffer little oversmoothing. This is useful for
preserving boundaries, which is important for object
segmentation tasks, however, fine details smaller than
1 standard deviation will likely be unrecoverable.

4.4.2 3D Post Filtering

More advanced than filtering the 2D projection Iy,
is to filter the 3D scene directly, via convolution
with a 3D kernel. In contrast to the image plane
formulation, this allows smoothness constraints to be
confined to a small region of space, maintaining finer
details and preventing Scene Particles separated in
z from influencing each other. Further, by removing
projective distortions, assumptions on motion and
structural smoothness are more valid. The smoothed
Scene Particle P, = {r,v} can be constructed from
the unsmoothed Scene Particle P,, = {r,v} and the
set of neighboring Scene Particles (23 (defined as the
particles within 2 spatial standard deviations o,3), by
calculating each component of the smoothed motion v
independently, according to equation 12 while leaving
r unchanged.

PUr=> "Pug(|r, 1, 00) g (PP, 0u3)  (12)
Pqufi(Pn)
Q3(P,) = {P, : |r, — 1, <3043} (13)

5 ALGORITHM SUMMARY

Pseudocode for the Scene Particles algorithm operat-
ing on a single frame, is provided in algorithm 1. The
majority of the computation is performed between
lines 1 and 16, within the nested scale and diffusion
loops mentioned in section 4.1. At each iteration, the
visibility probabilities from section 4.3 are calculated
for each particle, followed by the particles likelihood.
Ray resampling and diffusion is also performed at
each iteration. When iterative estimation is complete,
particles are assigned their final likelihoods, the out-
put image I, is generated for evaluation purposes,
and the particle population is propagated via a con-
stant velocity motion model to produce the prior for
the following frame.

6 SCENE FLOW ESTIMATION RESULTS

For conciseness, results discussed here are quantita-
tive in nature. A range of additional datasets and
results, including long sequences including both ap-
pearance and depth inputs, are available online ! and
as supplementary material. A small number example
frames are presented in figure 3.

All experiments were performed using a C++ im-
plementation, available from the above link. Unless
otherwise stated, 20 Scene Particles were used per ray,
and with particle filter bounds equal to 50% of the
maximum visible velocity. In addition, the standard
deviation of the Gaussian diffusion during resampling
was equal to 3% of the maximum visible velocity,
reducing by 30% at each inner loop iteration, while the
outer loop made use of 6 image scales, halving at each
stage. Note that these parameters have been related
to the maximum velocity to aid comparisons between
scenes, however this is not necessary in practice.

The quantitative results in this section are estimated
on two types of data. The first is the Middlebury
datasets [44], which were originally developed as a

1. personal.ee.surrey.ac.uk/Personal/S.Hadfield /sceneparticles
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Fig. 3: Example frames of scene flow estimation with a Kinect. For each frame, the appearance and depth
inputs are shown, alongside the 3D flow field. Flow vectors travel from the red to the purple vertices. The
top row relates to the hands sequence. The bottom row relates to the kicks sequence.

Algorithm 1 Scene Particles

1: for scales s =0 to S do

2:  for diffusion level § =0 to A do

3 for all particles P, in ®* do

4 if Occlusion aware then

5: form=0toMandt=0to1l do

6: calculate occlusion Op, ¢(ry) = %
7 end for

8 end if

9: calculate weight w, = pa(i|rn, va)pa(ilrn, vi)
10: end for
11: for ray =0 to R do
12: for distance along ray from 0 to % do
13: ©'*'uUP,, where P,, ~ p(r,vli) and P,, € ray
14: end for
15: end for
16: for all P,, in ray population ®* do
17: P, =P, + 6, where £ ~ g(0,0)
18: end for
19:  end for

20: end for

21: for all particles P,, in ray population et do
22: Wn = pa(i0|rnvvn)pd(i0|r’ﬂ7vn)

23: end for

24: for all particles P,, in ray population ©* do
25: r, =ry,+vVp

26: end for

benchmark for stereo reconstruction algorithms. This
demonstrates the performance of the algorithm on
non-synthetic data with complex scenes. It is useful
to evaluate using such data, as Vaudrey et al. [45]
found that performance on synthetic data often leads
to fundamentally different behavior than in real appli-
cations. The second set of data used is the multiview

rotating sphere of Basha et al.[33]. This dataset consists
of a structurally simple synthetic scene, but involves
a much more complex, discontinuous, motion field.

6.1 Isolated Estimation

Most current scene flow estimation techniques take
many hours to process each frame, as such results are
generally analyzed on a single frame. To achieve this
a number of 2 frame sequences are constructed to sim-
ulate moving cameras. For the Middlebury datasets,
taking images {I1,Is, 15,17} as the first frames of 4
sequences, and images {Io, Iy, Is, Is} as the follow-
ing frames, allows us to simulate 4 cameras, each
translating by Ax. This is equivalent to a set of 4
stationary cameras, viewing a scene in which every
point translates by —Ax. Although the motion field
is simple when viewed in 3D, it’s projection onto
the images is very complex. None of the techniques
listed in the following sections make use of any prior
knowledge about this scene, including the rigidity of
the objects.

To convert the Scene Particle cloud into a form
comparable to that of other techniques, I, is analyzed.
As mentioned in section 4.4, the motion at each pixel
is taken as the weighted average of the motion, of all
Scene Particles along the relevant optical ray. Where
needed, the output of depth sensors is simulated by
projecting the ground truth structure to a number of
equally spaced image planes. Following Basha ef al.
[40], errors for the Middlebury datasets are analyzed
in the image plane, using the average RMS error of
the optical flow (RMS-OF), disparity (RMS-Z) and dis-
parity flow (RMS-Vz) which are measured in pixels,
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in conjunction with the absolute angular error (AAE)
which measures directional accuracy in degrees. Error
measures are averaged over all pixels in [, (unlike
previous authors, occlusion regions were not excluded
from the analysis). Also to allow comparison to Basha
et al. errors for the Sphere sequence are analyzed
in the 3D space, using the normalized RMS errors
in 3D position (%NRMS-P), 3D velocity magnitude
(%NRMS-V), and 3D velocity angular error (AAE-V)
[40]. The normalized errors are equivalent to standard
RMS errors, but presented as a percentage of the range
of ground truth motions (i.e. divided by the difference
between the minimum and maximum ground truth
value, then multiplied by 100 as proposed in [40]).
Error measures in the 3D space are presented this way,
because the 3D reconstruction is accurate only up to
an arbitrary scale factor, e.g. two datasets generated
with different focal lengths, would have incompatible
RMS error scores before normalization.

6.1.1 Multi-Modal Scene Flow

No current scene flow estimation algorithm is capable
of utilizing observations from both appearance and
depth sensors. For comparison purposes, a state of
the art optical flow algorithm [46] was applied to the
appearance information, and the results are combined
with the depth data to infer 3D motion. This technique
is referred to as OFD. For the experiments labeled GT
in table 1, depth observations were produced using
the ground truth depth. For all other experiments,
depth observations were produced using the semi
global matching stereo algorithm of Hirschmuller [47].
This produces depth maps of significantly lower qual-
ity than observations from true depth sensors, such
as those shown in figure 3. However, the use of esti-
mated depth maps is similar to the stereo initialization
utilized by competing approaches [40].

Unsurprisingly, the out of plane motion accuracy
for the Scene Particles algorithm is greater than that
of the OFD approach. However, it is interesting to
note that despite OFD utilizing a dedicated optical
flow algorithm, the motion magnitude error within
the image plane is also worse. This implies that the
incorporation of depth data at an earlier stage, allows
more accurate flow estimates, even in 2D. The OFD
algorithm provides greater scene coverage than stan-
dard Scene Particles, but still cannot achieve the 100%
coverage of Ray Resampled Scene Particles.

The OFD technique displays the greatest robustness
to the quality of the depth input, which does not affect
the quality of the in plane and directional errors. In
addition, the reduction in out of plane accuracy is sur-
prisingly low. This is likely because regions in which
stereo reconstruction fails frequently correspond to
regions where the optical flow fails (and where errors
cannot be evaluated).

It would be reasonable to assume that the over-
convergence of the standard Scene Particle algorithm,

would lead to the accumulation of particles around re-
gions of high accuracy, causing reduced coverage and
correspondingly increased accuracy. However this is
not always the case, in fact the performance of the
standard resampled and ray resampled approaches
are roughly equivalent. This implies that, within the
subset of local maxima of p(i|r,v), higher probabili-
ties do not necessarily relate to reduced ambiguity.

6.1.2 Appearance Only Scene Flow

From figure 4 it can be seen that, unlike traditional
motion estimation techniques, the Scene Particles al-
gorithm does not suffer from reduced accuracy at
discontinuities. Instead, the independence of the scene
particles leads to low levels of error, spread uniformly
across the scene. This is a useful property as, for
many applications such as robot navigation and ac-
tion recognition, object boundaries prove particularly
salient.

These results are also analyzed over a single frame.
As a result, there is no propagation of information
through time, and much of the improvements in
accuracy can likely be attributed to this lack of over-
smoothing artifacts. Observing the performance in
table 2, it can be seen that the use of 3 additional
appearance sensors compensates for the loss of the
depth sensor input, with motion accuracy showing
moderate improvement over the results in table 1. Un-
surprisingly, the use of depth observations still greatly
improves structural estimation accuracy (RMS-Z).

The Scene Particle algorithm consistently estimates
motion magnitude, more accurately than previous
approaches, both within the image plane, and perpen-
dicular to it. However, directional estimation accuracy
is slightly lower than existing techniques. This is
due to the stochastic nature of the Scene Particles
algorithm, the motion fields always suffer from a low
level of noise (as seen in figure 4). In terms of mo-
tion magnitude, this noise is generally insignificant,
however in areas of low motion (such as background
regions) a small change in absolute motion leads to
a large shift in direction. The probabilistic occlusion
approach seems to somewhat mitigate this, while also
improving motion magnitude accuracy.

To make runtime comparisons fairer, the speeds
listed are for sequential computation in a single
thread, not exploiting the possibility for massive par-
allelization provided by the Scene Particle’s indepen-
dence. Exact computation time was not provided by
Basha et al. however, it is stated to be of the same
order as that of Huguet ef al. The standard Scene
Particles approach operates around 100 times faster
than previous approaches, with the occlusion aware
version increasing runtimes by around 30%.

6.2 Information Propagation

As the Scene Particle algorithm is several orders of
magnitude faster than previous techniques, it is useful
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[ Algorithm | Dataset [ App Sens. [ Depth Sens. [ RMS-OF | RMS-Vz | AAE [ Coverage |

Scene Particles Cones 1 1 0.70 0.02 1.58 28.59
Scene Particles + RR Cones 1 1 (GT) 0.59 0.01 1.61 100.00
Scene Particles + RR Cones 1 1 0.60 0.02 1.64 100.00
OFD [46] Cones 1 1 (GT) 2.30 1.57 0.52 86.79
OFD [46] Cones 1 1 2.30 1.60 0.52 86.79
Scene Particles Teddy 1 1 0.50 0.01 1.63 20.72
Scene Particles + RR Teddy 1 1 (GT) 0.52 0.01 1.36 100.00
Scene Particles + RR | Teddy 1 1 0.60 0.01 1.35 100.00
OFD [46] Teddy 1 1 (GT) 2.11 0.69 0.43 91.50
OFD [46] Teddy 1 1 2.11 0.70 0.43 91.50
Scene Particles Venus 1 1 0.53 0.00 2.58 14.51
Scene Particles + RR Venus 1 1 (GT) 0.72 0.00 2.62 100.00
Scene Particles + RR Venus 1 1 0.84 0.00 2.86 100.00
OFD [46] Venus 1 1 (GT) 1.16 0.28 0.61 97.45
OFD [46] Venus 1 1 1.16 0.30 0.61 97.45
[ Algorithm | Dataset [ App Sens. [ Depth Sens. | %NRMS-V [ AAE-V | Coverage |

Scene Particles Sphere 1 1 12.65 1.95 3.06

Scene Particles + RR | Sphere 1 1 (GT) 10.26 2.68 100.00

Scene Particles + RR | Sphere 1 1 10.36 2.88 100.00

OFD [46] Sphere 1 1 (GT) 12.42 5.01 91.25

OFD [46] Sphere 1 1 12.42 5.12 91.25

TABLE 1: Results of scene flow estimation in a combined depth and appearance sensor system. Scene Particles

with and without ray resampling (RR) are compared to the combined optical flow [

scheme. Discussion is contained in section 6.1.1.

to analyze the performance of the algorithm on longer
sequences, with more relevance to practical applica-
tions. The propagation of information over time is a
unique aspect of the Scene Particles algorithm, which
makes it particularly suited to this situation.

Figure 5 shows the performance of the Scene Par-
ticles algorithm when run on sequences of varying
lengths. Adding a single additional frame to the
sequences, causes a considerable reduction in both
directional and motion magnitude errors. However,
the improvement from subsequent additional frames,
is less significant (although still nonzero). This is to
be expected, as groups of motion hypotheses rarely
remain ambiguous across more than two sets of obser-
vations. The observed lower limit on the performance,
is likely due to regions emerging from occlusion, for
which the prior information does not help, and the use
of a constant velocity motion model when creating the
prior distribution.

6.3 Smoothing

A number of approaches to incorporating smoothness
constraints into scene flow estimation are possible.
The techniques used for comparison in the previous
section rely on regularization terms in the cost func-
tion during optimization. Another common approach
is to define the matching function to compare patches
between viewpoints and times, rather than a single
pixel. In table 3, we analyze the effect this has on the
Scene Particle algorithm, in addition to the smoothing
post-process techniques discussed in section 4.4.

The use of patch based matching and 2D post
filtering show little improvement in terms of motion

] and depth estimation

10.5

o

9.0

%NRMS-V

——~—

8.5.

2 3 5 6
Sequence length

(a) Motion magnitude accuracy against
sequence length

3.0

* \/R
18

2 3

5 6
Sequence length

(b) Directional accuracy against se-
quence length

Fig. 5: Analysis of error measurements on the
sphere dataset, when simulating sequences of various
lengths. Experiments performed with a single appear-
ance and depth sensor.

magnitude accuracy. However, by applying 3D post
filtering, a significant increases both in magnitude and
directional accuracy can be obtained, at the cost of
doubled computation time.
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\ Algorithm | Dataset | App Sens. | Depth Sens. | RMS-OF | RMS-Vz | RMS-Z | AAE | Time/Frame |
Scene Particles (multiview) Cones 4 0 0.27 0.02 2.44 1.74 344 secs
Scene Particles (multiview) Cones 4 1 0.25 0.01 1.42 2.22 327 secs

Scene Particles + (Occ.) Cones 4 0 0.22 0.02 2.40 1.32 418 secs
Basha et al.[40 Cones 2 0 0.58 0.01 2.48 0.39 -
Basha et al.[40 Cones 4 0 0.25 0.00 2.36 0.12 -

Huguet et al.[39] Cones 2 0 1.10 3.13 2.11 0.69 5 hours
Scene Particles (multiview) Teddy 4 0 0.18 0.01 1.40 1.19 401 secs
Scene Particles (multiview) Teddy 4 1 0.17 0.01 0.77 2.14 348 secs
Scene Particles (Occ.) Teddy 4 0 0.13 0.01 1.48 1.16 893 secs
Basha et al.[40 Teddy 2 0 0.57 0.03 2.83 1.01 -
Basha et al.[40 Teddy 4 0 0.51 0.00 2.47 0.22 -
Huguet et al.[39] Teddy 2 0 1.25 4.66 2.27 0.51 5 hours
Scene Particles (multiview) Venus 4 0 0.07 0.00 0.73 2.05 312 secs
Scene Particles (multiview) Venus 4 1 0.09 0.00 0.40 2.32 337 secs
Scene Particles (Occ.) Venus 4 0 0.07 0.00 0.73 1.05 423 secs
Basha et al.[40 Venus 2 0 0.16 0.00 1.06 1.58 -
Basha et al.[40 Venus 4 0 0.13 0.00 0.90 1.09 -
Huguet et al.[39] Venus 2 0 0.31 0.51 0.97 0.98 5 hours
Algorithm Dataset | App Sens. | Depth Sens. | %NRMS-V | %NRMS-P | AAE-V | Time/Frame
Scene Particles (multiview) | Sphere 5 0 9.41 6.36 3.04 1053 secs
Scene Particles (multiview) | Sphere 5 1 8.64 2.97 3.16 990 secs
Scene Particles + (Occ.) Sphere 5 0 8.39 5.97 3.02 1818 secs
Basha ef al.[40] Sphere 5 0 9.71 4.39 3.39 -

TABLE 2: Results of scene flow estimation for a multi-view, appearance only setup. Scene Particles with and
without occlusion awareness are compared to Basha et al. [40] and Huguet et al. [39]. Discussion is contained
in section 6.1.2.

OMPE.

(a) Ground truth Z (b) Ground truth V,, (c) Ground truth V;, (d) Ground truth V,

(e) Estimated Z (f) Estimated V; (g) Estimated V, (h) Estimated V,

Fig. 4: Ground truth (top) and estimated (bottom) images for the scene structure and motion in the Sphere
dataset, using the Scene Particle algorithm with 5 appearance sensors only.
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Algorithm Dataset | RMS-OF | RMS-Vz | RMS-Z | AAE | Time/Frame
Scene Particles Cones 0.22 0.02 2.40 1.32 418 secs
Scene Particles (Patch Cost) Cones 0.37 0.02 3.37 0.69 13681 secs
Scene Particles (2D Post Filter) Cones 0.21 0.01 2.39 1.32 505 secs
Scene Particles (3D Post Filter) Cones 0.19 0.01 2.40 1.21 824 secs
Scene Particles Teddy 0.13 0.01 1.48 1.16 493 secs
Scene Particles (Patch Cost) Teddy 0.16 0.01 3.28 0.72 9025 secs
Scene Particles (2D Post Filter) Teddy 0.13 0.01 1.48 1.17 333 secs
Scene Particles (3D Post Filter) Teddy 0.11 0.00 1.48 1.14 890 secs
Scene Particles Venus 0.07 0.00 0.73 1.05 423 secs
Scene Particles (Patch Cost) Venus 0.82 0.00 2.13 0.33 10114 secs
Scene Particles (2D Post Filter) Venus 0.08 0.00 0.73 1.15 447 secs
Scene Particles (3D Post Filter) Venus 0.05 0.00 0.73 0.93 1022 secs
[ Algorithm | Dataset [ %NRMS-V [ %NRMS-P [ AAE-V | Time/Frame |
Scene Particles Sphere 8.39 5.97 3.02 1818 secs
Scene Particles (Patch Cost) Sphere 7.99 12.30 2.06 21332 secs
Scene Particles (2D Post Filter) | Sphere 8.12 5.97 291 1992 secs
Scene Particles (3D Post Filter) | Sphere 5.57 5.97 3.04 3309 secs

TABLE 3: The performance of the Scene Particles algorithm when incorporating smoothness constraints in
a variety of ways. Tests are performed with occlusion aware Scene Particles, using 4 appearance sensors.

Discussion is contained in section 6.3.

As the bilateral post filtering techniques are applied
only to the motion field, structural performance does
not change. However, using patch based matching
significantly reduces structural estimation accuracy,
to levels comparable with previous approaches in
table 2. In addition, directional performance is im-
proved, bringing it closer to the levels of existing
techniques. This is an interesting finding, and implies
that there are deep similarities between a global reg-
ularization scheme, and local patch based smoothing.
Further, it demonstrates that the implementation of
smoothness constraints is a limiting factor of current
motion estimation performance.

6.4 Sampling Sparsity

A useful property of the Scene Particle algorithm is
that varying the size of the Scene Particle population
enables a tradeoff of accuracy and computation time.
More hypotheses requires more time sampling the
probability distribution, but increases the chances of
locating the maxima of the distribution. Figure 6
shows the relationship between runtime and accuracy,
obtained by varying the number of hypotheses per ray
between 1 and 40.

As the number of hypotheses per ray increases,
all error measurements exhibit exponential decay. At
around 10 minutes per frame, directional accuracy
plateaus at just under 3 degrees, highlighting the
fundamental limit of stochastic estimation when an-
alyzed using this metric. Motion magnitude errors
saturates at a larger number of hypotheses, relating to
runtimes of around 15 minutes per frame. Even at this
speed, the scene particles algorithm is still an order of
magnitude faster than competing approaches.

400 500 600 700

Time Per Frame

800 900 1000

(a) Motion magnitude accuracy against
runtime per frame

AAE-V

400 500 600 700

Time Per Frame

800 900 1000

(b) Directional accuracy against runtime
per frame

Fig. 6: Performance on sphere dataset against runtime,
obtained by varying the number of particles. Results
using a single appearance and depth sensor.

6.5 Robustness

To analyze the robustness of the approach, the input
appearance and depth images were corrupted with
varying degrees of noise, with results shown in fig-
ure 7. When testing Gaussian noise, every pixel value
was corrupted by a Gaussian distributed value, per-
formance was then analyzed as the standard deviation
varied. For the salt and pepper noise tests, a varying
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number of pixels were randomly chosen, and set to
either 0 or 255. In both cases, viewpoints were treated
independently.

The algorithm performs very well when subjected
to salt and pepper noise. All error measurements
increase linearly with the amount of corrupted pixels,
due to the independent nature of the Scene Particles,
which prevents a catastrophic failure from occurring,
as might be expected with a global approach.

The performance of the system under Gaussian
noise is less consistent, although still generally show-
ing a linear increase. In absolute terms, Gaussian
noise causes less degradation of the estimated motion
than salt and pepper noise, with a standard deviation
of 20 intensity values being equivalent to around
15% impulse noise corruption. This is likely due to
the multi-scale approach employed, as the smoothing
applied to create coarser image scales, also reduces
the effect of Gaussian noise.

7 3D OBJECT TRACKING

One possible application for accurate and high speed
scene flow estimation, is 3D object tracking [2]. Using
Expectation Maximization to extract the dominant
clusters from the scene particle cloud, provides a
data-driven approach to the 3D tracking of objects.
This allows automatic detection, segmentation and
tracking of moving objects, while avoiding the need
for prior knowledge of the object to be tracked.

As a specific example, this approach is applied
to tracking hands and heads in 3D during sign
language sequences of up to 90 minutes in length.
In an unconstrained scenario such as sign language
recognition, hands tend to move very rapidly, with
sudden changes in trajectory. This makes tracking
using the motion field especially suitable, while ap-
pearance based tracking may be difficult. Unlike pre-
vious approaches [48], skin color assumptions are
not necessary in order to provide a segmentation for
tracking. Instead an adaptive skin color model was
used simply to reduce computational cost by using
a smaller number of Scene Particles to estimate the
motion of background regions.

The tracking algorithm was applied to a large
multiview sign language dataset” [49]. No calibration
information was provided with the dataset, so the
camera parameters were estimated using collection of
manually labeled points. This serves to demonstrates
that the technique provides some degree of robustness
to imprecise calibration. Figure 8 contains examples of
the tracked object trajectories, projected onto the input
sensors. However, it is important to note that tracking
is performed in 3D, and projected to each sensor for
display, rather than being performed independently
on each video.

2. www.sign-lang.uni-hamburg.de/dicta-sign/portal /

Object Agreement | X RMS error | Y RMS error

Head 100.000% 0.057 0.097
Right Hand 93.535% 0.191 0.100
Left Hand 88.054% 0.277 0.091

TABLE 4: Agreement between projection of estimated
3D trajectories, and 2D trajectories from an alternative
system (values in palm widths).

In table 4, the performance of the approach is ana-
lyzed compared to the accurate 2D tracker of Pitsikalis
et al.[50] across 30,000 frames. A frame was labeled as
being in agreement, if the estimated positions were
less than § of a palm width apart. The high level
of agreement between the tracking schemes demon-
strates the plausibility of the 3D trajectories. Note
that the agreement between tracking does not directly
provide the accuracy of the system, in fact this could
be considered a lower bound on the performance as
in some cases, the 2D tracker is in error, due to frontal
occlusion, while 3D tracking is maintained using other
viewpoints.

In total 2.8 million frames from the dataset were
tracked, relating to over 31 hours of 3D sign language
trajectories. Using traditional scene flow estimation
techniques, an application of this scale would ob-
viously have been intractable (taking roughly 1,600
years to complete). However, it is only one of the
possible applications that can now exploit rich 3D
motion information, due to the speed of the Scene
Particles algorithm.

8 CONCLUSIONS

A multi-hypothesis approach to scene flow estimation
has been demonstrated, and shown to provide more
accurate motion fields than traditional regularized op-
timization, while also having reduced computational
complexity.

Techniques have been demonstrated for applying
smoothness constraints to the motion field without
compromising the benefits of multiple hypotheses,
providing increased accuracy. Additionally, a method
for estimating 3D Occlusion maps was presented,
further improving scene flow estimation at the cost
of increased runtime.

The analysis of the Scene Particle algorithm has
highlighted the value of propagating information
through time to resolve ambiguities, as opposed to
estimating each frame independently. Additionally,
the possibility of trading off runtime against accu-
racy by varying the number of hypotheses, has been
demonstrated, and the robustness of the algorithm to
noise has been shown.

Finally, an example of the use of scene flow esti-
mation for a traditional vision application has been
demonstrated, in which the scene flow field is clus-
tered to obtain the location and velocity of dominant
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Fig. 7: Three error measurements, as a function of noise level. The left column shows salt and pepper noise
performance, while the right column is the Gaussian additive noise performance. Tests performed using a
single appearance and depth sensor, on the sphere dataset.
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Fig. 8: (A) to (C) are taken from the narrow baseline, 2 view, sequence. (D) Shows a frame from the wide
baseline, 3 view, sequence. Discussion is contained in section 7.

objects in the scene. The approach was applied to
3D hand tracking during sign language, and demon-
strated to provide excellent performance, despite fre-
quent occlusions and appearance variation. This is
only one example of the possible applications, enabled
by the speed of the Scene Particles algorithm. Future
work is to provide a CUDA implementation which
we expect to allow accurate scene flow estimation to
be performed in real-time.
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