
Multi-Task Autonomy For Robotics

Bian Xihan

Submitted for the Degree of
Doctor of Philosophy

from the
University of Surrey

Centre for Vision, Speech and Signal Processing
Faculty of Engineering and Physical Sciences

University of Surrey
Guildford, Surrey GU2 7XH, U.K.

September 2022

c© Bian Xihan 2022

Abstract

Robotic technology is integrating into more aspects of our society. The ability to perform
multiple different functions in various environments is an important research challenge. Recent
developments in multi-task learning in Artificial Intelligence (AI) and machine learning could
enable a new generation of robotic technology. This thesis aims to explore techniques which
combine AI with robotics to enable generalization across a range of environments.

As the level of abstraction possible in deep learning has grown a very promising avenue of
research has become feasible: hybrid systems. In these approaches, an AI system is used to
undertake high-level planning and strategisation, while the execution of the plans is undertaken
by classical non-learned approaches. This enables a mutual compensation of AI and traditional
robotic systems, as the AI agents excel at generalisation for high-level problems and long-
term goal-oriented planning, while the robotics techniques specialise in precise and repeatable
operations [24]. This thesis attempts to build upon this and further explore the multi-task-enabled
AI agent and its potential in robotic tasks.

First, general-purpose robots need to be able to work in multiple different environments. Even
when performing similar tasks, different behaviour should be deployed to best fit the current
environment. In this thesis, we propose a new approach to navigation, where it is treated
as a multi-task learning problem. This enables the robot to learn to behave differently in
visual navigation tasks for different environments while also learning shared expertise across
environments. We evaluate our approach in both simulated environments as well as real-world
data.

Following this, we introduce a new perspective for learning transferable content in multi-task
imitation learning. Humans are able to transfer skills and knowledge to new tasks. If we can
cycle to work and drive to the store, we can also cycle to the store and drive to work. We take
inspiration from this and hypothesize the latent memory of a policy network can be disentangled
into two partitions. These contain either the knowledge of the environmental context for the task
or the generalizable skill needed to solve the task. This allows improved training efficiency and
better generalization over previously unseen combinations of skills in the same environment, and
the same task in unseen environments. We used the proposed approach to train a disentangled
agent for two different multi-task IL environments. In both cases, we outperformed the SOTA
by 30% in task success rate. We also demonstrated this for navigation on a real robot, including
the visual navigation task of the previous chapter. This demonstration was also ported to a real
robot.

This ability to generalize to previously unseen tasks with little to no supervision is a key
challenge in modern machine learning research. Researchers often rely on reinforcement and
imitation learning to provide online adaptation to new tasks, through trial and error learning.
However, this can be challenging for complex tasks which require many timesteps or large
numbers of subtasks to complete. These “long horizon” tasks suffer from sample inefficiency
and can require extremely long training times before the agent can learn to perform the necessary
long-term planning. Therefore, we finally introduce CASE which attempts to address these
issues by utilising adaptive “near future” subgoals. These subgoals are re-calculated at each step
using compositional arithmetic in a learned latent representation space similar to the previous
chapter. In addition to improving learning efficiency for standard long-term tasks, this approach

also makes it possible to perform one-shot generalization to previously unseen tasks, given only
a single reference trajectory for the task in a different environment.

When we combine the works in this thesis, these contributions provide insights for a better multi-
task generalization framework for long and complex robotic planning. The contributions centre
on multi-task learning and crossover to robotic navigation, reinforcement/imitation learning,
and generalization. The experiments in this thesis demonstrate that an AI-controlled robot can
perform simple tasks as well as a non-AI robot, while also handling more difficult tasks. This
thesis presents a general direction for robotic AI capable of handling multiple complex tasks and
sequential generalization. This enables better autonomy in both AI and robotics in the future.

Key words: Reinforcement Learning, Imitation Learning, Multi-task Learning, Generalization,
Robotics

Email: xb00043@surrey.ac.uk

WWW: https://www.surrey.ac.uk/people/xihan-bian

Acknowledgements

I would first like to express my gratitude to my supervisors Dr. Simon Hadfield and Dr. Oscar
Mendez, who not only guided me throughout out this project but also supported me as friends. I
couldn’t have done this without their help. I also would like to thank Dr. Sai Gu, I wouldn’t
have had this amazing opportunity if not for his firm recommendation and support. I would like
to thank the members of CVSSP, who have been so friendly and helpful throughout my entire
time in Surrey.

I would like to thank my parents Prof. Wenjuan Guo (郭文娟) and Prof. Wenyang Bian (卞文
阳) and the rest of my family who are always so loving and encouraging.

I would like to thank my friends Ye Ling (凌烨) and Nong Xiaoqi (农晓琪) for accompanying
me through this journey. I would also like to thank Zhang Yanpeng (张雁鹏), Zhang Lianpin
(张连聘) and all of my friends. They supported me to chase after my dream.

Declaration

This thesis and the work to which it refers are the results of my own efforts. Any ideas, data,
images or text resulting from the work of others (whether published or unpublished) are fully
identified as such within the work and attributed to their originator in the text, bibliography or in
footnotes. This thesis has not been submitted in whole or in part for any other academic degree
or professional qualification. I agree that the University has the right to submit my work to
the plagiarism detection service TurnitinUK for originality checks. Whether or not drafts have
been so-assessed, the University reserves the right to require an electronic version of the final
document (as submitted) for assessment as above.

The work presented in this thesis is also present in the following manuscripts:

• Bian Xihan, Oscar Mendez, and Simon Hadfield. Robot in a china shop: Using reinforce-
ment learning for location-specific navigation behaviour. In 2021 IEEE International
Conference on Robotics and Automation (ICRA), pages 5959–5965. IEEE

• Bian Xihan, Oscar Mendez, and Simon Hadfield. Skill-il: Disentangling skill and knowl-
edge in multitask imitation learning

• Bian Xihan, Oscar Mendez, and Simon Hadfield. Generalizing to new tasks via one-shot
compositional subgoals

Signed:

Bian Xihan 卞西晗

Date: 2022/10/01

Contents

Nomenclature xiii

Symbols xv

List of Figures xvii

List of Tables xix

1 Introduction 1

1.1 Challenges with robotic AI . 2

1.1.1 Unifying AI and Automation . 4

1.1.2 Solving Complex Tasks . 4

1.2 Motivation . 8

1.3 Contributions . 10

1.4 Summary . 11

2 Literature Review 13

2.1 Deep Reinforcement Learning . 14

2.1.1 Reinforcement Learning . 14

2.1.2 Imitation Learning . 16

2.2 Disentanglement and Generalization . 17

2.2.1 Multi-Task Learning . 18

2.2.2 Skill and Knowledge Learning . 21

2.2.3 Disentangled Representations . 22

2.2.4 Subgoal Search . 23

2.3 Visual Navigation . 24

2.4 Summary . 27

ix

x Contents

3 MERLIN 29

3.1 Problem Definition . 29

3.2 Methodology . 32

3.2.1 Siamese Feature Extractor and Joint State Embedding 33

3.2.2 Task-Specific Expert Policy Sub-Networks 35

3.2.3 Attentive Task Allocation and Soft Blending Network 36

3.2.4 Environment Classifier . 37

3.3 Evaluation . 38

3.3.1 Experiments . 39

3.3.2 Baseline comparison . 42

3.3.3 Ablation Study . 45

3.3.4 Qualitative Multi-environment behaviours 46

3.3.5 Generalization and Noise Resilience 47

3.3.6 Live Demonstration . 49

3.4 Conclusion . 50

4 CPVAE 51

4.1 Problem Definition . 51

4.2 Methodology . 54

4.2.1 Compositional Task Embedding . 55

4.2.2 Gated Variational Auto Encoders . 57

4.2.3 Disentangling Skill and Knowledge Subdomains 59

4.3 Evaluation . 61

4.3.1 Implementation . 62

4.3.2 Exploring Disentanglement . 63

4.3.3 Ablation Study . 66

4.3.4 Comparison vs State-Of-The-Art . 68

4.3.5 Real Life Demonstration . 69

4.4 Conclusion . 70

Contents xi

5 CASE 73

5.1 Problem Definition . 73

5.2 Introduction . 74

5.2.1 Exploring Task Compositionality . 75

5.2.2 Latent Space Regularization . 79

5.2.3 Compositional Subgoals . 82

5.3 METHODOLOGY . 83

5.3.1 Compositional representation . 84

5.3.2 Plan Arithmetic and Subgoal Waypoints 85

5.4 Evaluation . 88

5.4.1 Environment . 88

5.4.2 One-shot task generalization . 90

5.4.3 Ablation Study . 91

5.4.4 Hyperparameter Search . 92

5.5 Conclusion . 93

6 Conclusions and Future Work 95

6.1 Conclusions . 95

6.2 Limitations and Short-Term Future Work . 97

6.3 Directions for the Field . 98

Bibliography 101

xii Contents

Nomenclature

MERLIN Multi-environment Reinforcement-Learning in Navigation

SKILL-IL Skill and Knowledge Independent Latent Learning

CASE Compositional Adaptive Subgoal Estimation

ICRA The International Conference on Robotics and Automation

IROS The IEEE/RSJ International Conference on Intelligent Robots and Systems

AI Artificial Intelligence

SOTA State-Of-The-Art

RL Reinforcement Learning

IL Imitation Learning

SLAM Simultaneous Location and Mapping

CNN Convolutional Neural Network

CPV Compositional Plan Vectors

GAN Generative Adversarial Network

VAE Variational Auto Encoder

TRPO Trust Region Policy Optimization

PPO Policy Optimization Algorithm

AC Actor-Critic

A3C Asynchronous Advantage Actor-Critic

PNN Progressive Neural Network

KL Kullback-Leibler Divergence

FS Fixed Sampling

DL Dynamic Loss Weighting

xiii

xiv Nomenclature

SP Higher Skill Partition

KP Higher Knowledge Partition

PCA Principal Component Analysis

CI Current State Image

HRL hierarchical reinforcement learning

Symbols

Introduced in Chapter 3

Ic Current Observation

It Target Observation

ωτ Attention Weight Matrix

a Action

Ai Action Probabilities

OC Composed Current State Observation

F Feature Embedding Function

s State in an Episode

n Number of Sub-Networks

π Learned Policy

E Actor-Critic Branch of the RL Network

ωV Overall Weight for the Value Function

ωτ Attentive Distribution Weight

pstp Timestep Penalty

pcr Penalty for Hits Obstacles

llm Episode Length Limit

R Final Reward

G Square Grid Environment

U Uniform Random Sampling Noise

xv

xvi Symbols

Introduced in Chapter 4

Ot Current State Observation

t Timestep

~v Compositional Task Embedding

~u Compositional Task Embedding

gφ Encoding Function for Task Embedding

dθ Decoder Network of the VAE

Lδ Reconstruction Loss

La Policy Loss

LH Compositionality Loss

LP Similarity Loss

LR Regularization Loss

LG Dynamical Loss

S Skill Training Set

K Knowledge Training Set

N Normal Training Set

E Goal Generative Process of the VAE

DKL Kullback-Leibler Divergence

Introduced in Chapter 5

C Constraints Matrix

z Zero Matrix

k Subgoal Lookahead Parameter

List of Figures

1.1 Robot making coffee . 5

1.2 Robots in different forms . 7

3.1 MERLIN Overview . 31

3.2 MERLIN Architecture . 32

3.3 Siamese Feature Extractor . 34

3.4 Attentive Task Allocation and Expert Sub-Network 35

3.5 Example images from the real-world environments dataset 41

3.6 Turtlebot3 . 42

3.7 Qualitative Multi-environment behaviours . 43

3.8 Noise Resilience Experiment . 47

3.9 Agent success rate versus noise ratio . 48

3.10 MERLIN Live demonstration . 49

4.1 SKILL-IL Overview . 53

4.2 SKILL-IL Architecture . 54

4.3 Three Training Modes . 62

4.4 Navigation Environments . 63

4.5 Reconstructed Images from Subdomain Latent 65

4.6 Reconstructed Images from Mix-Matching Latent 66

4.7 Live Demonstration for SKILL-IL . 70

5.1 CASE Overview . 75

5.2 compositional Latent Space Visualization . 76

5.3 Representation Space Visualization in Different Colour Mode 77

5.4 Visualization of skill and knowledge latent in the latent space 78

xvii

xviii List of Figures

5.5 Visualization of the Original Latent and Post-Optimization Latent Pointcloud . 81

5.6 Visualization of the Resulting Feature Distribution 81

5.7 Crafting World Environment . 89

5.8 CASE Task Success Rate . 90

5.9 Difference in Success Rate . 91

5.10 Hyperparameter Search for k . 93

List of Tables

3.1 Simulated and real training environments are used in the experiments. 40

3.2 Navigation task step count and success percentage in the simulated dataset. . . 44

3.3 Navigation task step count and success percentage in the real-world dataset. . . 44

3.4 Performance comparison with agents trained in different numbers of environments. 45

3.5 Ablation study on RC branch . 46

4.1 Ablation study for SKILL-IL . 66

4.2 Ablation Study for SKILL in Env.2 . 67

4.3 Comparing against SOTA when learning a different number of tasks. 68

4.4 Compared against SOTA when learning a different number of tasks within the
sequence. 68

5.1 Ablation Study for CASE . 92

xix

xx List of Tables

Chapter 1

Introduction

The application scenarios for modern robotics are expanding as the technology evolves. Robots

are given more tasks in more aspects of life, and are required to face more difficult challenges.

They have progressed from vacuuming a room to delivering takeout food, ranging from working

on assembly lines to managing an entire factory. Currently, application scenarios for robotic

technology are often industry-related, but more service-related applications are developed every

day. For robots to perform in a wider range of scenarios, they need support for multi-tasking

in both hardware and software. In hardware, the research effort has been in the direction of

general-purpose robotic AI solutions which emphasize the physical mobility and capability of

robots, specifically legged robots and operational limbs. In software, the robot is expected to

be able to distinguish between multiple tasks and perform them accordingly. This requires an

understanding of the contextual meaning of the tasks and the knowledge for executing them. In

this PhD, we aim to expand the capabilities of AI in robotics, especially in generalization and

solving complex tasks with reinforcement learning and imitation learning, to enable general-

purpose robotics with multi-task learning and generalization.

To accomplish such a task, the first requirement is enabling the robots to solve simple tasks

such as navigation or single-action operations. Regarding general-purpose robotic AI solutions,

neural network controlled bipedal and quadrupedal robots have been studied since the 90s.

These robots can theoretically navigate and operate in a wide range of environments but require

complex motion planning and a dynamically balanced gait. Their physical capabilities allow

them to be adapted to a wide range of work environments, especially when compared to wheeled

1

2 Chapter 1. Introduction

robots or stationary robots. However, while there have been studies done on the topic of stair

climbing and mobility in narrow spaces, gait control and navigation will require specialized

or high power consumption equipment, which implies additional weight and less payload

allowance, or shorter operation time. Moreover, the complicated nature of motion control also

implies a high number of learnable parameters in continuous space, and the training of such

a module will be extremely difficult. Therefore, it would be challenging to train an agent that

excels in these basic tasks while also being capable of solving complex reasoning tasks.

We circumvent this predicament by utilizing a concept similar to hierarchical reinforcement

learning (HRL). HRL is a framework that involves learning and decision-making at multiple

levels of abstraction. At the highest level, there is a goal-setting module that determines what the

agent should be trying to accomplish, such as navigating to a certain position, finding and picking

up certain items, etc. At lower levels, there are specialized modules that are responsible for

executing specific tasks necessary to achieve the overall goal, such as moving the robot forward

by a certain distance and turning the joins on its manipulator. We utilize this idea to develop

robotic systems, where the high-level decisions are made by an AI agent, and the lower-level

execution is “out-sourced” to lower-level expert network controllers, or other specialist software

solutions, which can handle the specific task with higher performance. Additionally, we can

utilize traditional methodologies in fields such as motion control and Simultaneous Location

and Mapping (SLAM) navigation as part of the lower-level control. These algorithmic methods

can calculate rather than predict the actions of the robot to achieve the optimal deterministic

solution with high confidence. The key benefits of these methods include precision, repetitive

reliability, and robustness.

1.1 Challenges with robotic AI

To keep a high precision in robotic action is challenging, especially in locomotion and navigation.

Be that grabbing an apple or moving to a specific spot on the map, researchers spend decades

on making these operations as precise as possible and eliminating as many errors as possible.

However, this precision is difficult for AI to replicate, as it often comes with an enormous amount

of additional training and over-fitting. This is counter-productive as the same function can

likely be performed by a lower-level control solution with better results and faster computation.

1.1. Challenges with robotic AI 3

Moreover, achieving precision in a continuous space would require an escalation in training

data and time, which does not necessarily translate to run time efficiency or speed. To achieve

precision, a large network is often required. This means more learned parameters and layers

to push forward during run time. In robotic applications, the onboard device often has a small

memory size and requires a low computation cost. A large network dedicated to precision on a

specific task is impractical in terms of reaction speed as well as power consumption.

Reliability plays a critical role in industrial settings. Industrial machinery often has fastidious

requirements for reliability, meaning that a new device must be able to operate continuously

for thousands of hours before any faults may occur. This requirement is a basic one for

most industrial production machinery, and most lower-level expert techniques can meet this

requirement. However, an AI-based solution often has several equally likely predictions, which

leads to uncertainty in the input-output correspondence. In terms of reinforcement learning and

imitation learning, the action prediction made by the network often has a close second choice in

probability. This in turn compromises the repetitive reliability of the system.

Robust error handling is a critical capability for expert solutions. Traditionally, error handling

and recovery are typically hand-crafted which ensures a quick solution whenever a known error

occurs. However, these solutions are usually one-size-fits-all, such as shutdown, cut power,

or restart. When the problem becomes more complex and requires generalizing from past

experience, AI-based approaches started to demonstrate their advantages. One category of study

in machine learning is fault prediction, where the AI network is trained to predict the possible

error occurrence in an industrial system. These studies often rely on years of collected data,

predicting known errors, and are often capable of generalizing to unknown ones.

Comparatively, the AI-based method excels in reasoning and contextual tasks such as identi-

fication, classification and evolving towards solving more complex tasks. From Deep Blue to

Alpha Go, machine learning techniques which are cheaper, faster and better in complex tasks

are invented at an astonishing speed. In the coming decade, we will get closer and closer to

crossing the barrier of the invention of strong AI which has multiple purposes, and is capable of

learning new knowledge and skill on its own. These tasks require a high degree of flexibility and

generalization (in particular extrapolating from known situations to similar unknown situations)

which is the area where AI excels. In the interest of improving the practicality of autonomous

4 Chapter 1. Introduction

robots being deployed in the field, we should make an effort towards unifying higher-level AI

with lower-level experts.

1.1.1 Unifying AI and Automation

By unifying AI with lower-level expert software, we can harness the benefits of both approaches

to create a composite architecture. This approach allows for higher-level decision-making AI

to perform complex tasks and make plans, which can then be executed by lower-level expert

software. This aligns naturally with reinforcement learning and imitation learning, where the AI

agent outputs actions to achieve a long-term goal. Expanding this approach to an architectural

scale allows us to control the entire robot using hierarchical reinforcement learning agents. To

be more specific, we hope the robot programmed in this mixed architecture will have the AI

deciding what the long-term goals or functions of the robot are, and how to execute the plan.

Then, a library of task-specific AI or software will handle the robot to execute the steps outlined

in the plan. This framework empowers us to focus on developing the multi-task learning and

generalization capability of the AI agent, thereby taking a step towards general-purpose AI. With

this approach, we can effectively solve increasingly complex tasks while still benefiting from

the precision, reliability, and robustness of lower-level expert techniques. Once we demonstrate

the practicality of this concept, we can further concentrate on complex multi-task learning and

the generalization of the AI agent. We view this as an opportunity to further robotic research in

collaboration with AI, representing a small step forward toward general-purpose AI.

1.1.2 Solving Complex Tasks

In the scope of this PhD, we focus on solving complex tasks using reinforcement learning and

imitation learning. We will first develop upon the concept of AI controlling non-AI functions

for robotic operation. Subsequently, we will delve into gaining a better understanding and

learning complex tasks in multi-task learning scenarios. Additionally, we will dedicate effort to

enhancing the generalization capability of these AI agents.

To define and learn a complex task, we must first establish a clear definition of what we mean

by a task. In this work, a task is defined as a specific piece of work or labour that an agent must

1.1. Challenges with robotic AI 5

complete within a finite space or environment, with a defined purpose and requiring a certain

number of actions or interactions from the agent.

For instance, let’s consider the task“Bring me a cup of coffee”. This task defines the purpose

of the agent as retrieving a cup of coffee. This task requires the robot to perform a series of

labour: locate the coffee machine, navigate to the coffee machine, make coffee and bring it

back. This labour has the implicit requirements of within a reasonable time and within the

reasonable working space of the robot. (otherwise, the robot might bring back the coffee after 3

years, or navigate to the other side of the world to make coffee) A task may contain sub-tasks. A

Figure 1.1: Make Coffee is a sub-task of Bring Back Coffee, and Make Coffee is itself a complex

task, as it contains multiple sub-tasks.

sub-task is a partition of a larger task and an be considered a task itself. it can also contain its

own sub-tasks. The sub-tasks within a task may or may not have related, either in ordering or in

reasoning. Sometimes, the sub-tasks are related implicitly through reasoning or timing. These

sub-tasks are typically executed one at a time, only beginning another task after completing the

current one.

In the coffee example, locating the coffee machine, navigating to the coffee machine, making

coffee and bringing it back are all sub-tasks of the original task. Each of these subtasks also

contains several sub-tasks, such as opening the door to the kitchen, moving towards the coffee

machine, checking if there’s already coffee, getting water, getting a coffee pod, etc.

While every task can almost infinitely separate into smaller sub-tasks, when a task is so simple

6 Chapter 1. Introduction

that it can be completed within a single expert instruction at the decision-making level, we

consider this an action. Action is the basic building block of labour which completes a task. The

form of action can sometimes be more complex than basic instruction, the acceptable level of

complexity depends on the level of abstraction in decision-making and is often environment

and task specific. For example, picking up a coffee mug is itself a complex task and requires

multiple steps to complete. However, when considering the entire task of bringing back coffee

at a high level of abstraction, picking up a coffee mug can be considered as an action rather than

a subtask.

This is where we embed the lower-level expert technique into the architecture. By utilizing these

techniques and treating them as actions, the AI model doesn’t have to reproduce these works

and can focus on more important decision-making. To navigate to the kitchen, the robot needs

to perform SLAM navigation and path planning, and then actuate itself. These tasks are all done

through expert methods, as they have mature solutions in their particular field. The AI agent

would treat them as actions rather than tasks. This will make the training process much easier

for the AI agent, as the action subsystem will utilize expert techniques to handle all the details.

However, this complex action process does make the environmental dynamics far more complex

for the RL agent, and model-based RL is no longer possible.

A complex task is a task which contains at least two sub-task, the task “bring back a cup of

coffee” is a complex task. In a simplistic simulation of reality, we can treat its subtasks such as

making coffee using a coffee machine as a simple action, the AI model only needs to know when

to perform this action but does not know how to excite this action. Even with this simplification,

the task is still a complex one. Fundamentally, to handle such difficult problems, robots should

have an understanding of the different tasks and often a series of tasks in a sequence. AI

which requires a large amount of data to train will have difficulty in dealing with a complex

environment with multiple tasks as well as performing them in a logical order. This is especially

difficult when the AI needs to operate in a dynamic environment, interacting and actively

changing its surroundings. In the “getting coffee” example, the environment includes a kitchen,

an office, and the hallway connecting them, but when the robot moves to another environment

where there are stairs, or a cafeteria involved, the strategies required to complete the same

task would change, and the robot’s behaviour would also need to adapt to the corresponding

environment. To overcome these difficulties of training an AI model for robots, it’s possible to

1.1. Challenges with robotic AI 7

Figure 1.2: The hardware setup greatly impacts the functionality and navigation technique

deployed on a robot, while the skill of flying cannot be used for a wheeled robot, the map built

by a drone can still be utilized.

rely on reinforcement learning and imitation learning. Reinforcement and imitation learning

have a natural advantage in semi-supervised, situational, and continuous learning for long-term

strategies.

The ability to operate in different environments with different behaviour entails the capability

to multi-tasking. Multi-task learning has been a fascinating and fast-growing field in the

reinforcement learning area. However, we still lack the understanding of what factors actually

affect the learning of multiple tasks. We hypothesize the latent memory of a policy network

is similar to a human’s memory system which follows the PD paradigm. Procedural memory,

or skill, is the memory required for the agent to perform a certain task in general. Declarative

memory, or knowledge, involves memory specific to the environment the agent is operating

in. In the running example, the capability of navigating to a certain location is a skill the robot

has, and the path to the coffee machine is knowledge. When the robot is moved to another

environment, like a cafeteria, the skill of navigation to a defined location is still preserved, but

the knowledge of the map layout of the office and kitchen is no longer useful. If we switch the

robot to a drone, the skill of navigation (on wheels) would be obsolete, but the knowledge of

the layout of the building would still be useful. We hypothesize the latent memory of a policy

network can be disentangled into two partitions each representing either skill or knowledge.

However, the inherent complexity of a task remains a challenge, as it often requires a large

number of steps to complete an episode. This is particularly true for tasks with terminal-only

8 Chapter 1. Introduction

sparse rewards. The longer the average trajectory is, the broader we can expect an unbounded

state space to become, which means lower sample efficiency.

The second challenge is generalization. In Imitation Learning, the data efficiency problem will

often manifest as a relatively restricted set of expert trajectories. As such learning to perform a

complex task often involves repetitive training on a small set of sample tasks. This can easily

lead to over-fitting on the training task set or the specific training examples of the tasks.

To address these challenges in solving a complex task, one reasonable approach is to simplify

the problem by breaking down the complex task into smaller, easier tasks. These simplified

sub-tasks can be broken down the simplified sub-task into other sub-task until they can be easily

learned. With the addition of utilizing the lower-level expert method as actions to complete

sub-tasks. We expect this architecture to be capable of multi-tasking, utilising matured robotic

software for simple tasks, and capable of solving complex tasks by utilising sub-tasking. We

expect to relieve robots from the limitation of a singular environment, allowing robots to adapt

to the diversity of modern social environments. In multitasking, we expect the agent can learn

the difference between skill and knowledge, which would accelerate the learning process in

multi-task learning, as well as increase the generalization capability of the agent. Finally, by

breaking down a long complex task into sub-tasks with easy-to-learn, quick-to-achieve sub-goals,

the AI agent will gain the ability to learn and solve complex tasks in a relatively short amount

of time with a good generalization performance.

1.2 Motivation

This PhD aims to advance robotic capabilities by enabling the performance of multiple complex

tasks at an expert level. The proposed approach involves utilizing reinforcement learning and

imitation learning to develop an agent that can deconstruct large, complex tasks into smaller,

easier sub-tasks. By successfully executing these individual sub-tasks, the agent can ultimately

achieve a solution for the overall complex task.

To achieve the objective of deconstructing complex tasks, it is essential for the AI model

controlling the robots to possess contextual understanding. This entails the ability to recognize

and adapt to different environments, resulting in different behaviour strategies. Human behaviour

1.2. Motivation 9

serves as an example, where we adjust our behaviour when entering different environments. For

instance, we adopt a slow and careful approach to avoid collisions in a china shop, whereas

walking down an empty hallway requires more speed than precision. Robots need to possess

a similar ability to understand the context of their environment and adjust their behaviours

accordingly. This enables them to perform better on multiple isolated tasks. As complex tasks

can often be broken down into multiple sub-tasks executed in sequence, the subsequent stage of

research will focus on the transition between tasks. Since each isolated task is associated with a

corresponding expert network, the transition between tasks essentially involves a shift from one

dominant expert network to another.

To enhance the transfer of learned knowledge between different tasks and improve generalization

to unseen tasks, we naturally draw inspiration from human behaviour. Humans possess the

ability to transfer skills and knowledge. When faced with a new problem, we can leverage our

experience of solving similar problems in different environmental settings. For instance, we can

drive a car in a new city without needing to re-learn how to drive. We simply need to familiarize

ourselves with the layout of the new environment. This suggests that if we can drive to work,

we should also be able to walk or cycle to work. Motivated by this observation, we hypothesize

that the latent memory of a policy network can be disentangled into distinct partitions. Each

partition would contain either the knowledge of the environmental context for a given task or

the generalizable skill necessary to solve that task. By disentangling these components, we

can potentially enhance training efficiency and provide the agent with better generalization

capabilities when facing unseen combinations of skills and knowledge.

Once the robots have determined the optimal order to complete a set of given tasks, the final

step of this PhD will be to enable the robots to break down a single complex task into multiple

manageable sub-tasks. This ability which would allow the agent to generalize to previously

unseen tasks with little to no supervision is a key challenge in modern machine learning research.

It is also a cornerstone of a future “General AI”. Any artificially intelligent agent deployed in a

real-world application must adapt on the fly to unknown environments. This can be challenging

for complex tasks which require many timesteps or large numbers of subtasks to complete. These

“long horizon” tasks suffer from sample inefficiency and can require extremely long training

times before the agent can learn to perform the necessary long-term planning. The ultimate

objective of this PhD research is to enhance the learning efficiency for standard long-term tasks

10 Chapter 1. Introduction

and achieve generalization to previously unseen tasks. By addressing these challenges, we aim

to improve the overall capabilities of AI agents in real-world applications.

With this AI framework, the application scenarios of robots could be expanded, allowing faster

development of AI-based robotics and making a step towards true multi-purpose robots. The

summary of the objectives which set a path to the overall aims of this thesis are as follows:

1. Develop a multi-task agent, with emphasis on navigation. Through multi-task reinforce-

ment learning, allows robots to perform visual navigation tasks in multiple environments

without re-training.

2. Develop a cross-task agent. Allowing the robot to handle the transition between tasks’

corresponding expert networks.

3. Develop a disentangling learning framework, which would improve training efficiency

and generalization capability over unseen combination sets of skill and knowledge.

4. Develop a complex task-solving agent, which utilizes the concept of deconstructing the

complex task into sub-tasks. This agent should have the ability to perform reasonably

well in unseen tasks as the focus of this aim is generalization capability.

1.3 Contributions

The first technical chapter introduces the work of Multi-environment Reinforcement-Learning

in Navigation (MERLIN), which propose a multi-task learning-based navigation technique.

This agent enables the robot to learn to behave differently in visual navigation tasks for dif-

ferent environments while also learning shared expertise across environments. The work is

published in The International Conference on Robotics and Automation (ICRA) 2021 with an

oral presentation.

The second technical chapter consists of the work of Skill and Knowledge Independent Latent

Learning (SKILL-IL), which introduced a new perspective for learning transferable content

in multi-task imitation learning. This work attempted to disentangle the latent memory of a

policy network into two partitions each containing the skill and knowledge learned during

1.4. Summary 11

training. This allows for better generalization capability as well as improved task performance.

This work is published at The IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS) 2022 with an oral presentation.

The third technical chapter introduces Compositional Adaptive Subgoal Estimation (CASE).

This work utilizes the sub-goal approach in imitation learning to improve the learning efficiency

for long-term complex tasks, as well as improve the generalization over unseen tasks. This work

is presented at ICRA 2022 workshop.

1.4 Summary

In summary, the main contribution of this thesis is to advance the research on reinforcement

learning and imitation learning within the context of multi-task learning in robotics. The

subsequent chapters will follow a structured format, starting with a literature review where the

relevant background theory and research will be discussed. Each section of the literature review

will correspond to a specific technical chapter. The three chapters followed will be the technical

chapter, explaining in detail the research and its evaluation. The MERLIN contributions of

Chapter 3 satisfy the first and second aims of the thesis. The SKILL-IL in Chapter 4 satisfies

the second aim. Finally, Chapter 5 addresses the final aim of CASE. The final chapter concludes

the research work in this thesis, it presents a summary of the contributions and the limitation

of the research, and clarified possible future work directions. The final chapter will serve as

the conclusion of the research work presented in this thesis. It will provide a summary of the

contributions made, discuss the limitations of the research, and outline potential directions for

future work.

12 Chapter 1. Introduction

Chapter 2

State-of-the-Art

In order to explore multi-task autonomy for robotics, this PhD relies on a broad range of topics,

both fundamental and task specific. This starts with the problem of visual navigation as an entry

point to creating a system where the AI agent is controlled but the traditional robotic methods

are in place to handle the actions. The current research focus involving visual navigation often

emphasises on semantic-based mapping and navigation, as a semantic map is more meaningful

with condensed information compared to landmark or featured-based visual navigation.

To seek a better understanding of multi-task learning in an Reinforcement Learning (RL) and

imitation learning framework, we make effort to disentangle the learned latent space with

inspiration from psychological studies. More recent studies on RL focus on the explainability

of the agent and solving complex tasks with unpredictable variations in the environments.

Researchers are also making effort in inverse reinforcement learning which seeks the optimal

reward function rather than the optimal policy. Imitation learning and reinforcement learning

are both still making progress in data efficiency and generalization, which remain the biggest

challenges. Multi-task learning researches focus on conquering the challenge of scalability and

making attempts with combinatorial generalization.

Finally, we further export the complex multi-task solving with sub-goal and compositional

vectors. The sub-goal technique is often applied to navigation problems, but some researchers

have applied the idea to reinforcement learning and imitation learning as the sub-goal provides

an easily learned target which eases the learning process. Compositional vectors are often used

with complex tasks, especially in robotic-related tasks and combinatorial generalization.

13

14 Chapter 2. Literature Review

This chapter introduces some state-of-the-art studies in these fields and provides context for our

work. We will first explore the literature on deep reinforcement learning and imitation learning,

then investigate the literature around sub-goal estimation for complex multi-task learning, and

lastly the literature on the specific topic of visual navigation.

2.1 Deep Reinforcement Learning

Reinforcement learning refers to the method of machine learning in which an AI agent performs

actions to maximize reward gain over a long-term episode. An agent is expected to learn

strategies to obtain better results and form a policy which guides the agent’s actions. Similarly,

imitation learning also learns an action policy by mimicking an expert demonstrator. This differs

from supervised learning as reinforcement learning focuses on making continuous sequential

decisions that depend on the current input and the previous states, versus supervised learning

which makes independent predictions for each input. This long-term planning capability fits

well with robotic applications, as we expect the agent to perform complex tasks which require a

long-horizon strategy. This section will review the current works in the field of reinforcement

learning and imitation learning.

2.1.1 Reinforcement Learning

The basic concept of RL is to maximize the long-term cumulative reward through trial and error.

The AI model, or agent, is placed in an environment which it can interact with and obtain a

reward for its actions. The learning process of RL is unsupervised and is thus suitable for any

problem without pre-labelled data or which requires long-term strategies. The most common

RL methods are value-based approaches, such as Q-learning [110]. In Q-learning, the agent

establishes and maintains a lookup table of expected reward value for specific actions it takes in

any given state. The agent will be able to take the action that has the largest Q-value for the

maximum expected reward. As the Q-value table requires discrete states, Q-learning and other

value-based methods are often unable to handle continuous actions and states. To resolve this,

another approach is policy-based methods such as policy gradient where a policy estimates the

action from the current state [37]. As the policy can continuously compute the agents’ actions,

2.1. Deep Reinforcement Learning 15

this would enable the agent to handle continuous actions and time.

A typical policy-based RL algorithm is Shulman’s 2015 work on Trust Region Policy Opti-

mization (TRPO)[92]. This is a classic RL algorithm that utilizes a different approach. Trust

region methods use a model function to estimate the objective function, and by optimizing

the model function, perform better actions. The size of the policy update is constrained to

monotonically decrease to ensure convergence. Schulman’s later work in the Proximal Policy

Optimization Algorithms (Policy Optimization Algorithm (PPO) and PPO2) improved upon

Trust Region Policy Optimization (TRPO) [93]. These algorithms use a “surrogate” objective

function to determine the next action while interacting with the environment. It assumes that

with similar state input, the agent should take similar action, which lowers the rate and necessity

of re-sampling. Instead of constricting the model functions, PPOPPO applies a penalty to

policies that differ from the objective function.

Another RL algorithm with a combined approach is the work of Mnih et al. in the Actor-

Critic (AC) series of techniques [74]. These algorithms combine the Q-learning and policy

gradient by creating a policy-based actor. This actor chooses actions and then a value-based

critic will score these actions. This allows the handling of both discrete and continuous problems,

as well as updating more regularly for better learning efficiency. In the more advanced version:

Asynchronous Advantage Actor-Critic (A3C), the algorithm allows asynchronously update to

and get updated by the main policy by multiple agents, this advancement greatly increased

computation and sampling efficiency, allowing for faster training given the growing computing

power. The multi-agent support also enabled RL in multi-task learning, allowing one agent to

learn multiple tasks simultaneously. Due to its asynchronous nature, it is an ideal fit for multi-

task learning by allowing agents to learn multiple tasks simultaneously, and update to a single

main policy. However, these techniques suffer from high sample complexity and brittleness to

hyperparameters. Later work in [39] attempted to solve these issues by maximizing expected

reward as well as action entropy. This ensures success in the task while taking providing

as much variance in the selected actions as possible. This improves stability with respect to

hyperparameters and accelerates training.

In a more recent development, reinforcement learning is treated as a form of representation

learning. The learned latent is manipulated to better represent the information. The work of

16 Chapter 2. Literature Review

De et al. [31] regularized the state representation during reinforcement learning. The work of

Bellemare et al. [11] is based on geometric properties of the value functions and utilized the

value function as an auxiliary task during reinforcement learning. It adapts the representation

to minimize the approximation error of the value function. The work of Chandak et al. [20]

decomposed a policy into one component which chooses actions in an abstraction representation

space and one component which realizes these representations into actual actions The work of

Carats et al. [118] addresses the data efficiency challenges of learning useful representations.

They undertake representation learning with exploration through prototypical representations,

which simultaneously serve as a summarization of the exploratory experience and observations.

2.1.2 Imitation Learning

Imitation learning is very much similar to reinforcement learning. The learning goal of imitation

learning is to imitate the actions of an expert demonstrator and learn an action-based policy

which performs the task as the expert would. We also explore the use of imitation learning

in this PhD, along with reinforcement learning. Typical Imitation Learning (IL) approaches

[90, 96, 27, 41] utilize a dataset of expert demonstrations to guide the learning process. Initially,

imitation learning relied heavily on supervision. However, these approaches perform poorly

with increasing episode length and have issues with generalization. To improve upon this, the

work of Levine et al[61] uses expert trajectories to optimize the action policy rather than imitate

the expert exactly. Later works move away from a passive collection of demonstrations. Instead,

they exploit the active collection of demonstrations from experts. To this end [102] create an

interactive expert which provides a demonstration as a response to the actions taken by the

agent.

In more recent studies, imitation learning also has been found to have a strong connection

with inverse reinforcement learning. Inverse reinforcement learning assumes an underlying

optimized reward function and attempts to recover it, this mirrors the learning goal of imitation

learning. The work of Jonathan et al. [44] extracts a policy with inverse reinforcement learning,

making an analogy between imitation learning and generative adversarial networks which

derive a model-free imitation learning framework. The work of Jiaming et al. [98] focused on

multi-agent imitation learning. Their framework builds upon a generalized notion of inverse

2.2. Disentanglement and Generalization 17

reinforcement learning. This helps partially mitigate the issues with training data efficiency.

In more relevance to RL, [101, 100] aim to combine IL with RL, by using IL as a pre-training

step for RL. The work of Cheng et al. [26] performs randomized switching from IL to RL during

policy training to enable faster learning. The work of Murali et al. [78] uses expert trajectories

to learn the reward function rather than the action policy. In this PhD, we use imitation learning

to speed up the training of an agent which is evaluated in RL-based interactive environments,

this greatly increases the data efficiency during training.

Additionally, the combination of imitation learning and multi-task learning has gained some

attention in more recent studies, especially with relevance to robotics. The long-term policy

planning capability of reinforcement learning and imitation learning combined with multi-task

learning suits well with robotic applications’ requirements. The work of Avi et al. [97] utilized

the concept of a multi-task setting, treating a failed attempt at one task as a successful attempt at

another, and leveraging the robot’s own trials as demonstrations. Junhong et al. [116] proposed

a multi-headed imitation learning framework where each task is treated as a sub-policy and

shares information among related tasks by summing the activations of all sub-policies. The work

of Zhao et al. [69] explores the one-shot imitation learning capability of ambitious multi-task

setup in vision-based manipulation tasks. They integrate a self-attention model with a temporal

contrastive model for better task disambiguation and more robust representation learning. Kipf

et al. [54] utilized the idea of sequence segmentation by encoding sequential data which can

be re-composed into new combinations to achieve generalization over longer tasks in unseen

environments. These works all rely on an imitation learning framework, either utilizing multi-

task learning concepts or applying the imitation learning method to the multi-task learning area.

It shows the potential of this combination which we explore further during this PhD.

2.2 Disentanglement and Generalization

The biggest open challenges in multi-task RL are sample efficiency and generalization. In this

thesis, we will explore task disentanglement as a solution to this. As such, we will now present

a review of the current state-of-the-art in learned disentanglement.

18 Chapter 2. Literature Review

2.2.1 Multi-Task Learning

Multi-task learning is generally defined as a model capable of performing more than one task

after training. It is a rapidly growing field that appears frequently in both supervised learning as

well as RL. Multi-task learning aims to improve the learning and performance of a model for

several tasks. These tasks are not identical but can be related to varying degrees.

In multi-task learning, the relevance of tasks is an elementary factor in determining the best

approaches: Feature-based models, first presented by Obozinski et al. [80], assume all related

tasks can be represented with similar feature representations and can be acquired through the

transformation of the original features. The model would learn this transformation for each task

and compute the output. Later works often improved upon this approach with better optimization

methods. Such as the work of Liu et al. [65] which uses l2, 1-norm for minimization and Lee et

al. [60] which takes advantage of the structure of the data and prior information for regularized

regression. However, they all require the task and data to be closely related, or in a similar

structure.

In contrast, parameter-based models would encode the relatedness of tasks into model parameters.

These approaches are better at handling tasks which are less related but still assume that the

tasks are related enough to be represented through a parameter matrix[121]. Another common

approach is a model consisting of two parts with one part a shared parametrization (the backbone)

used by all tasks, and one part (the head) being unique to each task [99, 67]. The model is

optimized by minimizing the training loss of these combined features across all the tasks.

Instance-based approaches maintain a collection of data instances from all tasks and estimate the

relevance of each stored instance to the new task at hand. The combined weights are then used

to learn each task[1]. For a single robot, all the tasks it needs to learn will likely be similar or

somewhat related [122]. It would be ideal to implement and train a single multi-tasking network

that will be able to handle these tasks.

In multi-task reinforcement learning, numerous works have shown the ability of a single agent

to perform at an expert level in multiple Atari games using deep Q-learning [75, 7]. These

works, such as the work of Liang et al. [63], have proven reinforcement learning’s potential

in multitasking. In the RL environment, the model makes no assumption of the relatedness of

tasks, which enabled many different approaches such as policy representation for each task and

2.2. Disentanglement and Generalization 19

regionalized policy clustering, the work of Kulkarni et al. [56] employs a hierarchical Bayesian

approach to model the distribution over Gaussian process temporal-difference value functions

for each task, and A3C-based deep reinforcement learning approach.

The challenges these approaches all face are negative learning and scalability. Negative learning

refers to when agents ‘forget’ previously learned knowledge while learning a new task. The

most popular solution to negative learning is through the use of a gating mechanism, where the

network is only allowed to update part of itself during the training for each task. This idea is

first proposed by Rusu et al. in the work of Progressive Neural Network (PNN) [87], where

the network freezes itself and adds new resources for the new task. In the training process of

the new task, the network stops updating its current weights and then widens all the nodes to

provide new resources for learning new knowledge. Weights from previous tasks will be used

to help the learning but won’t be updated during the training session for the new task. This

approach does provide a good solution to the problem of negative learning. However, it fails in

scalability, due to increasing learnable parameters and poor sampling efficiency with respect to

the increasing complexity of tasks.

To improve sampling efficiency, the work of Andrychowicz et al. [4] and Landolfi et al. [58]

propose the use of a memory bank or model-based approach during sampling. For parameter

size, a common solution to this is using model compression techniques for data efficiency,

such as the work of Teh et al. in Distral [103], where the network shares a distilled policy that

captures the common behaviours across all tasks and allows workers to solve their own task

while staying close to the main policy. The work of Xihan et al. [115] disentangles the learned

latent into subdomains containing different information regarding the skill for solving each

individual task and the knowledge of the environment. Another approach by Oh et al. [81]

presents a hierarchical architecture. Here a meta controller learns to use the acquired skills to

execute a sequence of instructions after learning useful skills that solve subtasks.

In more recent studies, reasoning-related multi-task learning has gained some attention. A

branch of the research focuses on solving complex tasks which can be decomposed into a

sequence of several smaller sub-tasks. The work of Bozkurt et al. [16] introduces a model-free

RL approach which maximizes the probability of satisfying the given linear temporal logic

objective. The work of Xihan et al. [113] and Chane et al. [21] utilize the concept of sub-goals

20 Chapter 2. Literature Review

to facilitate the learning of long-horizon complex tasks. These works solve the problem by

treating the reasoning task as a series of sub-tasks and predicting intermediate states.

In multi-task learning, most prior research focuses on allowing the agent to perform multiple

tasks without considering the varying similarity between tasks. The transfer of information

between tasks is also not normally addressed explicitly. In [88], the agent was trained to

learn how to perform a series of tasks in a sequence, sharing some weights in earlier layers

and with independently trained heads added for each task. Yee et al. [104] expanded on

this by maintaining a shared policy between the independently trained agents and distilling

shared information from task-specific experts. Later research expanded this idea to hierarchical

architectures. This allowed the agent to perform multiple sub-tasks as a part of a longer, more

complex task. In the work of Shu et al. [95], the multi-level hierarchical policy decomposes a

complex task into multiple levels of sub-task, with each having human instruction as a reference.

In hierarchical multi-task research, sub-tasks are often learned through linguistically categorised

representations of a specific set of tasks. The representations used by these systems sometimes

unintentionally explore the skill/knowledge paradigm. For example in the work of Andreas et al.

[3], the policy sketches annotate tasks with sequences of subtasks. Each sub-task is explained

as a combination of action (get, use) and a goal (wood, workbench). The work of Oh et al.

[81], introduced the innovative “analogy” representation of subtasks. Here the target objects

and the actions which can be applied to a target object are independent. This makes it possible

to share information between tasks by forcing the representation of actions and objects to be

independent in the embedding space. This approach allowed the agent to generalize to unseen

combinations of actions and objects. The work of Xihan et al. [114] addressed a single type of

task but focussed on learning different behaviours in different types of environments. The work

of Devin et al. [33] introduced Compositional Plan Vectors (CPV), in which instead of learning

the representation of each subtask, the network learns the embedding for a composition of a

sequence of sub-tasks. This allows the decomposition of tasks without hierarchical or relational

supervision. Our work bridges these different ideas, learning a latent space where not only can

subtasks be composited, but where the skill and knowledge components of subtasks can be

shared and permuted. This makes it possible to solve never before seen task combinations, as a

step towards zero-shot IL and general AI. These sub-task-based researches, often unintentionally,

comply with the procedural/declarative paradigm when choosing the hierarchical model of the

2.2. Disentanglement and Generalization 21

agent.

In this PhD, we initially developed a multi-branch gated network somewhat similar to PNN[87]

but with soft blending and lifelong training of all branches training simultaneously on all tasks,

instead of sequential training and freezing weights. This framework makes no assumption about

the relatedness of tasks and mitigated negative learning effects through attention-based soft

gating.

2.2.2 Skill and Knowledge Learning

Task disentanglement has its roots in psychological studies with amnesiac patients and non-

amnesiac patients[111]. This has shown that human memory can be separated into procedural

(skill-based) memory and declarative (knowledge-based) memory. Amnesiac patients are able

to learn a set of spatial sequence-based tasks without awareness of the repetition. Neurotyp-

ical subjects show similar results and are able to solve the tasks without explicit declarative

knowledge of the task. These studies have shown the different types of memory are not fully

entangled in human learning.

Prior work in knowledge acquisition is often in the field of pedagogy, language acquisition,

and neurobiology [105, 86]. Studies have determined the declarative memory system heav-

ily depends on the hippocampus, medial temporal lobe and neocortical regions of the brain.

Meanwhile, the procedural memory system involves a network based on frontal ganglia circuits.

When consolidating new information, each system activates different regions of the brain.

In multi-task machine learning research, certain works would unintentionally avoid the entangle-

ment of different types of memory. However, typical research would use a randomly generated

environment and multiple types of tasks. This research often treats each task as a single entity

[88] or as a unit part of an architecture[95]. In this chapter of this thesis, we attempt to explicitly

disentangle the different types of latent subdomains within each task embedding. This enables

us to improve data efficiency and share information across tasks in multi-task learning, as well

as improve the understanding and explainability of multi-task learning.

22 Chapter 2. Literature Review

2.2.3 Disentangled Representations

The state of the art for learning disentangled representations is dominated by VAE approaches.

VAEs, or variational auto-encoders, are generative models which re-parametrize a latent space

as a distribution to be sampled from. Compared to other popular generative models such as

GAN, the VAE has been shown to be more robust and stable [18]. Each dimension of the

latent representation learned by the VAE is generally considered an independent generative

factor [30]. These elements in the representation can capture and isolate certain underlying

factors without affecting other elements in the latent space. Although they are generally

unsupervised, many authors have observed that the latent factors learned by a VAE often

represent disentangled human interpretable concepts. A great deal of research has been done to

explore the disentanglement of these learned representations further[18]. The work of Zheng

et al. [123] disentangles the latent space into the label relevant and irrelevant dimensions for a

single input. The work of Abdul et al. [6] augmented a standard VAE with an inverse-Wishart

prior to encouraging independence in the learned latent dimensions. In the works of Kumar et al.

[57] and Chen et al. [25], new objective functions are proposed to encourage disentanglement.

In beta-VAE and the later work of Burgess et al. [42, 111], a variation of the VAE framework

is proposed which balances the latent channel capacity and constraints with reconstruction

accuracy. Allowing robust learning of disentangled representations without the trade-off in

reconstruction quality.

However, these works generally rely on unsupervised learning making it challenging to impose

prior knowledge about the generative factors or to share information between examples[43]. The

work of Vowels et al. [107, 108] overturned this paradigm through a weakly-supervised approach

which isolates domain knowledge in the training process of a gated VAE. This framework makes

it possible to learn latent subdomains, by appropriately partitioning the training based on shared

properties. The learning of the latent factors is still unsupervised, but additional losses are

provided as a soft constraint to group the factors into subdomains. This method was shown to

be more informative and has a better quality of disentanglement. Chapter 4 takes inspiration

from this and proposes an algorithm to learn latent skill and knowledge subdomains explicitly.

2.2. Disentanglement and Generalization 23

2.2.4 Subgoal Search

For long-term composite tasks, another obvious form of disentanglement is the separation

into subtasks. Although often not considered a subset of disentanglement, the subgoal search

literature is rich. The most common use of Subgoal Search is in the context of path planning [12].

Here, specific landmarks or semantic regions are recognized as a subgoal for the robot to navigate

towards. These tasks often use existing content within the observation as the subgoal, especially

in vision-based navigation tasks. In [34], a two-level hierarchical approach is utilized to integrate

model-free deep learning and model-based path planning with a low-level motion controller and

a high-level path planner providing subgoals. The work of Savinov et al. [89] proposed a semi-

parametric topological memory. This memory stores connectivity of locations corresponding

to the nodes (treated as subgoals during path planning), and planning for navigation for goal-

oriented tasks. The work of Liu et al. [66] introduced a visual planning method built on [89].

An energy-based graph connectivity function with a conditional VAE model generates images

given a context describing the domain. Combined with hierarchical reinforcement learning,

the work of Kim et al. [52] presents an RL framework with a reduced action space guided by

landmarks and generates subgoals towards landmarks with more informative potential.

More recently there has been significant research on extending Subgoal Search beyond nav-

igation tasks, particularly exploring the interaction with reinforcement learning. [9] is one

of the earliest works combining hierarchical reinforcement learning with subgoal discovery.

Here, high-level policies discover subgoals while low-level policies specialize in executing each

subgoal. In a similar approach, [52] trains a high-level policy with a reduced action space guided

by landmarks. [120] generalized this by looking for a sub-goal in a k-step adjacent region of the

current state, within a general reinforcement learning environment. [62] builds upon this stable

representation of subgoals, and proposes an active hierarchical exploration strategy which seeks

out new promising subgoals with novelty and potential. All of these works discovered subgoals

automatically, removing the need for hand-crafted subgoals. However, they all maintained the

hard boundary between the subgoals. The work of Yu et al. [119] focuses on multi-subgoal

robotic navigation tasks. Specifically, the framework builds a sub-graph network, which is a

graph neural network with the history of all agents. Then subgoal selection is conditioned on

this graph network where the next best node is selected.

24 Chapter 2. Literature Review

The majority of the research in subgoal estimation focuses on optimizing the generation or

assessment of a candidate sub-goal state. However, the work of Czechowski et al. [29] shows

a simple approach for efficiently generating subgoals which are precisely k-steps-ahead in

reasoning tasks. This is similar to the approach we propose in chapter 5 which chooses a

possible “near future” subgoal, which adapts over time. This allows the policy network to focus

on learning a more generalized skill for solving the overarching task rather than attaining any

specific subgoal. This in turn improves the performance of our technique when encountering

unseen tasks, and provides robustness by allowing recovery from errors.

Combining subgoal search with imitation learning is also getting attention in recent years, often

combined with a hierarchical approach. Here, the idea of subgoals is utilized to generate an easy

learning goal for the agent. The work of Paul et al. [83] uses a form of clustering on the expert

trajectories to decompose the complex task into sub-goals. By learning to generate sub-goal

states, the network obtains reward functions which direct the RL agent to move from one

subgoal to another. However, the lack of compositionality in the model and the rigidity of the

sub-goal prediction limit its generalization capability. The work of Wang et al. [109] proposed

a subgoal-conditioned imitation learning framework without prior knowledge to encourage

diverse representations among different subgoals. Applying this combination to a dialogue

generation system with a multi-task learning approach, the work of Hsu et al. [46] attempts to

build a multi-domain dialogue system with multi-task generative adversarial imitation learning.

Their technique decomposes each of the complex tasks into several subtasks and hierarchically

builds the policy.

2.3 Visual Navigation

Navigation is one of the most essential and fundamental operations in robotics and remains

a major unsolved research question. It consists of a wide variety of studies extending from

hardware design to deep learning based algorithms. Visual navigation is the field of study in

navigation where the system mainly relies on visual input rather than other sensors. The natural

advantage of visual navigation is visual information can easily be fed into a CNN-based deep

learning framework. In practice, visual sensors are cheap and consume little power compared to

active sensors like lidar. Additionally, visual navigation is very similar to how humans normally

2.3. Visual Navigation 25

behave, this opens many possibilities to mimic human behaviours. This section will focus on

robotic navigation, more specifically the topic of visual navigation.

Traditional offline maps and obstacle-based navigation methods require a detailed global map of

the entire environment. Most commonly a 2D occupancy grid, or virtual force field [51][14].

These global map approaches are generally extremely reliable, but collecting the map beforehand

may be challenging, and they can fail if the map is not kept up to date. Because of this, SLAM

algorithms were developed. This class of algorithm combines navigation with exploration to

build a map online. In practice, SLAM may require sensor fusion for reliability and mapping can

be computationally expensive. The cumulative error and environment complexity combined with

uncertainties in sensors are huge problems for navigation methods in these approaches[82, 13].

Works in SLAM often don’t address the exploration methods. A common practice in industrial

applications is to combine the two approaches above, having a human who controls the robot

during exploration and builds the map with SLAM techniques, and then using the map for

autonomous navigation[59]. This approach eliminates a lot of complexity in exploration as well

as adds stability to the map-building process. More recent mapless navigation techniques such

as optical-flow-based and appearance-based matching are more closely related to the study of

visual navigation.

Visual Navigation relies on vision as the primary source of information for navigation, compared

to other navigation methods which rely on distance sensors. In map-based approaches for visual

navigation, visual input is used mainly for landmark tracking. The algorithms detect landmarks

on the camera input and track them in the following frames to determine the position of the

robot[48, 40]. Another approach is to let the robot explore the environment and instead of a

map, the robot builds a feature representation model of the environment[77]. Based on this

idea, [24] explores navigation with topological maps and natural language instruction. The

approach utilizes attention mechanisms to predict a navigation plan which is then executed

with low-level actions. However, while classic map-based approaches are the foundation of

artificial intelligence based visual navigation solutions, they still have difficulty handling large

or complex spaces. These complexity and scaling problems are the root cause of current robotics

being limited to a single working environment.

Mapless and AI-based navigation is becoming more popular. Mapless approaches [79], include

26 Chapter 2. Literature Review

two main solutions: flow-based tracking (also known as visual odometry) and Appearance-based

matching. Flow-based solutions estimate the motion of objects by tracking the motion of

features throughout a sequence of visual inputs [45, 68]. Appearance-based matching solutions

rely on prior knowledge from stored images of the environment [53]. The robot will try to

match the current view with the stored images to localise and navigate [124, 8]. This idea

of using learned features to predict the agent’s position has been fundamental for AI-based

localization and navigation. Notably, the work of Kendall in PoseNet [50] uses a convolutional

network for real-time camera relocalization where the model is trained on labelled images of

the environments. Recently, this idea has been extended to fully differentiable multi-hypothesis

localization[72].

More reinforcement learning-based navigation techniques have emerged in recent years. The

use of a semantic map with an attention mechanism is popular among these works. Graph

convolutional networks are used for incorporating a prior knowledge graph into deep reinforce-

ment learning for navigation tasks [117]. In target-driven visual navigation, the semantic map

technique is employed by learning priors over the relative arrangement of objects in a scene

[22]. The work of Ishihara et al. focuses on an end-to-end autonomous driving agent with

multi-task learning capability[47]. Their approach also utilizes an attention mechanism for

semantic segmentation and depth estimation. The concept of lifelong learning also applies

to robotic navigation [64]. The lifelong learning scheme allows the robot to navigate in new

environments while not forgetting previous ones with a self-improvement strategy which dy-

namically increases navigation performance. The work of Seifi et al. [94] improves on active

visual exploration with self-attention and a contrastive stream on multiple tasks. The work of

Morad et al. [76] utilized curriculum learning with deep reinforcement learning to navigate

through unknown cluttered indoor environments to semantically-specified targets.

We approached the problem of multi-environment navigation through target-driven navigation,

which is a branch of appearance-based matching. This approach employs the use of deep RL

which does not require supervised training for landmarks or features. The work of Zhu et al.

[124] presents a State-Of-The-Art (SOTA) target-driven visual navigation solution. The model

they proposed is an actor-critic model which has a policy function for both the goal and the

current state as input. This approach allows for better generalization and enables the model to

train in a simulated environment through reinforcement learning. The work of Mayo et al. [70]

2.4. Summary 27

also focuses on target-driven visual navigation with a spatial attention probability model. This

encodes semantic information about observed objects as well as spatial information about their

placement. Our work in chapter 3 takes a similar approach to attention-based spatial reasoning.

However, we emphasise environmental properties to inform general navigation strategy rather

than specific objects within the scene.

2.4 Summary

This chapter presented overviews of the current state-of-the-art techniques in the fields of

reinforcement learning and imitation learning, disentanglement in VAEs, subgoal search, multi-

task learning, and visual navigation. The remainder of this thesis will attempt to combine

these fields into a multi-task capable, reinforcement and imitation learning enabled, hierarchical

robotic system.

Each of the fields mentioned above has some limitations which can be addressed by combinations

with other fields’ techniques and ideas. In this thesis, we present a series of contributions which

address these limitations and attempt to further the progress towards a more applicable AI

system for robot deployment. In the next chapter, we will first prove the validity of our robotic

system where the AI agent commands low-level operation functions to achieve traditional

robotic tasks. More specifically, we will enable a reinforcement learning agent with multi-task

learning capability to perform visual navigation tasks in multiple environments. In Chapter4,

we will present the work where we attempt to disentangle the learned latent space into skill

and knowledge subdomain following the PD memory paradigm. We show that the learned

skill and knowledge in multi-task learning agents can be disentangled, which will enable the

generalization of unseen tasks, and improve the efficiency of information sharing. In Chapter5,

We utilized the idea of sub-goal to solve long and complex tasks with imitation learning multi-

task capable agents. Together, these contributions will collaborate and drive an autonomous AI

robotic system, capable of solving complex tasks and lay the foundation for future work.

28 Chapter 2. Literature Review

Chapter 3

Robot in a China Shop: Using

Reinforcement Learning for

Location-Specific Navigation

Behaviour

3.1 Problem Definition

As technology advances, the potential applications of modern robotics become more diverse. We

are assigning more tasks to robots in more places and exposing them to more difficult challenges.

No longer fixed in the assembly line repeating the same motion, robotics has progressed from

vacuuming a room to delivering take-out food and bartending, from working the assembly line

to the management of an entire factory. As their functionality expands, so does the variety of

possible working environments. Currently, Robots are often designed to operate in a single type

of working environment. The working environment is often known, any interactions that may

occur within this workspace are pre-defined and known by the robot, and a human operator

is ready to step should anything happens. A larger space, such as a house, can be treated as a

single environment (although this is an oversimplification) and dealt with as such. However, this

is no longer possible when the scale of the working environment of a robot could encompass a

29

30 Chapter 3. MERLIN

large building or an entire city. This environmental limitation should be addressed as soon as

possible.

In the field of reinforcement learning, it is natural to look to human behaviour for guidance

in order to free robots from the constraints of a single environment. When we enter a new

environment, we frequently behave differently, and this behaviour change is not caused by the

task at hand, but rather by the change in environment. When we walk into a china shop, we

walk gently and carefully to avoid any collision, as opposed to walking down an empty hallway,

where we don’t need to worry about breaking anything and speed through. Robots could utilize

this ability by comprehending their surroundings and adapting their behaviour accordingly.

Furthermore, as humans, we, compartmentalise our knowledge and memory so that we can

effectively work with only a subset of them rather than all of them at once. We don’t need

to remember the city map when we go to the grocery store, even though both are important

navigational information. This concept serves as additional motivation for our multi-task

learning approach.

In this chapter, we define the combination of these abilities to be the problem of multi-

environment navigation: A robot, controlled by a single artificial intelligence model, should

have the ability to detect and navigate through several different types of environments. In

each other kind of environment, the artificial intelligence model will use a strategy fit for the

type of environment it is operating in. To solve this problem, we focus on the field of visual

navigation, as visual input information (relative to other sensory inputs) will be most effective

in understanding the difference between different environment settings. In particular, we focus

on navigation from visual sensors and propose a new network architecture: Multi-environment

Reinforcement-Learning in Navigation (MERLIN). However, the proposed techniques could

also be applied to input data from other sensing modalities such as lidar and sonar.

Visual navigation is an active field of study, however, most of the previous work concentrates on

enhancing navigation accuracy within a singular environment. In this study, we present a hierar-

chical reinforcement learning architecture where visual navigation in multiple environments

can be achieved. This architecture deploys a Siamese network feature extractor and numerous

expert networks with attentive gating, paired with a particular classification branch to encourage

the network to recognise the difference between surroundings. We find our model outperforms

3.1. Problem Definition 31

Figure 3.1: The target position view and current position view are given to the agent, the

environment classifier encourages the network to distinguish between environments in earlier

layers, while multiple expert networks’ outputs are blended to produce the final policy.

the state-of-the-art visual navigation models. Furthermore, by encouraging environment classifi-

cation, we are able to achieve better results in learning performance, accelerating learning in

multi-environment navigation.

In summary, we define a the problem of multi-environment navigation and propose a new model

for approaching this problem. The main contributions of this study are as follows:

1. Define the problem of multi-environment navigation.

2. Propose a new multi-task learning approach to visual navigation.

3. Propose the inclusion of an intermediate environment classification loss to accelerate

learning.

A preliminary version of this work was presented in ICRA 2021 [114]. This extended ver-

sion greatly enhances the environmental recognition approach and evaluation. In the original

32 Chapter 3. MERLIN

manuscript, the network identified a unique label for each individual environment. This limited

information sharing between environments. In this manuscript the environment classifier recog-

nizes a broad set of overlapping environmental properties. Each environment now has a variable

number of associated property labels, and multiple environments share the same labels. This

helps provide explicit guidance about the similarities of different environments to improve the

skill transfer in multi-task learning. We also doubled the number of environments used in the

evaluation benchmark compared to the original publication and showed improved performance

over them all.

The rest of this chapter is organised as follows: Section 3.2 introduces our methodology,

including the additionally expanded environment property classifier. In Section 3.3 we evaluate

our system both quantitatively and qualitatively, and we conclude in Section 3.4.

3.2 Methodology

Figure 3.2: Our architecture can be divided into 4 major components: A Siamese feature extrac-

tor (green), n sub-expert-networks (blue), an attention network (yellow), and an environment

classifier network (orange).

We start from the problem of AI-based multi-environment visual navigation. We define visual

navigation here as using only the visual input from the front camera of the robot and an image

from the goal position as the input for the system. The objective of the agent is to be able to

navigate in multiple types of environments, learn new environments without forgetting learned

3.2. Methodology 33

ones and be able to generalize to unseen environments. The agent can navigate the environment

through actions: step forward, step backwards, turn right and turn left (90 degrees). Given a

target, the agent will only be given its current observation Current Observation (Ic) and a view

of the target Target Observation (It) . A single agent should be capable of solving a set of

similar navigation tasks placed in different environments by training a policy π(at|st, τ) and

value function V (st, τ) for each task, while maximizing the reward for each task in the task set

τ ∈ T .

To tackle the specific problem of multi-environment/task visual navigation, we utilize the

idea of multi-task learning with a reinforcement learning framework, and we propose a new

architecture: MERLIN. Our architecture can be largely divided into 4 major components as

shown in figure 3.2: A Siamese feature extractor, n sub-networks, an attention network and

an environment classifier network. In the following section, each of these components will be

described in turn.

3.2.1 Siamese Feature Extractor and Joint State Embedding

The network has 2 branches joined at the input to form a Siamese network as shown in figure 3.3.

The expected functionality of the Siamese feature extractor is to capture the input state through

feature extractors as well as to identify commonly useful information for all tasks and the feature

characteristics to identify different tasks.

The Siamese feature extractor takes input in the form of a vector of the 2 observation images:

the current agent observation Ic and the current target It for I ∈ R. Each image will be fed

into a different branch of the Siamese feature extractor network. Both the target state input

and the current state input are first put through convolutional feature extractors Fe. The feature

extractors share the same weights ωS , between branches, and the output of each branch will

then go through a normalization function Fn before concatenating into a state embedding. For

the current state observation OC = (IT , IC) that contains the feature information from both

input images, the feature embedding F for state s is defined as:

F(s) = {Fn(Fe(It|ωs)), Fn(Fe(Ic|ωs))} (3.1)

34 Chapter 3. MERLIN

Figure 3.3: The shared layer is a Siamese network with input heads for both the target state view

and the current state view. The combined state embedding concatenates information from both

observations.

3.2. Methodology 35

Figure 3.4: Each expert sub-network produces a policy function, the expert blending network

assigns weights to each sub-network, the weighted sum is then used to produce the agent’s

action and the value loss.

The Siamese feature extractors are updated by losses flowing through both the RC network

branch and the sub-network/attentive network branch. This means the features are required to

simultaneously be effective at solving the RL navigation task, and capable of distinguishing

different categories of the environment.

The Siamese feature extractor is trained separately from the rest of the network to save time. This

could cause a discontinuous gradient over the input latent. However, in the current framework,

the visual input changes dramatically when the agent performs a turning action, a discontinuity

is expected, and the network should learn to cope with this.

3.2.2 Task-Specific Expert Policy Sub-Networks

The Number of Sub-Networks (n) serve as the expert networks that learn the knowledge and

skill to solve a specific task. The value of n is determined by a range of factors including the

number of tasks, the similarity between each task, the similarity between each environment, etc.

36 Chapter 3. MERLIN

The number of n could be determined by the amount of information required to learn in the

training dataset. However, there’s no easy way to calculate the learned information contained in

these sub-networks. Therefore in this work, the number n is largely proportional to the number

of environments. This number of sub-networks is affected by a number of factors such as the

current task, the environment type, and the size of the expert networks, etc. Currently, this

number is determined experimentally to have the optimal performance in the number of e we

tested. There exist a trade-off between network expressiveness and computational expense.

Excess sub-network will ensure the information learned during training is fully preserved but at

the cost of computation consumption. The optimizer will learn to ignore excess sub-networks

when given more resources than required as shown in the result of Bram [17].

The specific architecture of the sub-networks can be altered to fit the scenario. It is possible to

have a variety of different expert networks that would work better for different tasks or task

settings combined within the same agent. As we are working on the subject of visual navigation,

the sub-network architecture in this study is designed for visual information processing and

navigation tasks: A softmax layer maps the last hidden layer of each network to an Action (a)

dimensional vector to produce Action Probabilities (Ai) and a linear layer outputs the value

function Vi for each expert network with a specific policy πi:

Ai = softmax (πi(Ei(F(s)|ωi)|ωA)) (3.2)

And the corresponding value function can be computed for each expert network:

Vi = Ei(F(s)|ωi) · ωV (3.3)

Where E represents the RL network used for the actor-critic branch, and ωV is the overall

weight for the value function. If the action space is different between tasks, the size of A should

be the largest action space size of all tasks.

3.2.3 Attentive Task Allocation and Soft Blending Network

In our framework, the attentive task allocation network select and synthesise output from task-

specific expert sub-networks. By assessing the relevance between each sub-network and the

current environment, the allocation network will assign an weight to each sub-network’s output.

The weighted-sum is used to determine the final action decision.

3.2. Methodology 37

The attentive task allocation network first takes the output features F(s) from the feature

extractors and recognizes the corresponding expertise required by different tasks. While each

expert sub-network produces a policy function, the attentive network assigns a distribution

weight ωτ to these policy functions according to the estimated relevance of expertise. Therefore,

the attention weight for the expert sub-network τ can be computed as:

ωτ = softmax ({Att(F(s)|ωAtti)|i ∈ {0..n}}) (3.4)

The softmax normalizes the weights ωAtti to sum to 1. By concatenating the action distribution

outputs of each expert network into a vector A. The final policy is then based on the dot product

of the attention weights against the experts’ action distributions:

π(α|s) =
n∑
i=0

ωτi ·Ai (3.5)

where ωτi is the ωτ for the ith expert network.

This policy will determine the action taken by the agent during each timestep. The Attentive

Distribution Weight (ωτ) is also used to compute a value function for reinforcement learning

branches of the network. By taking the dot product of the expert value loss from the sub-

networks with the attention vector, the final value loss can be computed. For the expert values

Vτ = V0, V1...Vn, the combined value function is:

Vr(s) =
n∑
i=0

ωτi · Vi(s) (3.6)

This value loss is used to update the expert networks, the attentive task allocation network, and

the Siamese feature extractor, but not the RC networks.

3.2.4 Environment Classifier

During our experimentation in the original conference publication [114], we found that the opti-

mal number of expert networks did not necessarily correspond to the number of environments,

and was often lower than the number of environments. This led us to theorize that the visual

navigation task involves some shared skills that can be transferred between environments. Skills

such as obstacle avoidance and path planning are likely shared across different environments

during learning, which would cause common behaviours across similar environments and a

reduced amount of expert network resources.

38 Chapter 3. MERLIN

To better understand the role of environmental properties in the navigation task, we introduced an

environment classifier (EC) that recognizes labels corresponding to properties of the environment

itself. These labels describe the different aspects of the scene. For our experiments we prepared

two sets of labels, the “room type” (RT) label which uses terms such as bathroom, living room,

etc. to describe the functionality or purpose of the environment. Another set of labels describe

the different features of the room (RD) such as size, layout, and obstacles present in each

scene. Hence, we defineMτ as a vector which contains descriptive classification labels of the

environment, and define the loss function of the environment classifier as an MSE loss:

Lrc(s) = |RC(F (s)|Ωrc)−Mτ | (3.7)

As the environment classifier has a much shallower network depth, the classifier loss Lrc could

have an overly large impact on the shared network, therefore a balancing coefficient is applied

to the loss. For similar reasons, the value loss is also applied with a coefficient. The final loss of

the end-to-end system is:

L = α ∗ Lvalue + Laction + β ∗ Lrc (3.8)

3.3 Evaluation

To evaluate our approach, we experimented with our agent’s ability to perform visual navigation

tasks in both simulated and real environments. The agent will be trained in multiple different

themed environments simultaneously. In different themed environments, the agent is expected

to recognize which environment it is in and perform navigation tasks in an effective manner.

Through the use of differently weighted expert networks, the agent selects specialist expert

networks and blends their policies. This will train the agent to be able to handle multi-tasking,

as well as recognize different tasks. The RL algorithm used in the experiments is a multi-thread

A3C. The network backbone for the sub-networks is the same as the SOTA model [124]. We

let n = b(|e| + 2)/4c + 1 where e is the number of environments present in the training set.

The symbol bc defines floor operation. The reward is inversely related to the length of the path

taken by the agent to reach the target position: Negative rewards accumulate with a time penalty

(pstp). The path length l is penalised at a rate of −rstp per step (pstp = −rstp ∗ l). The agent

3.3. Evaluation 39

also takes an additional penalty pcr = −rcr ∗ ncr for the number of times ncr when the agent

hits obstacles. Each episode is limited to llm timesteps to deter reward hacking and avoid the

agent getting stuck. Reaching the target position before this limit will result in a positive reward

rter for x points of reward.

rter =

 x for l ≤ llm
0 otherwise

(3.9)

Exceeding the time limit will result in ending the episode and a negative reward pter.

pter =

 −x for l > llm

0 otherwise
(3.10)

The final reward R is given by the sum of all rewards and penalties:

R = pstp + pcr + rter + pter (3.11)

The agent will receive an image of the target position It and the current position’s view Ic. In the

simulation, a small amount of random noise is added to the current position before sampling Ic

to ensure generalization. Our agent is implemented with Pytorch and trained on Nvidia Geforce

GPU servers. The evaluation is done in several experiments both in simulation with 5 different

random seeds, and in the real world. The average performance is recorded.

3.3.1 Experiments

We prepared both simulated and real-world environments for the experiments as shown in

table 3.1. To create the simulated environments, we used the 3D simulation environment AI2-

THOR[55]. AI2-THOR is a 3D simulation program used for machine learning. The simulated

environment consists of themed rooms such as living room, bathroom, kitchen, etc. We created

the regularly sampled environments by allowing the agent to move forward and backwards

as well as turning 90 degrees on a square grid. The agent will be dropped randomly into the

environment and given a random target which is reachable from the starting position. The square

grid has a grid size of α with each position gi being a sample from SO(2) (i.e. comprising

of x, y, θ). The square grid G has a grid size of α with gi ∈ G being a sample from SO(2)

(i.e. comprising of x, y, θ). Let G(x, y, θ) denote the view I obtained at a certain location and

40 Chapter 3. MERLIN

Environment Name Discription Size Space Labels

Env1 Simulated Kitchen Medium Open, Full

Env2 Simulated Living Room Large Narrow, Full

Env3 Simulated Bathroom Small Open, Empty

Env4 Simulated Small Bathroom Small Open, Empty

Env6 Real Common Room Medium Narrow, Full

Env7 Real Corridor Large Narrow, Empty

Table 3.1: Simulated and real training environments are used in the experiments.

orientation in the grid. The target is described through the view of the agent It at the target

position gT = G(xT , yT , θT). The current position gC = G(xC , yC , θC) of the agent is given

through a view of the agent at its current position Ic. To ensure the generalization capability

of the agent and simulate the navigation error of an actual robot, the current view is sampled

randomly near each grid point. The random sample position is selected by adding Gaussian noise

proportional to the grid size ∆g ∼ N (0, (α∗ρ)2) to the x and y coordinate of the original state

position. The sampling position (x̂, ŷ, θ) can be formalized as x̂ = x+ ∆x ∼ N (x, (α ∗ ρ)2)

and similarly, ŷ ∼ N (y, (α ∗ ρ)2) The rotation of the agent is unchanged for the sampling.

Resulting in the view at gsample = G(x̂, ŷ, θ) as the actual input to the agent.

The agent will then try to find the shortest path to reach the target position. In our experiments,

4 environments are trained simultaneously, each using the same amount of computing resources,

the average episode length and percentage of successful runs across all 4 environments are used

to evaluate their performance. In the second part of the experiments, we changed the random

sampling method of the current view to uniform random sampling. (∆g ∼ U(0, (α ∗ ρ))) This

will introduce greater spread in sampling and increase the difficulty for evaluating the agent’s

ability to generalise. A uniform random sampling noise U(0, (α ∗ ρ)) with respect to grid size

is added to the actual current position, and the current view is sampled from the new position.

To train the agent in real-world environments, we collected real-world data using a Turtlebot

from various locations with different themes such as a hallway, living room, common room, etc.

as shown in figure 3.5. As the robot already has drifting errors, there’s no random sampling used

3.3. Evaluation 41

Figure 3.5: Example images from the real-world environments dataset

in the real-world datasets. Using these images, we produced gridded real-world environments

similar to the simulated environments which can be trained offline. A total of 3 different

real-world environments were used for training: A residential living room, a university common

room, and an office corridor. They represent 3 types of spaces: a small enclosed space with

few obstacles, a large open space with many obstacles, and a narrow enclosed space without

obstacles. The agent is expected to behave differently in each of these types of spaces.

In the last section of the experiments, we improve on this and demonstrate our model directly on a

real robot. To achieve this, a Turtlebot3 (shown in figure 3.6) is used to navigate in the previously

trained environments. The turtlebot3 is capable of navigation using lidar and odometry, the

localization function is used to determine the current position of the robot. The robot is fitted

with an additional camera in the front to provide image input. During the experiment, the robot

will be given an image of the target and captures a live image from its camera as the current

view. The images will be used as input for a model previously trained on the off-line dataset.

42 Chapter 3. MERLIN

Figure 3.6: A typical Turtlebot3, the robot used for the live experiments has an additional

camera mounted to provide the front view image.

The robot will attempt to perform the instruction and move to the next position and repeat until

it reaches the target position. 1

3.3.2 Baseline comparison

We first compare our agent with the SOTA target-driven navigation model [124] and perform an

ablation study of our technique. The SOTA model uses a network structure with generic Siamese

layers and scene-specific layers. However, the scene-specific layers are trained specifically

for each environment, resulting in expert performance in a single training environment, but

an inability to share learning between different environments. The SOTA model is trained in

different environments both separately (referred to as Expert1 to Expert4) and concurrently

(referred to as “Joint Expert”), where the SOTA model is expanded to have the same latent
1 A video showing this experiment can be found at: https://youtu.be/ayjwNdCOkbw.

https://youtu.be/ayjwNdCOkbw

3.3. Evaluation 43

(a) Env1: simulated kitchen (b) Env2: simulated living room

(c) Env3: simulated bathroom (d) Env4: simulated tiny bathroom

(e) Env6: real common room (f) Env7: real corridor

Figure 3.7: The agent makes large strides before turning in open spaces and avoiding walls

when in narrow spaces.

44 Chapter 3. MERLIN

Sim Dataset Env1 Env2 Env3 Env4 Ep. Length Avg. Reach Goal (%) RC accurcy (%) Converge Step

MERLIN 22.65 27.20 22.23 20.31 24.33 93.40 83.80 23K

Expert1 23.48 199.61 198.82 198.03 154.81 24.00 - 6K

Expert2 198.04 42.54 196.89 195.70 158.13 23.30 - 10K

Expert3 199.22 199.21 33.95 196.90 157.15 22.65 - 5K

Expert4 199.22 199.21 197.68 19.19 153.69 24.23 - 7K

Joint Expert 25.38 43.69 23.50 22.58 28.73 91.65 - 31K

Table 3.2: Navigation task step count and success percentage in the simulated dataset.

Real Dataset Env1 Env2 Env3 Ep. Length Avg. Reach Goal (%) RC accurcy (%) Converge Step

MERLIN 8.50 44.28 40.30 30.19 90.63 82.40 19K

Expert1 11.20 197.36 199.40 135.92 33.42 - 4K

Expert2 197.03 27.83 197.61 140.71 31.85 - 20K

Expert3 199.40 199.11 45.24 144.53 30.12 - 6K

Joint Expert 49.72 69.75 42.85 50.73 80.90 - 25K

Table 3.3: Navigation task step count and success percentage in the real-world dataset.

capacity as MERLIN for fair comparison. Each model is trained with 5 different random seed,

and their average performance is recorded. All models are trained until they converge to over

99% success rate, the average episode length and the number of time steps taken to converge are

recorded.

As shown in both Table 3.2 and 3.3, the separately trained SOTA models show an inability to

perform navigation task in any environment other than the one it was last trained on. The jointly

trained baseline can complete the tasks in all different environments, but it requires a 30% longer

training time and has a lower performance than our proposed technique. Additionally, our agent

is able to outperform the specialist experts in most of their corresponding environments. This

suggests that there is a sharing of expertise between environments, which can take advantage of

our expertise-blending approach. The simulated kitchen, as shown in figure 3.7b and table 3.2,

is a larger environment with more grid points compared to other environments. The joint

expert performs more poorly in this environment compared to its performance in the rest of the

environments. A similar pattern can be observed in the real-world results as shown in table 3.3,

the joint expert has particularly low performance in the largest environment Env7. The joint

expert also shows a lower performance across all tasks and requires longer training to converge.

It appears that the improvements offered by the proposed approach scale with the number and

3.3. Evaluation 45

the size of the environments. The MERLIN model also has a 24%-26% faster converge speed.

This indicates that when the number of learnable parameters increases, it is possible that our

approach will still be able to converge on more difficult tasks when the joint expert cannot.

3.3.3 Ablation Study

We also performed additional experiments where we increased the number of environments

training simultaneously to 8 different environments (8 Envs model). We compare this model’s

performance against the model trained in 4 environments (4 Envs model). The model trained in 8

different environments is tested on the same four simulated environments for a fair comparison.

MERLIN Ep. Length Avg. Reach Goal(%) RC Accuracy(%) Converge Step

4 Envs 24.33 93.40 83.80 23K

8 Envs 29.92 96.70 100 73K

Table 3.4: Performance comparison with agents trained in different numbers of environments.

As shown in table 3.4, the performance of the agent increased with an increasing number of

environments during training. While the average percentage of reaching the goal within a time

step limit and the room classifier recovery accuracy are about the same, the average episode

length is not a reliable metric as each environment is different in size. Interestingly, the number

of training steps used to reach convergence for the 8 Envs model is higher than the direct

proportion of the converge step of the 4 Envs model. Although the number of environments

doubled, the converge time is about 3 times greater. We suspect this is caused by the increased

number of expert sub-networks to handle the increasing amount of information and more

complex attention mapping.

We also compare against the simplified room classification approach from our original confer-

ence publication. We train the original MERLIN agent with and without the RC branch, as well

as replace the RC branch with RT and RD branches. The results are shown in table 3.5.

As shown in the table, the Joint Expert over-fitted to the training set quickly, unable to adapt

to the random route in the testing set. Without the RC branch (MERLIN-RC), the multiple

expert networks are still able to learn the navigation task, however, its performance is lower

46 Chapter 3. MERLIN

Model Ep. Length Avg. Reach Goal(%) RC Accuracy(%) Converge Step

Joint Expert 438.9 11.74 - 41K

MERLIN-RC 41.99 93.62 - 120K

MERLIN 29.92 96.7 100 73K

MERLIN+RT 23.42 96.51 100 100K

MERLIN+RD 15.21 97.15 100 230K

Table 3.5: Ablation study on RC branch

than a normal MERLIN network. When we improve the RC branch with a room type label

(MERLIN+RT) and room description label (MERLIN+RD), there is a significant improvement in

performance with the latter change. We suspect this is because the room type labels only identify

the environment’s functionality, which is only weakly correlated to navigation-relevant properties

such as layout and size. The room description label on the other hand gives a more detailed

description of each individual environment, including its layout, size, and occupancy. These

are all very helpful for informing the navigation task, and for transferring shared knowledge

between different environments.

3.3.4 Qualitative Multi-environment behaviours

In figure 3.7, we provide examples of the behaviours of the agent in different environments. The

agent has different behaviour when dropped to a random position in each environment. The

vector fields are formed by examining the trajectories from all possible starting positions to the

target, and the green trajectory shows one complete example trajectory. In open spaces such as

the simulated living room 3.7b and the simulated kitchen3.7a, the agent tends to make strides

and turns for localization. In narrow spaces such as the simulated bathroom 3.7c the agent

would prioritize moving away from walls. In the real corridor 3.7f the agent would have much

fewer turning actions during the narrow hallway but shows turning behaviours in the middle

section where the space is relatively open.

Our qualitative experiments have shown that different environments can cause the agent to

behave differently for optimal performance. In particular, we have observed that certain common

3.3. Evaluation 47

behaviors can be observed in scenes with corresponding characteristics. For example, the layout

of the room can determine the movement strategy of the agent, either making long strides

for speed or staying in the center to avoid any collision. Similarly, the size of the scene can

determine the size of the strides the agent would make in one direction. Finally, the clustering

of objects and the functionality in the scene will help determine how “careful” an agent should

be in the scene. We hypothesize that these descriptive labels will enforce semantic learning in

the early layers of the network, and improve the performance when learning multiple scenes.

With the RC branch, the network should be able to learn common skills shared across different

environments. thereby improving its capability in transferring knowledge from one environment

to another, and generalization across different environments.

3.3.5 Generalization and Noise Resilience

Figure 3.8: The original view and position compare to the noised view and position at a 10%

noise level. The agent’s position shifted within 10% of the unit distance between each step

position.

In the third experiment, the time limit is tightened for completing the episode, and the noise ratio

for current view sampling is increased. The sampling method is also changed from Gaussian

noise to a uniform noise scaling with the grid size to increase difficulty. A sample size of 50

48 Chapter 3. MERLIN

Figure 3.9: Success Rate drops with increasing noise ratio in current view sampling. The blue

line indicates MERLIN’s performance, and the orange line indicates the joint expert.

is used for each noise level, and the agent will perform 1000 episodes across the 4 simulated

environments. As shown in figure 3.9, MERLIN outperforms the joint expert consistently and

maintains a more than 80% success rate until the noise level reaches 100% of the grid size. A

significant drop in performance occurs at around 50% noise level. This is due to the possible

sampling positions of each grid starting to overlap with each other. At 100% noise level, the

sampling position will have a low chance of drifting to another state’s position, confusing the

agent. These results indicate the MERLIN agent has a good generalization ability within each

environment and is not overfitting to the training environment. This also indicates that an agent

trained offline in a gridded version of a real-world dataset could potentially be transferred to

operate in the real world.

3.3. Evaluation 49

Figure 3.10: Live demonstration shown in the video clip, the robot successfully reached the

target position following action comments from the agent trained in simulation.

3.3.6 Live Demonstration

In the last experiment, the live demo shows the Turtlebot performing a target-driven navigation

task in the real-world location of Env7 (real corridor) using the MERLIN model, shown in

figure 3.10. 2 The robot successfully completed the task with only a few missteps outside

the optimal path, likely caused by lagging and drifting errors. We can also observe the robot

making a straight line in the hallway, but turning and making strides in the relatively open

area in the middle. Compared to the gridded simulated environments, the robot spends more

time turning for localization and attempting to correct drift errors. As the model is trained

in discrete environments, it has a natural deficiency in handling inaccurate turning angles,

this could potentially be improved by generalizing over-rotation during training. The model’s

solution to this is to keep turning until it finds a recognizable direction. However, this strategy

has difficulties with excessive lagging and drifting errors.

2The video can be find in the following link:https://youtu.be/ayjwNdCOkbw

https://youtu.be/ayjwNdCOkbw

50 Chapter 3. MERLIN

3.4 Conclusion

In conclusion, we introduced the multi-environment navigation problem in the field of robotic

navigation and proposed a multi-task deep reinforcement learning framework to approach this

problem through visual navigation. While SOTA studies in either multi-task learning or visual

navigation address some aspects of this problem, this study combines both fields and takes

advantage of both sides to formulate an improved solution. Our approach utilized multi-task

learning and reinforcement learning, with the attention task allocation and environment type

classifier, which has enabled the agent to navigate in multiple environments with one training

session. Overall, the MERLIN model outperforms the SOTA model in the multi-environment

target-driven navigation tasks in both performance and training speed. Interestingly, MERLIN

also outperforms specialist single-environment expert networks even in their own training

environment. We observed different behaviours depending on the surroundings in both the

simulated environments and real-world environments. We also demonstrated the model’s ability

in operating in the real world even when trained offline in discrete environments. We have

proven our model’s capability in navigating through multiple different environments efficiently

while recognizing they are different and employing mixtures of expert networks accordingly.

It is foreseeable that upcoming robots will require more multi-tasking capability than navigation

in multiple different environments. They may also need adaptive skills for undertaking various

non-navigation tasks in a variety of locations. Mimicking human’s ability to adapt to environ-

ments is going to be vital for robots and provides a great challenge for the field of robotics and

artificial intelligence.

During the experiments, we find the number of sub-networks is not directly proportional to the

number of environments undergoing training, the optimal number of sub-networks is often less

than the number of environments. We suspect this is caused by the transferring of skill and

knowledge between each navigation task, as similar behaviour can be observed across similar

types of environment. To better understand this phenomenon, the next Chapter will attempt to

disentangle the information learned during multi-task learning, and explore the transferring of

knowledge and skill between each task in the learning process.

Chapter 4

SKILL-IL: Disentangling Skill and

Knowledge in Multitask Imitation

Learning

4.1 Problem Definition

In the previous chapter, we explored the application of multi-task learning in combination

with reinforcement learning in the field of robotic navigation. We concluded that the multi-

task learning techniques provided an enhanced navigation strategy by considering the type of

environment. In this chapter we will seek to learn more about the sharing and transferring

of information within such a framework. Importantly we will explore more fundamental and

flexible ways to apply multi-task learning to a broad variety of tasks beyond navigation.

To achieve this, we must learn to generalize and share information across different domains

and re-combine this information for unseen tasks. Researchers struggle to transfer expertise

efficiently between tasks, or even between sub-problems of the same task. Meanwhile, research

on transferring to previously unseen tasks (zero-shot RL/IL) growing in popularity. To approach

this problem, we find inspiration from human learning behaviours. We as humans spend years

learning varied tasks, from how to walk and talk, to writing papers or gymnastics. This learning

is a process of imprinting memories in our brain, not entirely dissimilar to training the weights

51

52 Chapter 4. CPVAE

of a neural network. Thanks to recent developments in neuroscience, we know our memories

fall into two categories, representing either procedural memories or declarative memories. With

both procedural knowledge and declarative knowledge, we can navigate this world and complete

tasks. Procedural Memory, or “Skill” is the memory required for the agent to perform a certain

task in general [71, 86]. Declarative Memory, or “Knowledge”, involves memory specific to

the environment the agent is operating in [71, 19]. For example, when we are driving to work,

this requires us to have the skill of driving a car (procedural memories), and the knowledge of

the route to get to work (declarative memories).

Most tasks require both skill and knowledge simultaneously to complete. However, these are

independent and transferable. We can also use our driving skills to drive to the store, or we

can use our knowledge of our workplace to cycle to work. Neither of these transfers would

imply additional training. This capability would be invaluable in multi-task learning, as each

problem requires a different combination of knowledge and skill. Generally, every possible

combination of knowledge and skill is treated as a separate learning problem, or every skill is

trained independently to generalize over all knowledge. This greatly increases the difficulty of

multi-task learning, leading to scalability issues and unrealistic training requirements. In this

work, we propose SKILL-IL as a new approach to multi-task IL which explicitly disentangles

and shares both skills and knowledge across tasks, as shown in figure 4.1.

This work is inspired by psychological studies with amnesiac patients and non-amnesiac patients

[111]. These studies have shown that these types of memory are not fully entangled in human

learning. It is possible to separate procedural memory from declarative knowledge in the learning

process. To perform any task, an agent requires both procedural knowledge and declarative

knowledge. The disentanglement of these two types of knowledge would benefit any multi-task

learning model as skills should be transferred between the same tasks in different environments,

and knowledge should be transferred between different tasks in the same environment.

In order to disentangle the learning of skill and knowledge, we need to adapt the way in which

we present training examples to the agent, as well as the architecture of the model. Knowing

that all tasks can be represented as a combination of skill and knowledge, we take inspiration

from recent work on disentangled Variational Auto Encoder (VAE) [107] to learn a joint latent

representation across all the tasks to be performed. This latent representation is partitioned into

4.1. Problem Definition 53

Figure 4.1: The policy encoder provides an embedding consisting of both skill and knowledge,

coupled with the disentangled decoder to form a gated VAE architecture which partitions the

embedded latent.

two subdomains dedicated to representing the skill and the knowledge of the task. These latent

subdomains are jointly trained in a weakly supervised manner, in parallel to learning a policy

from the latent observation space.

We show experimentally that we are able to successfully disentangle the skill and knowledge

in multi-task learning, Furthermore, we show that this improves training efficiency and final

performance. To summarise, the main contributions of this study are as follows:

• A self-supervised VAE-based architecture to learn a disentangled representation of robotic

tasks

• A multi-task imitation Learning approach which shares training experiences across latent

subdomains

• An approach to generate a more human-interpretable latent space for multi-task imitation

learning, enabling decoding and visualization of the latent for better understanding.

A preliminary version of this work was published in IROS 2022 [115]. The rest of this

54 Chapter 4. CPVAE

Figure 4.2: The network requires a current state Ot, a reference trajectory Oref0:T , and the current

trajectory O0:t. The output consists of both an action and two reconstructed image pairs for the

reference input and the current input.

chapter is organised as follows: Section 4.2 introduces our methodology, and formalizes the

disentangling technique and the training framework. Section 4.3 evaluation the results of our

various experiments, and we conclude this work in Section 4.4.

4.2 Methodology

In this chapter, we introduce the Skill and Knowledge Independent Latent Learning (SKILL)

architecture, as shown in figure 4.2. With this architecture and training framework, we attempt to

disentangle the learned skill and knowledge within a latent embedding. The architecture consists

of a pair of gated VAEs [107] that share weights, the latent spaces of these VAEs are partitioned

into skill and knowledge subdomains. Each subdomain includes a masked latent similarity loss

between pairs of examples within the batch. The VAE is given two sets of trajectories which

consist of the start and end state as well as the current point of the agent. These are used to

produce a CPV which plans from the current state to the end state. The gated VAEs are trained

using pairs of experiences which share either the same environment, the same task list, or both,

in order to disentangle their latent space. Similar to a human, learning how to drive a car by

4.2. Methodology 55

driving to different places, and learning the city’s layout by travelling around the city using

different modes of transport.

The agent is required to perform tasks, which include modifying its environment to reach a

target goal state. The agent may need to complete several subtasks in order to complete a task.

The sequence of states visited during the completion of the task is referred to as the trajectory of

the agent. The input does not specify any particular ordering of the subtasks within the trajectory.

The set of subtasks is implicit, which gives the agent the freedom to determine the best set of

subtasks to reach a particular goal state.

The embedding of the portion of the task remaining to complete (current-to-end) is calculated as

the difference between the embedding of the overall task (start-to-end), and the embedding of

the progress so far (start-to-current). This is combined with a visual embedding and passed to

the policy network to determine the agent’s next action.

In our experiments we perform imitation learning, taking the full set of states from timestep

t = 0 to the final timestep t = T , let O be the observation of a state in a fully observable

environment, thenOref0 ...OrefT is an expert reference trajectory. The expert reference trajectories

are extracted by a greedy search over the environment for the optimal solution. However, the

proposed approach is equally applicable to unguided reinforcement learning

4.2.1 Compositional Task Embedding

In order to learn specifically the skill partition of the latent space, the agent will be required

to complete multi-task learning without changing the training environment. This will ensure

the environment has minimum impact on the learning process. Additionally, a latent which

embeds both skill and knowledge of a single task is required. To acquire such latent, we will

first define a compositional representation for any combination of sub-tasks in a multi-task

learning environment. A compositional representation is an embedding which encodes structural

relationships between the items in the space [73]. The multi-task environment will help provide

the disentanglement by allowing tasks and environments to be mixed in different combinations.

Consider a compositional task embedding ~v which encodes a set of tasks as the sum of the

compositional embeddings for all subtasks. To avoid enforcing a particular ordering for the

completion of these subtasks, our planning space is built with commutativity, i.e. A+B =

56 Chapter 4. CPVAE

B+A. Given this definition, the embedding of all tasks that have yet to be accomplished can be

calculated as (~v − ~u) where ~u is the embedding vector for the tasks accomplished so far. As we

focus on semi-supervised machine learning, we don’t specify the exact end state for the agent.

Instead, the policy π(at|Ot, ~v − ~u) produces the action at based on the current state Ot and the

“to do” task embedding.

Next, we introduce the related losses for the model. Let function gφ(Oa:b) encode the observation

pair at time a and b into a latent task embedding using parameters φ. The latent vectors ~v and ~u

will be the target of the disentangling process as each of them should contain both the learned

skill which solves the task as well as the specific knowledge of the corresponding environment.

To help further the learning of the task embedding, the function g is a probabilistic encoder

which predicts means and variances for each latent parameter. This is coupled with a decoder

dθ to form a VAE, such that O ≈ dθ(~u) where ~u ∼ gφ(O). We define the reconstruction error

against target Ô as lrec(O, Ô) = |dθ(gφ(O) − Ô)| where the intermediate sampling step is

omitted for brevity. The full reconstruction loss is obtained by applying this to both the reference

trajectory (Oref0:T) and current trajectory (O0:t) inputs:

Lδ(O
ref
0:T , O0:t, Ô

ref , Ô) = lδ

(
Oref0:T , Ô

ref
)

+ lδ

(
O0:t, Ô

)
(4.1)

To reduce the impact of empty space, we also mask the reconstruction loss to only include

non-zero pixels.

During the forward pass, as both skill and knowledge are required to solve the task, the entire

latent space is used by the policy network to select an action. Therefore, the policy function is:

π
(
at|Ot, gφ

(
Oref0:T

)
− gφ (O0:t)

)
(4.2)

Hence the policy loss La is given by the loss function:

La(Ot, φ)=−log
(
π
(̂
at|Ot, gφ

(
Oref0:T

)
−gφ(O0:t)

))
(4.3)

where ât is the reference action.

The policy action is essentially being predicted based on the difference between the embedding

of reference trajectory Oref0:T and the agent’s current trajectory Ot0:t. The task embedding is given

by function gφ.

4.2. Methodology 57

Additionally, there are two regularization losses using the triplet margin loss lm from [91].

The first LH enforces the compositionality of the latent space by ensuring that the sum of the

embeddings for partial completion (u0:t) and the embedded to-do vector (ut:T) are equal to the

embedding for the entire task (u0:T).

LH(O0, Ot, OT) = lm(gφ(O0:t) + gφ(Oreft:T)− gφ(Oref0:T)) (4.4)

where lm is a truncated L1 loss with a margin equal to 1. The second regularization loss LP tries

to ensure that similarity in the latent space corresponds to semantically similar tasks. To this

end, we ensure that the embedding of our agent’s trajectory is similar to that of the embedding

of the expert’s reference trajectory

LP (O0, Ot, OT) = lm(gφ(O0:T)− gφ(Oref0:T)) (4.5)

The sum of these two loss functions is used to regularize the model:

LR = LH + LP (4.6)

The latent representation used by the agent comprises both the ability to solve the current task,

which is the skill, and the information about the current environment, which is the knowledge.

However, these two types of latent information are currently entangled. This loss function does

not provide any capability for disentangling the latent representations.

4.2.2 Gated Variational Auto Encoders

To disentangle the task vectors (~u) into skill and knowledge sub-domains(~u = [~us, ~uk]), we

utilize the gated VAE [107] approach with the CPV encoders as part of the VAE.

Gated-VAE is a weakly-supervised approach for training VAEs, through the gating of the

backpropagation process. The gradients flowing through a subdomain of the latent space

are blocked while the other subdomains update normally. Which subdomains are gated, is

determined based on the shared properties of the input and target image pairs. In this work, the

gating is determined by training dataset X ∈ (S,K,N). Where S is the skill training set, K is

the knowledge training set, and N is the normal training set such that N = S ∩ K.

58 Chapter 4. CPVAE

In a standard VAE, we have a dataset x, parametrised by ground truth generative factor z, the

encoder and decoder are parametrised by φ and θ receptively, and the goal generative process

can be described as:

max
φ,θ

Eqφ,θ(z|x)[log pθ(x|z)] (4.7)

Then the objective function can be re-written as:

L(φ, θ;x, z) = Eqφ,θ(z|x)[log pθ(x|z)−DKL(qφ,θ(z|x)||p(z))] (4.8)

Where DKL is the non-negative Kullback-Leibler (KL) divergence for regularizing the approxi-

mation of qφ,θ(z|x).

In this work, we use β-VAE as the backbone VAE, which is a modified variation of the

VAE framework with an additional hyperparameter β in the objective function to produce the

reconstruction loss function:

Lδ = L(φ, θ;x, z) = Eqφ,θ(z|x)[logpθ(x|z)− β DKL(qφ,θ(z|x)||p(z))] (4.9)

The term log pθ(x|z) encourages the reconstruction accuracy, while the KL divergence term

with β(ususallyβ > 1) gives more weight to encourage disentanglement. [18]

A gated VAE utilizes the intuition that the input and target images need not be identical, but

can instead be paired according to shared factors. By incorporating this pairing into the training

process, we introduce additional supervision into the VAE model. The network should be able to

learn and recognise the shared factor within the pairing and be further encouraged to disentangle

the shared factors. During forward propagation, all partitions of the latent space are used by

concatenating all the partitions and computing the KL divergence loss over the entire latent. The

backpropagation process can then be either gated or allowed through depending on the specific

latent partition corresponding to the related shared factors.

The training data will be split into three groups where the input/target pairs are different

(xinput 6= xtarget) but share a common factor h (~sh,xinput = ~sh,xtarget ∀h). This will allow the

partition to commence and disentangle the latent space ~u into a set of factors [~s] ⊂ ~u.

In the context of multi-task learning, we define the shared factors being the current task the

agent is performing, and the environment the agent is in. With this definition, when an agent is

4.2. Methodology 59

performing the same task between the input and target, the skill for solving this task is a shared

factor. Respectively, when the agent is performing a different task in the same environment, the

knowledge of the environment is the shared factor.

4.2.3 Disentangling Skill and Knowledge Subdomains

To disentangle the learned latent, we can generate the training examples which pair the in-

put/target images according to the shared skill and knowledge factors. Specifically, if two

training examples (O and Ô) both comprise the same sequence of subtasks but within a dif-

ferent environment, these examples are grouped by skill and added to the skill training set

S = S ∪ (O, Ô). Similarly, if the training examples comprise different sequences of subtasks,

but within the same environment, they are grouped by knowledge and added to the knowledge

training set K = K ∪ (O, Ô). In this work we enforce a hard gating by partitioning the latent

space into two non-overlapping regions, the ratio of the sizes of these two latent subdomains

can be changed based on the task. In all our experiments we kept them equal, each representing

either skill or knowledge.

To disentangle the skill from knowledge, we adapt the reconstruction loss from equation 1. The

input and target pair for both terms are drawn from either the skill or knowledge training set

such that (O, Ô) ∈ (S ∪K). We additionally adapt which partition of the latent space is updated

via backpropagation based on this. For every training example, we select the training mode

G ∈ (S,K,N) and select an input/target pair from within the corresponding dataset. Then a

learned full latent ~u can be split into the skill ~us and knowledge ~ut latent. With gating mode G,

which turns off the gradient flow for ~us or ~uk during back-propagation.

This means that for each training pair, gradient flow and parameter updates only occur for the

subdivision of the latent space which is shared by the source and the target. For example, in one

skill training iteration, the input O is paired with target image Ô, with the training mode being

skill (G = S , and hence (O, Ô) ∈ S). The composite plan vector ~u, which is the concatenation

of the skill sub-domain partition ~us and the knowledge sub-domain partition ~uk, will only accept

the gradients from ~us in the back pass. On the other hand, in knowledge training iteration

(G = K, (O, Ô) ∈ K), the gradients from the skill sub-domain ~us will be masked.

More formally, we define JK as an operator which masks gradients during the backpropagation.

60 Chapter 4. CPVAE

We then define the gated latent space as:

~u =


[~us, J~ukK] if(O, Ô) ∈ S

[J~usK, ~uk] if(O, Ô) ∈ K

[~us, ~uk] if(O, Ô) ∈ S ∩ K

(4.10)

With this gated training framework, we are able to cluster examples based on shared subdomains.

It is worth noting that within our framework the grouping and subsequent selection of skill

or knowledge targets are done for both the current branch (O, Ô) and the reference branch

(Oref , Ôref).

Additionally, we introduce a dynamic loss LG . At the end of each training iteration, the total

loss consists of the action loss from the policy network La and the reconstruction loss Lδ. The

action loss of the agent is more closely related to the skill which solves the task and thus should

be weighted more in skill training mode. The reconstruction loss in skill training mode will be

large in value (as the entire environment differs between input and target). However, this loss is

weakly correlated to the learning of skills. A similar situation also exists in the opposite scenario.

In knowledge training mode, the agent will perform different tasks, which will cause a surge in

action loss and potentially have an adverse effect on the knowledge latent space. To counter

this effect, we introduce regularization constants α and β which balance the numerical value

of action loss and reconstruction loss. Additionally, while α, β are regularization constants,

it is possible to improve the disentanglement performance by changing the value of α and β

according to the training mode G. This dynamical loss can be expressed as:

LG =


εαLa + βLδ if(O, Ô) ∈ S

αLa + εβLδ if(O, Ô) ∈ K

αLa + βLδ if(O, Ô) ∈ S ∩K

(4.11)

where ε is a small value constant, down-weighting the less relevant loss for each scenario.

To summarize, the loss function L of the framework comprises both reconstruction loss and

policy loss with the dynamic loss weighting LG . This is summed with the regularization loss

4.3. Evaluation 61

LR with a value adjustment constant ω to be at the same numerical level as a dynamic loss:

L = LG + ωLR (4.12)

4.3 Evaluation

We evaluate the SKILL framework to show how the proposed disentanglement of skill and

knowledge impacts both the agent’s success rate and efficiency. We perform a range of qualitative

experiments, exploring and confirming the level of disentanglement learned by our system.

Following this, we explore the importance of different elements of our system via an ablation

study. We also evaluate this across two different environments and compare it against the current

state-of-the-art technique in each. Finally, we demonstrate our technique with a real robot

performing navigation tasks.

Craftworld Environment The first environment used in our experiments is a Minecraft-

inspired 2D crafting world [32]. The world has a discrete state and action. The agent is able to

move, pick up or drop off certain items present on the map, as well as perform actions on those

items. With this environment, we can define tasks such as chop tree, break rock, make bread,

build a house, etc. and combine them into sequences such as [make bread, eat bread, chop a tree,

build house]. This provides a good selection of unique tasks and sequences to generate training

data. For example, the agent will be able to cut down trees if it has previously picked up an axe,

and will be able to use an oven to bake bread if it has previously harvested wheat. As detailed in

the methodology section, the objectives of the agent are specified implicitly by providing two

trajectories consisting of observations of both the current trajectory and the reference trajectory.

The advantage of this approach is that no explicit ordering of subtasks is specified, and the agent

is free to execute tasks in the most appropriate manner. Our framework is trained with randomly

generated starting environments and random combinations of tasks to complete. The complexity

of the problem increases as more tasks are required to reach the target end state. The previous

state-of-the-art approach in this environment [33] used the same input observations and expert

reference trajectories.

The model is given three sets of data as shown in figure 4.3. Firstly, an original episode with

an environment and a sequence of tasks. Secondly, an episode with the same environment but

62 Chapter 4. CPVAE

Figure 4.3: The different inputs for different training modes. In skill mode, the environment

differs from the original but the agent is expected to perform the same task. In knowledge mode,

the environment is the same but the agent is expected to perform a different task.

different tasks for knowledge training. Thirdly, an episode with the same tasks and a different

environment for skill training. In figure 4.3, the original episode requires the agent to pick up a

hammer and break a rock. In the knowledge training episode, the environment is the same, but

the task is to pick up wheat and make bread. In the skill training episode, the environment is

different from the original episode, but the task is once again to use a hammer to break the rock.

Depending on the training mode, while the agent will always be asked to perform the task given

in the original episode, the demonstration given will change.

Learned Navigation The second environment simulates a 2D navigation scenario. The maps

are created from gmapping [36] outputs in real-world locations to simulate real-world navigation

as shown in figure 4.4. The goal in this environment is to reach a random target location on the

map. The agent is given a full state observation as well as a demonstration during training. In

both environments, we focus on two evaluation metrics: the task success rate measures how

many episodes end in the goal is successfully reached. The average episode length measures

how quickly the agent was able to achieve its goal.

4.3.1 Implementation

In both environments, the observation is provided as a pair of images. The encoder g shared by

the reference trajectories Oref0:T and the current trajectories O0:t is a 4-layer CNN encoder with

4.3. Evaluation 63

Figure 4.4: The navigation environment mimics real maps produced by the gmapping [36]

algorithm.

shared weights. The current state input (Ot) is processed by a 4-layer CNN with a final fully

connected layer. The last layer of the encoder branches out according to the ratio between the

skill and knowledge latent. The latent produced by both branches are concatenated before the

subtraction of gφ(Oref0:T)− gφ(O0:t). The resulting latent embedding of the task left to complete

is fed into a 5-layer policy network to produce the action during each time step, while each

disentangled latent is fed into a 4-layer decoder for reconstruction.

With the different training modes and latent gating, we are able to control and disentangle

the skill and knowledge learned during training. Our approach will increase the efficiency

of multi-task learning and transfer learning since specific knowledge on the current task or

environment can be learned independently. It is worth noting that to achieve this, we used hard

gating for the disentanglement of the latent. This assumes that the skill and knowledge used to

solve any task can be completely separated. It is arguable to what degree this is strictly true as

to perform any task, both skill and knowledge are required, and they are always entangled on a

certain level.

4.3.2 Exploring Disentanglement

In our first set of experiments, we seek to confirm whether our proposed approach results in a

latent space where skill and knowledge are disentangled. Unfortunately, measuring disentan-

glement is extremely challenging. There are many proposed approaches in the literature but

most require the ground-truth factors to be known. Instead, to quantify our disentanglement of

64 Chapter 4. CPVAE

skill and knowledge, we first take our trained model and freeze the network weights. Next, we

record the latent embeddings produced by our network for all samples in the dataset. Finally, we

attempt to train a simple network that estimates the task id from only one of the latent partitions

(~us or ~uk).

When testing on a held-out set of 500 unseen latent embeddings, the network trained on the skill

partition is able to achieve 99.2% accuracy in recovering 6 different task labels. However, for

the network trained on the knowledge latent, the recovery accuracy is only 12.7%. This shows

that all the information pertaining to the tasks to be completed has been effectively disentangled,

and concentrated into the latent skill subdomain. This indicates the skill latent has a significant

difference in the distribution to the knowledge latent. To ensure the recovery network didn’t

simply pick up characteristics from the spatial difference, we used more than one model when

producing the latent, the results remains similar.

We could not perform a similar test for the knowledge subdomain because we do not have a

fixed number of environmental layouts to recognise. Instead, we trained two image decoder

networks which attempt to reconstruct the environment using only the skill or knowledge latent

partitions respectively. The decoder networks use the latent partitions as input to generate the

corresponding observations, both are trained until they reach their peak accuracy. Examples of

reconstructed images for previously unseen latent embeddings are shown in figure 4.5.

It is apparent that the reconstruction results using the previously unseen knowledge latent are

much better than the results from the skill latent, We note that the skill latent alone is unable

to produce any meaningful image. Meanwhile, the knowledge-only reconstructions appear to

focus on representing the most salient parts of the environment. The reconstruction from the

full latent is able to reconstruct the environment fully. This shows that some of the less salient

final details may be jointly encoded across both latent subdomains. This mirrors findings in

neuroscience which indicate that in biological learning, declarative and procedural knowledge

can be disentangled to a great extent but never completely.

Numerically, the average reconstruction loss across the validation dataset for the knowledge

latent is around 300 times lower than the reconstruction loss from the skill latent. We find similar

results in the second environment, where the average reconstruction loss across the knowledge

latent dataset is around 250 times lower than with the skill latent.

4.3. Evaluation 65

Figure 4.5: The reconstructed images using the knowledge or full latent are similar to the

target image, while the reconstructed images produced by skill latent do not resemble any

characteristics of the target image.

We consider these results a sign of successful disentanglement of skill and knowledge in the

latent embedding. However, further experiment shows there is still entanglement between skill

and knowledge. We are not able to fully disentangle with the current hard gating model.

For our final experiment to explore the disentanglement, we combine the latent skill partition

from one example and the latent knowledge partition from a different example. We then push the

resultant full embedding through the decoder and examine the resulting image. This experiment

is performed to explore our assumptions regarding the hard latent partition. A typical result of

this experiment is shown in figure 4.5. It is worth noting that this type of task recombination is a

form of zero-shot learning, as the specific combination of task and environment will not have

been seen during training.

Although generally correct, the resulting reconstruction often demonstrates a combination of

characteristics from both donors latent, rather than a perfect reconstruction of the environment

from the knowledge partition. As shown in figure 4.6, the resulting state reconstruction contains

features from both donor states, circled in blue and red. A complete disentanglement in the

66 Chapter 4. CPVAE

Figure 4.6: The resulting reconstruction shows shifted characteristics from both donors. How-

ever, the overall similarity to either donor’s reconstruction is generally low.

latent subdomain should have resulted in a reconstructed state exactly the same as the knowledge

latent donor. However, our results showed a rather low similarity to the knowledge latent donor

when mix-matching, while the same network would reconstruct the state with a full latent

perfectly. This indicates our hard-gating approach to disentangling the skill and knowledge

cannot fully disentangle all information within the latent. Certain environmental information is

still preserved in the skill latent.

4.3.3 Ablation Study

Model
Imitation

accuracy
Success Ep. length

CPV-FULL[33] 66.42% 65% 69.31

SKILL-no Ot 64.18% 65% 26.95

SKILL 70.61% 84% 19.77

SKILL+FS 70.89% 89% 19.52

SKILL+FS+DL 70.62% 94% 17.88

Table 4.1: Ablation study. FS indicates fixed sampling. DL indicates dynamic loss weighting.

Now that we have conclusively demonstrated the successful disentanglement of our learned

4.3. Evaluation 67

Model Success Ep. Length

SKILL+FS 90% 14.82

SKILL+FS+DL 96% 13.08

SKILL+FS+KP 98% 13.31

SKILL+FS+SP 84% 11.47

Table 4.2: Ablation study for Env.2. KP indicates higher knowledge partition, SP indicates

higher skill partition.

embedding space, we next perform an ablation analysis of our system. To this end, we explore

the contributions of 3 parts of our model. For this experiment we additionally report the imitation

accuracy (percentage of actions that agree with the expert) for comparison against [33]. As

shown in table 4.1, we first removed the current state observation branch (no Ot). With only

the gated VAE structure, our model performs similarly to the SOTA model (CPV-FULL[33]).

Introducing the current state observation branch improves performance significantly by giving

the agent a more direct observation of its current state. In the next experiment, we remove

the random sampling from the latent distribution, and instead simply take the mean latent

embedding. We refer to this as Fixed Sampling (FS). This offers a small improvement in all

metrics. Finally, we introduce the dynamic loss (DL) weighting scheme proposed in equation

4.11. This approach provides further improvement in task performance and completion speed.

The imitation accuracy maximized at around 70% while the task performance continues to

increase. Adjusting the proportions of the loss functions according to the training mode improves

training stability. However, this also reduces the training speed, as the learning happens less

aggressively. It is interesting to note that although imitation accuracy goes down slightly for the

DL model, task success and completion speed go up. This indicates that our agent may now be

outperforming the expert.

In the second environment, we study the effect of different partition ratios shown in table 4.2.

We used FS and FS+DL as references, with the latent space split evenly between skill and

knowledge. When we allocate more of the latent space to the knowledge subdomain (KP), the

68 Chapter 4. CPVAE

result surpasses FS+DL model in both success rate and speed. When a higher partition is given

to skill subdomain (SP), while the task success rate dropped by 15%, the completion speed

increased significantly. This indicates an interesting trade-off between environmental knowledge

for successful navigation and skill for efficiency.

4.3.4 Comparison vs State-Of-The-Art

MODEL
4 SKILLS 8 SKILLS 16 SKILLS

success ep. Length success ep. Length success ep. Length

CPV-NAÏVE[33] 52.5 82.3 29.4 157.9 17.5 328.9

CPV-FULL[33] 71.8 83.3 37.3 142.8 22 295.8

SKILL 61.3 63.3 37.5 132.7 20 277.8

Table 4.3: Comparing against SOTA when learning a different number of tasks.

MODEL
1,1 2,2 4,4

success ep. Length success ep. Length success ep. Length

CPV-NAÏVE[33] 57.5 36 0 – 0 –

CPV-FULL[33] 73 69.3 58 270.2 20 379.8

SKILL 80 53.3 55 103.1 26.3 198.1

Table 4.4: Compared against SOTA when learning a different number of tasks within the

sequence.

After determining the optimal approach, we will now compare our model more thoroughly

against the previous SOTA model (CPV-FULL[33]) in both environments. As we used CPV as

the backbone network, it is the natural choice for examining the effect of the disentanglement.

For craftworld [32], we follow the evaluation protocol [33]. Both our model and the SOTA

model are trained on 50,000 samples from sequences with 1-3 different tasks, and we evaluate

each model against sequences with 4,8, and 16 different tasks, with results shown in table 4.3.

Our model outperforms the SOTA model in both task success rate as well as performance speed

in most cases. In particular, our technique leads to a 30% relative increase in the success rate of

the most challenging experiment, and a 50% reduction in episode length.

4.3. Evaluation 69

We also evaluated the model’s generalization capability with sequence of tasks. Experiments

with “1,1” being a single task, and “2,2” being a sequence of 2 tasks from 2 reference trajectories

summed together. As shown in table 4.4, the disentangled model has a significant advantage in

performance over the CPV-NAÏVE[33] model. While the success percentage is slightly lower

than the CPV-FULL model in the “2,2” scenario, the SKILL model still has a lower step count

average per episode and better performance overall in the “4,4” scenario. This indicates that our

model has a better generalization capability when dealing with trajectories with more tasks, as

well as when dealing with a sequence of tasks.

In the navigation environment (figure 4.4), we compare with our previous work [114] trained

under the same conditions. The MERLIN model is adjusted to accept the state image as input.

The number of environments under training is increased to 6 different navigation environments.

The agent is required to navigate between two random spots in each environment, the average

success rate and step count are used as a performance benchmark. The MERLIN has a success

rate of 94.6% and an average step count of 19.96. The SKILL model is able to achieve a 98.0%

success rate with an average step count of 14.58. Hence the average efficiency of our agent is

also 20%-30% faster than then the previous SOTA.

With the disentanglement of skill and knowledge, we are able to better share useful experiences

across different navigation tasks. Interestingly, we note that when attempting to generalize to a

longer sequence of tasks, the performance of the SKILL model and the CPV model both show a

significant drop when handling longer sequences of tasks. Though both SKILL models maintain

a better performance than the CPV model, the task success rate almost halved when moving

from 2 task sequences to 4 task sequences. This drop shows the current SKILL model has

difficulty in long-horizon planning, as well as a limited capability in sequence generalization.

4.3.5 Real Life Demonstration

Lastly, we demonstrate our model with a live turtlebot3[2] as the robotic platform. The turtlebot

first creates a map of the area using gmapping[36], which is then processed into an observation

format recognizable by the agent. The agent we used for this experiment is trained in simulated

navigation environments. The target location is marked on the observation along with the robot’s

current location. The current location is obtained with lidar-based localization. At each timestep,

70 Chapter 4. CPVAE

Figure 4.7: Live demonstration of SKILL-IL agent, the Turtlebot3 follows instructions predicted

by the agent to reach a goal location.

the agent will produce a command for the robot to go in one of four directions for a set distance.

The navigation method used is dead reckoning as we expect the drift to be compensated by the

agent when making the decision. This process repeats until the robot reaches the target location.

Without any fine-tuning, the robot is able to compensate for odometry inaccuracies and drift by

performing recovery moves during the navigation, even though it was not exposed to this drift

during the simulated training. Our robot is able to successfully complete the task in multiple

locations, a screen capture of the demonstration video is shown in figure 4.7.

4.4 Conclusion

In this work, we approached the problem of multi-task learning from a new perspective. Taking

inspiration from neurobiology and pedagogy on memory acquisition, we hypothesized the

latent space in a policy neural network could be disentangled into subdomains. Each partition is

responsible for either the skill or the knowledge of the task and should be transferable to different

combinations of future experiences. We successfully demonstrated this disentanglement in

imitation learning, using a gated VAE architecture. With our method, we are able to outperform

the SOTA model, in two different environments, both in terms of success rate and speed.

4.4. Conclusion 71

During our experiments, we discover the entanglement between skill and knowledge can not

be completely separated, this finding echoes the studies in pedagogy and language acquisition.

Even for humans, certain procedural memory is entangled with declarative memory.

Nevertheless, being able to disentangle the skill and knowledge in a task is a fundamental step

toward combinational generalization. A better model to partition the skill and knowledge latent

or to explain the entangled information will benefit our understanding of imitation learning in

general. Human interpretable solutions to complex tasks are also an interesting direction as it’s

been a popular choice in multi-task learning.

This chapter’s work in disentanglement provided the possibility for modularity in learned latent.

This led to drastically improved performance compared to previous state-of-the-art. However,

in this chapter’s experiments, we find a significant performance drop when dealing with a

long sequence of tasks. This presents a limitation in the generalization capability as well as

challenge in long horizon planning. Additionally, the experiments are only performed in a 2D

toy environment. There is no clear indication that this approach will be able to disentangle skill

and knowledge in more complex and realistic tasks and environments. In the next chapter, we

will improve upon this and further explore multi-task learning in terms of long, complex task

solving and task sequence generalization.

72 Chapter 4. CPVAE

Chapter 5

Compositional Adaptive Subgoal

Estimation for One-Shot Task

Generalization

5.1 Problem Definition

In the previous chapter, we explored the disentanglement of skill and knowledge in the learned

latent representation. While we had successfully disentangled most of the skill and knowledge,

a certain portion of the latent space remains entangled and cannot be separated with a discrete

method. While experimenting with disentanglement, our agent is able to outperform the SOTA

in both task success rate and generalization. However, when we test the agent’s ability to

generalize to longer task sequences, the agent performs poorly. This is likely caused by the

implicit ordering of the tasks, as the agent focuses on individual tasks and largely ignored the

reasoning between each task. For example, in order to build a house, the agent needs to gather

lumber, which is the result of another task: use an axe to chop a tree. If the agent attempts to

build the house before chopping the tree, then there’s no lumber available for the agent and

the task sequence will fail. Long-horizon complex tasks formed from a sequence of multiple

subtasks have been a major challenge in reinforcement learning and imitation learning. In this

chapter, we will explore the problem of solving long and complex tasks in sequence.

73

74 Chapter 5. CASE

5.2 Introduction

As researchers seek to introduce robotic technology into various aspects of our society, robots

must be able to perform increasingly complex tasks with enhanced automation and generality.

These new tasks are often complex, with multiple implicit subgoals that vary depending on the

environment. As such, it is common for only the target end goal to be specified explicitly. For

example, if we ask the robot to bring us a cup of coffee, the robot will need to know where we

are, as well as where the kitchen is, the tools, and the procedure for making coffee. The effort of

learning such a complex composite task is enormous. More problematic is the fact that even

if we provide explicit subgoal guidance: i.e. where our kitchen is, where the coffee machine

is and how to use our coffee machine, this knowledge won’t transfer to robots in other houses.

Even for the individual robot, the solution may be brittle, as simply moving the location of the

coffee cups may cause the task to fail.

The biggest learning challenge for solving complex tasks is the complexity itself. Any complex

task would almost always require a large number of steps to successfully complete an episode.

This is particularly true for tasks with terminal-only sparse rewards. The longer the average

trajectory is, the broader we can expect an unbounded state space to become, and the lower our

sample efficiency will be. In an Imitation Learning setting, the use of expert trajectories helps

alleviate the “vanishing reward” problem by providing feedback at each step of the trajectory.

However, the exploration and data efficiency problems remain.

The second challenge we seek to address is generalization. In an Imitation Learning setting,

the data efficiency challenge mentioned above will often manifest as a relatively restricted set

of expert trajectories. As such learning to perform a complex task often involves repetitively

training on a small set of sample tasks. This can easily lead to over-fitting on the training task

set or the specific training examples of the tasks. A common approach to mitigate this is to

design the model hierarchically as shown in figure 5.1. In this case, each stage of the model is

intended to specialize in solving a certain class of problems. This can simplify generalization

within a subtask, but also exacerbates problems with data sparsity, as each sub-model will only

be exposed to a small portion of the training data.

5.2. Introduction 75

Figure 5.1: In the make coffee and bring it back task, the traditional subgoal approach seg-

ment the complex task into smaller, manageable subtasks. Our approach generates novel

compositional subgoals at each step which gradually guides the agent towards the goal.

5.2.1 Exploring Task Compositionality

In order to solve these challenges, we hypothesise that we may be able to exploit the compo-

sitionality of the task embedding from the previous chapter. In the latent space where these

representations reside, vector arithmetic can be applied to these task embeddings. As such

it may be possible to generalise to previously unseen sequences of tasks, by composing the

encoded subtasks which have been seen in other contexts.

In this chapter, we explore the potential of this compositional generalization. We first present

preliminary experiments on the system from the previous chapter to assess the effectiveness

of the learned compositionality. To this end, the skill subdomain of the latent representation

(~us) should ensure that different embeddings of the same skill should be clustered closer than

tasks representing other skills. On the other hand, the knowledge subdomain of the latent

representation (~uk) should cluster tasks according to their episodes.

As shown in figure 5.2, we explore the success of this compositional embedding by feeding a

trained network with 50 episodes’ states, where each episode contains a sequence of 2 to 8 tasks.

This resulted in over 1000 compositional latent vectors and predicted actions. After visualizing

76 Chapter 5. CASE

Figure 5.2: We encode 50 Episodes’ states (over 1000 states) into compositional latent vectors

with a trained network, and the result is projected into this 3D graph using PCA. The pointcloud

is coloured by which environment the input state is from on the left side, and by which task the

agent is performing on the right.

these data with PCA projection, we can clearly observe (on the right) some clustering of the

representations based on the task. There is still some entanglement between the clusters, but this

is likely due to the information loss of the PCA projection. The pointcloud coloured by episode

(left) also exhibits clustering. However, this is less obvious as the number of episodes is far

higher than the number of tasks, while the number of examples of each is comparatively lower.

This is a clear indication similarity in tasks is being successfully encoded as similarity in the

latent space. This is encouraging and implies that more complex combinatorial generalization

may be possible.

In order to explore this possibility further, we investigate how the encoded plans are grouped

according to task or action. For simplicity of visualization, we reduce the number of tasks within

the data to two. As shown in figure 5.3 (middle) there exist a clear distinction in the latent space

between the two tasks. On the left graph, each episode is clustered but there are no clear patterns

that relate different episodes with the same tasks. On the right graph, there’s no clear evidence

of patterns related to actions. This is expected as each task within an episode requires multiple

5.2. Introduction 77

Figure 5.3: We reduced the number of different tasks in the input data and added colour by

predicting action on the right. However, there’s no clear evidence of patterns related to actions.

different actions to complete. It appears that the plans are grouped more according to the task

they solve and the environment they solve it in, while the policy network focuses on translating

these into actions.

With this information, we further look at the latent subdomains of the previous chapter indepen-

dently to explore how they behave in the latent space. As shown in figure 5.4, the pointclouds

produced by both the skill and knowledge subdomains show a much clearer cluster pattern

when coloured by task. In contrast, both latent subdomains display very little clustering when

coloured by episode in graph 5.4a. It is perhaps surprising that the pointcloud produced by

the knowledge latent still has a cluster pattern when coloured by task. It is perhaps equally

surprising that the knowledge subdomain does not cluster more clearly based on episodes. It is

likely that the reason behind this is that episodes solving a given task necessarily include the

environmental factors required for that task. For example, we would not attempt to solve the

“Build House” task in an environment that contains no wood or tools. As such the task to be

solved manifests in the environmental context. Similarly, over the course of a single episode,

the environmental context changes. Trees get chopped down and tools get moved. We would

not necessarily expect the knowledge embedding at the end of an episode to be similar to that at

the beginning because the environment has changed.

78 Chapter 5. CASE

(a) Skill latent only

(b) Knowledge latent only

Figure 5.4: When visualizing only the skill or knowledge latent in the latent space, the skill

latent shows a more tightly clustered pointcloud compared to the knowledge embedding.

5.2. Introduction 79

These experiments have once again highlighted the strong but incomplete disentanglement of

the skill and knowledge within our system. Nevertheless, the clustering observed in many of the

experiments supports our hypothesis that this latent space is being regularised effectively and is

learning a true compositional representation. In the next section, we will attempt to strengthen

the compositionality of our learned representation by treating the regularization of the latent

space as an optimization process on the representation embedding network.

5.2.2 Latent Space Regularization

With the information from the previous subsection, we can confirm there exists a possible

compositional relationship between vectors in the latent space. Combining this with our work

from chapter 4, we can further extend the vector arithmetic in latent space. Previously we

required that the embedding for the entire task sequence from step 0 to T must be equal to the

sum of the embeddings from the start to the current point (0...t) and from the current point to

the end (t...T). Taking this further, any task embedding ~u, is a combination of any number of

subtasks ~v ∈ ~u which can themselves be described as an embedding between two-time steps

~va:b. As such, the entire task embedding is a summation of subtask embeddings between various

time steps.

~u0:T = ~v0:a + ~va:b + ...+ ~vx:T (5.1)

We can apply this idea recursively to the subtasks. As such, any task embedding between two

states is the summation of embeddings for all combinations of time steps in between. This leads

us to define the constraint,

~va:b = ~va:c + ~vc:b ∀c where a < c < b (5.2)

Ideally, all representations generated in the latent space should follow this constraint, and the

latent space would be regularized. In this case, it would be easy for the system to generalize to a

sequence of tasks through latent summation.

In order to regulate the learning of the task embedding and optimize over the constraints, we

constructed a set of linear equations consisting of a constraints matrix C which defines the

constraints and a matrix x which includes all the subtask embeddings. For example, with an

80 Chapter 5. CASE

embedding matrix

x =


~v0:1

~v1:2

~v0:2

 (5.3)

The corresponding constraints matrix is:

C =
[
1, 1,−1

]
such that Cx = ~va:c + ~vc:b − ~va:b = 0 (5.4)

We include all subtask embeddings and constrains within these matrices. We can then easily

solve these equations, for example using the Moore-Penrose pseudo-inverse of C. The result is

a set of refined task embeddings ~v∗ which obey our constraints.

~v∗ ⇒ min
~v
Cx− z ⇒ min

~v


1, 1,−1, 0, ...

...

0, 0, ...1, 1,−1





v̂0:1

v̂1:2

v̂0:2

...

v̂T−2:T


− z (5.5)

where z is a matrix of zeros.

Of course, optimising the embeddings in this manner does not account for the previous unrefined

embeddings. This is likely to cause instability in the system, as the embedding may change

drastically over time compared to what the policy has been previously trained on. As a result,

we also include an initialization regularizer to try and keep the refined embeddings as close as

possible to the unrefined embeddings. To achieve this we append an identity matrix to the end

of C, and the previous task embeddings to the end of z. This includes an additional series of

equations within the optimization, of the form ~v∗0:1 − ~v0:1 = 0.

As shown in figure 5.5, the optimized pointcloud shown in green has an almost uniform

distribution in the latent space. These comprise three square-shaped clusters with a denser

distribution on the “edges”. Additionally, as shown in figure 5.6, both the small clusters (circled

in blue and yellow) outside the main cluster (shown in red) also have their corresponding

optimized latent (shown in green) forming clusters outside the main cluster. This shows the

consistency of features being preserved throughout the optimization process.

Unfortunately, despite these promising preliminary results, it became obvious that the computa-

tional cost of this approach is a major limitation. The number of constraints grows as a factorial

5.2. Introduction 81

Figure 5.5: Visualization of the original latent and post-optimization latent, the optimized latent

shows a greater level of variety and more regular spread in the latent space.

Figure 5.6: The characteristic of the original feature distribution is preserved during the opti-

mization.

82 Chapter 5. CASE

to the number of states within a trajectory. As the number of constraint equations increases, so

does the size of the constraint matrix and the optimization problem. This causes the computation

cost to be prohibitively expensive, in both memory usage and computing time. Therefore, we

needed to find a less complex mechanism for enforcing the same type of constraint. The most

obvious solution is, instead of performing this constraint optimization process at every step for

all previous embeddings, instead generate a single subset of embeddings to optimise at each

timestep. To this end, we reverse the problem. Instead of enforcing compositionality constraints

on the full history of subtasks to date, we consider how to enforce these constraints for future

tasks.

5.2.3 Compositional Subgoals

Our approach CASE [113] generates novel subgoals on the fly, this avoids the problem with

factorial computational growth while emphasising the current and future state of the agent.

We treat a single complex task as a sequence of smaller implicit tasks or subtasks. Each

of these subtasks still requires multiple steps and some effort to learn. However, the need

for long-term planning (and the brittleness of divergences) is alleviated. Importantly, unlike

previous approaches, we do not explicitly define a finite set of subtasks with hard boundaries (i.e.

“navigate to kitchen”, “make coffee” etc.). Instead, the subtasks can be any small sub-trajectory

towards the overall goal (e.g. “Move 3 meters towards the kitchen”, “pick up the coffee beans”

etc.) and are generated on-the-fly through compositionality. As such, these sub-goals do not

need to correspond to any task defined by the developer, nor do they need to have been previously

observed during training.

In the remainder of this chapter’s work, the robot learns to produce a compositional represen-

tation of the task which supports arithmetic operations. This representation is then used to

compute a subgoal waypoint in the near future relative to the agent’s current progress in the task.

Finally, an Imitation Learning policy is trained, using the learned compositional representation

as its state space, and with targets set via the adaptive subgoal estimation. These subgoals are

adaptive as the rollout progresses, providing additional flexibility. Unlike traditional rigid and

non-overlapping subgoals, our approach enables the agent to adapt to errors and drift, following

alternative routes to the overall task, and avoiding deadlock with unachievable subtasks. In

5.3. METHODOLOGY 83

addition, the learning task is simplified as long-term planning happens via the compositional

space and the agent focuses on short-term execution. This also allows the agent to perform

one-shot generalization over unseen tasks in the same environment. With this approach, we

are able to outperform standard imitation learning policies (including those using the same

compositional state space) by over 30% in unseen task generalization, while maintaining the

same level of performance on seen tasks.

In summary, the contributions of this work are the following:

1. A novel approach to estimate subgoal waypoints via a compositional task embedding

space

2. An Imitation Learning approach for complex compound tasks, based on online-subgoal

estimation

3. An evaluation of one-shot task generalization for the policy, based on subgoal generaliza-

tion

5.3 METHODOLOGY

In this section, we detail our method of utilizing adaptive subgoal waypoints for learning

complex tasks and generalising to previously unseen tasks. In order to define the work in this

chapter, we first revisit and formalise the definitions from the introduction. As described in

Chapter 1, a “task” (τ) is defined as a singular goal the agent must complete through a series of

interactions with the environment. A “sequence”([τ0, τ1...τn]) of tasks means a collection of

multiple separate tasks, some of which may be independent and some of which may depend on

each other. Disregarding task dependencies, we allow the individual tasks within a sequence

to be completed in any order, during the completion of the sequence. We further specify a

“complex task”(T), as a singular specified goal task, which nevertheless engenders an entire

sequence of implicitly defined subtasks to be completed (T ⊆ [τ0, τ1...τn]), due to the implicit

dependencies within the environment. In our imitation learning framework, we define the

“subgoal waypoint” as a state in the expert reference trajectory, located in the “near future” of the

current agent’s state. Note that the current trajectory and reference trajectory are both solving the

84 Chapter 5. CASE

same sequence of tasks, but are operating in different environments. Thus the subgoal waypoint

cannot be used directly to guide the agent’s trajectory.

As in the previous chapter, we learn a compositional latent space to represent tasks and sequences

of tasks. More specifically, a singular task maps to a unique point in the latent space. An

unordered sequence of tasks (as defined above) also maps to a unique point in the latent space,

which is the summation of the embeddings of all the subtasks within the sequence. This helps to

draw a connection between “complex tasks” and “task sequences” as defined above. Both the

singular complex task and the explicit sequence of all dependent subtasks should map to the

same point within the latent space. This compositional approach makes manifest the lack of

ordering specified above. The summation of subtask embeddings is a commutative operation,

therefore changing the order of the summation does not change the final embedding. The

task embedding learns the representation for a composition of a sequence of tasks and obtains

policies that can generalise to a new sequence of tasks. In order to learn this compositional

task embedding, this constraint is codified as a number of regularization losses on the state

encoder. The regularization losses are the same as in the previous chapter. One loss regulates

the summation of the past and future tasks of the system, ensuring it is equal to the embedding

of the entire task. The other loss utilizes a marginal loss function to ensure the uniqueness of

each training and reference pair, and prevent negative learning.

Finally, we train agents to select actions using the learned task embedding, as their state

representation. As in the previous chapter we define Ot as the observation of a state at time t in a

fully observable environment. We similarly specify Oref0:T as an expert reference trajectory which

completes the target task sequence in a different environment. Therefore, the policy function is:

π
(
at|Ot, Oref0:T , O0:t

)
(5.6)

where O0:t is the observation of the episode so far. As in the previous chapter, the expert

reference trajectories are extracted by a greedy search over the environment for the optimal

solution.

5.3.1 Compositional representation

A compositional representation is an embedding which encodes structural relationships between

the items in the space [73]. The work of CPV[33] provided an efficient method for the repre-

5.3. METHODOLOGY 85

sentation of a sequence of tasks. This compositional representation allows the agent to operate

on an embedding of the tasks remaining to be done, without ever explicitly defining the target

end-state. Consider a compositional representation ~v which consists of the trajectory from state

O0 to state OT , with an encoding function gφ:

~v0,T = gφ(O0, Ot) = gφ(O0, O1) + gφ(O1, O2) + ...+ gφ(OT−1, OT) (5.7)

This representation defines a sequence of tasks as the sum of the representation for all subtasks

within the sequence. To prevent accidentally enforcing a specific ordering during the completion

of these subtasks, the representation is built with commutativity, i.e. ~vA,B+~vC,D = ~vC,D+~vA,B

However, in a long and complex task sequence, the ~v often embeds a long trajectory which

consists of multiple tasks later in the sequence. This makes the learning process difficult as the

agent will obtain unhelpful information as to its current task.

5.3.2 Plan Arithmetic and Subgoal Waypoints

In one-shot imitation learning, the agent must perform a task (or sequence of tasks) conditioned

on one reference example of the same task. In our work, we further generalize this by allowing

the current and reference task to be performed under different environments. The agent is

trained with many sequences of other tasks in other environments and then provided with an

expert trajectory as a reference to guide the new task, with no additional learning. Humans

are adept at this: generalizing previous experiences to newly defined problems. However, for

machine learning, this is extremely challenging and represents an important stepping stone

towards general AI.

During training, the agent is given two trajectories, the training trajectoryO and expert trajectory

Oref with matching task lists. It then learns a policy to perform online prediction of the actions

in one trajectory, conditioned on the other trajectory as the reference. In the running example

‘getting coffee’, the agent will be provided with trajectories of retrieving coffee from a different

office with a different floor layout. Learning how to make coffee without relying on specific meta-

knowledge about a particular environment is vital for improving generalization. In imitation

learning, the agent is provided with an expert trajectory, which performs the same sequence of

tasks at an optimal level.

86 Chapter 5. CASE

As in all previous chapters, a visual approach to task specification is taken. During both

training and testing, the agent is given an image of the desired goal state of the current episode

(OT), as well as the goal state of the reference episode (Oref0:T). It is also given an image of

the current state (Ot), and an image of a future subgoal state from the reference trajectory

(OrefI). It is important to emphasise that the agent is not provided with any future knowledge

about the current trajectory, beyond the target goal state which is used to specify the task to

be completed. Subgoals are drawn from the future of the reference trajectory, not the current

trajectory (OrefI ∈ Oref0:T).

The model will first encode both the compositional representation of the current state to the goal

state (Ot:T), and the compositional representation of the reference sub-goal to the goal state

of the reference episode(OrefI:T). It will then use the difference between the two (OrefI:T - Ot:T)

to predict the next action. As in the last chapter, Let ~u0,T = gφ(Oa:b) embed the observation

pair at time a and b into the compositional representation with encoder g and parameters φ. We

can estimate a subgoal state OrefI within the reference trajectory {Oref0 , OrefT }, and create an

compositional representation from this waypoint state to the goal state of the expert trajectory

~v = gφ({OrefI , OrefT }). Let ~u = gφ({Ot, OT }) be the representation from the current state to

the goal state, then we can calculate a waypoint representation ~W with the following subtraction

in the latent domain:

~W = ~u− ~v = gφ({Ot, OT })− gφ({OrefI , OrefT }) (5.8)

At timestep t, equation 5.8 estimates an approximation ~W = gφ({Ot, OrefI }) of the trajectory

from the current state of the agent to the subgoal waypoint without having to explicitly know

the waypoint along the current trajectory. This representation is then used as input for policy

network π
(
at|Ot, ~W

)
to determine the actions of the agent.

To choose the subgoal waypoint, we assume the agent is always on the optimal path, therefore

its progress in the task is proportional to that of the expert trajectory. As such when we choose

the waypoint, we take the state Orefp in the reference trajectory, which has the same percentage

of completion as in the training episode ({Oref0 , Orefp }/{Oref0 , OrefT } = {O0, Ot}/{O0, OT }),

then add a fixed subgoal lookahead parameter k steps to ensure the waypoint is in the near future.

For example, in a training episode, the agent must perform two tasks: Chop Tree and Build

House. In the reference trajectory, Chop Tree takes 10 steps and building a house takes 5 steps.

5.3. METHODOLOGY 87

In the training trajectory, the chop tree task has 15 steps, and the build house takes 15 steps.

An agent at the 6th step in the training trajectory is considered to have the same percentage of

completion as the 3rd step in the reference trajectory. Then we apply a k = 4 step lookahead,

the 7th step in the reference trajectory is now the subgoal waypoint. An apparent issue with

this approach is the problem of overreaching. When an agent is at the 14th step in the training

trajectory, the new subgoal waypoint is at the 11th step in the reference trajectory, which falls

into the next task. This will result in a misleading demonstration and potentially confuse the

agent in the current task. However, this issue can be avoided by carefully picking the parameter

k.

The value of k is determined experimentally in our work, as in previous works in the broader

subgoal selection literature [29]. Their work concluded a higher k should make planning easier

as this lowered the search graph for future actions. This comes at the cost of the quality of the

subgoal generator, and uncertainty in overall performance. As k increases in an episode, the

chance of the subgoal state RI landing in a different task in the reference sequence increases.

The new task in the reference sequence is likely not an ideal demonstration for the current task

in the training sequence. The optimal value of k varies depending on the tasks and the working

environment as well as the subgoal system applied for learning. One potential issue with this

approach is that the length of each subtask is unknown. If the current subtask in the training

episode is significantly longer or shorter than the expert trajectory, then the waypoint may fall

into a different subtask. However, we expect the agent to be able to adapt to this situation, as

any state from the following subtask will already reflect the completion of the current subtask.

Based on our new definition of the subgoal policy, the action loss becomes:

La(Ot, O
ref
I) =−log

(
π
(̂
at|Ot, gφ({Ot, OT })−gφ({OrefI , OrefT }

))
(5.9)

Additionally, the two compositional regularization losses from the previous chapter are still

used. LH from eq 4.4 enforces the compositionality within the current trajectory while LP from

eq 4.5 ensures that similar tasks are encoded into similar regions of the latent space.

88 Chapter 5. CASE

5.4 Evaluation

Our experiments aim to show the improvement of the agent’s combinatorial generalization

capability when trained using online compositional subgoals. Therefore, we evaluate the

performance on tasks which were previously unseen during training, and for which only a single

reference episode is provided. In these new tasks, the reference episode is also performing

unseen tasks in an unseen environment. In both cases, the observation is provided as a pair of

images. The state encoder is a 4-layer CNN and is shared by the reference and training episode.

This encodes the current state to the goal state sub-trajectory, as well as the reference sub-goal

state to the goal state sub-trajectory. The resulting latent will then be processed according to

equation 5.8, and the output is fed into the policy network to estimate the action. Note that

for clarity, these results do not include the gated VAE approach with disentangled skill and

knowledge of the previous chapter. This allows us to focus on evaluating the advantages of

training with adaptive subgoals.

In each experiment, we contrast several variants of our own approach, including the effect of the

current image branch and the additional compositionality losses. We also compare against the

current state-of-the-art in compositional IL [33]. Additionally, we include an ablation study on

the “near future” subgoal lookahead parameter k. In all other experiments, we set k = 4 due to

the results of the ablation study.

5.4.1 Environment

In order to examine generalization and long-term IL problems, we trained our agent in the Craft

World[32] environment. This is the same environment we used in the previous chapter. This

also facilitated a fair comparison with the state-of-the-art compositional IL approach [33]. This

environment is a 2D discrete-action world with a top-down grid view where the agent is also

able to move in one of 4 directions at each step. There are different types of objects in the

environment as shown in figure 5.7 including trees, rocks, axe, wheat, bread, etc. Some objects

can be interacted with by an agent via pick-up and drop-off actions. The object moves with the

agent when picked up, which can cause transformations to other objects in the environment. For

example, if the agent carries an axe to a tree, the tree will be transformed into a log, which then

5.4. Evaluation 89

Figure 5.7: An example of the Crafting World[32] environment, on the left, is a rendering of a

state observation, and the right image is a different state observation received by the agent.

can be transformed into a house once the agent picks up a hammer and brings it to the log. It

is apparent that this environment makes it possible to define complex long-horizon tasks such

as “Make Bread” or “Build House” which include many implicit subgoals. Furthermore, these

tasks can be combined into sequences such as [“Make Bread”, “Eat Bread”, “Build House”].

This provides a good selection of individual tasks to generate training data. This also liberates

the agent from skill list labels [81] or language-based skill descriptions [95] which limits the

generalization to unseen tasks and sequences. Also of interest is the fact that this allows the task

sequence to be generated with no explicit ordering, giving more freedom in both data generation

and generalization.

The training and testing dataset is generated with a random map, upon which the agent is required

to perform 2-8 different tasks in sequence with no particular ordering. The expert trajectory is

generated with a greedy search to ensure an optimal solution. The agent is trained on 150,000

episodes and tested on the same number of unseen episodes. For the standard experiment, the

list of training and testing tasks was the same. For the one-shot generalization experiment, the

set of training tasks is different from the set of testing tasks, requiring generalization from the

reference trajectory during training.

90 Chapter 5. CASE

5.4.2 One-shot task generalization

Figure 5.8: This graph shows the unseen task success rate over epochs of our subgoal agent

with and without the regularization losses and a modified SOTA benchmark. The original

CPV-FULL[33] has a much lower performance overall, while the modified version has a closer

performance compared to our agent after 500 epochs. The inclusion of regularization losses

(CASE+L) only improved the agent when performing seen tasks, the improvement in unseen

task generalization is limited.

During the generalization test, we train the agent for 3000 epochs and test the agent’s ability

to perform in a complete unseen environment with unseen tasks. As this work borrows the

idea of compositional plan vector, we again use the work of CPV [33] as the SOTA benchmark.

Results from the generalization test are shown in figure 5.8. Our agent is able to outperform the

original SOTA benchmark [33] by over 30% in unseen task success rate consistently throughout

the training process. The SOTA model requires both a complete reference trajectory and the

trajectory so far, to calculate the future plan for the agent. However, in its original form [33]

does not take the desired goal state as input at test time. Instead, the approach relies on the

5.4. Evaluation 91

compositionality of the current and reference trajectory to produce a goal state. To ensure a

fair comparison, we also evaluate an enhanced version of [33] (noted as CPV+Goal Guidance),

where the reference trajectory is replaced with the ground truth end-goal of the current trajectory

at test time. This model shows a higher performance after 500 epochs of training.

Figure 5.9: The difference in performance increases as the number of tasks in a sequence

increases.

We also performed the evaluation previously described in Chapter 4.3.4, where performance

is evaluated against sequence length. We can observe a growing difference in performance as

the number of tasks in a sequence increases as shown in figure 5.9. When the number of tasks

in each episode sequence is chosen from the range 2-4, the proposed approach outperforms

the baseline by around 3-4%. When sequence lengths are drawn from the range 2-8, this gap

roughly doubles. Our model is able to maintain an overall success rate above 50% throughout

the experiments, this is considered a successful one-shot task generalization.

5.4.3 Ablation Study

Next, we perform an ablation study of the different components of the framework. More

specifically we explore the benefits of the regularization losses (LH from eq 4.4 and LP from

eq 4.5), and the current state image input (Ot). As shown in table 5.1, the addition of both

the current state image branch and the regularization losses each improved the performance

92 Chapter 5. CASE

of the model. As expected, the current image provided additional information more relevant

to the current task, while the regularization losses increased the generalization capability by

encouraging a more regularized representation.

Model
Best

Performance

Average

Performance

Standard

Deviation

CPV-FULL[33] 0.432 0.392 0.0166

CPV+Goal

Guidance
0.670 0.647 0.0146

CASE 0.689 0.641 0.0133

CASE+CI 0.701 0.676 0.0139

CASE+CI+LR 0.712 0.687 0.0167

Table 5.1: An ablation study on the different components of the network. Current state image

(CI) and assistive losses (LR = LH +LP) show some improvement in generalization capability.

5.4.4 Hyperparameter Search

Finally, we tested several settings for the “near future” lookahead parameter k. As shown

in figure 5.10, when k = 4 the agent’s performance is maximized. The graph shows some

sensitivity to the parameter k, and performance can be unstable at lower values. We suspect

this is due to the inconsistency in the length of the randomized subtasks between the training

episodes and expert trajectories. As an example, imagine the first task in the training episode

is to pick up an axe. In the agent’s training episode the axe is maybe 10 steps away from the

current state, while it is 2 steps away in the expert reference trajectory. If the k value is less

than 2, then the generated subgoal will be after the completion of the current subtask within the

expert trajectory. The reverse can also be true for larger values of k if the distances are swapped,

where the reference trajectory subgoal points towards a task that the agent has already completed.

In most cases, the agent is able to deal with this: a subgoal for the following task is still easier

to learn from than the entire remaining trajectory. Nevertheless, it may be interesting for future

work to explore the automatic computation of the optimal k parameter during compositional

subgoal estimation.

5.5. Conclusion 93

Figure 5.10: An ablation study over the number of k-step for choosing the near future waypoint.

The average performance of each k-step is calculated from 8 trials. The setting k = 1 has

mediocre performance but the lowest standard deviation, k = 3 has the opposite result. We used

k = 4 for our experiments as this setting has the highest performance.

5.5 Conclusion

In this work, we proposed to learn a compositional task representation which enabled novel

subgoal estimation from reference trajectories in IL. This makes it significantly easier to learn

long and complex sequences of tasks, including those with implicit or poorly defined subtasks.

It also enabled one-shot task generalization where the agent can solve tasks it has never seen

during training, using only a single reference trajectory in a different environment. With this

technique, we developed an IL agent which can generalize to previously unseen tasks with a

success rate of around 70%. This represents an improvement of around 30% over the previous

SOTA.

However, this approach can be developed further in future work. As discussed in section 5.4.3,

using a fixed value for the k-step lookahead parameter is likely suboptimal. It is likely that

performance and stability may be improved by developing an adaptive lookahead window, based

on recent developments in the broader field of subgoal search [29].

94 Chapter 5. CASE

Additionally, the training and testing tasks we used in this work are all navigation related and

performed in a toy environment. We have no evidence that this approach will achieve similar

improvement for more complex tasks. From previous works, we know the subgoal method also

has good performance in other area such as classification, manipulation and motion control.

Expanding this work to other types of tasks could be a potential benchmark for further testing.

Chapter 6

Conclusions and Future Work

6.1 Conclusions

The future of robotics calls for increased multi-tasking capabilities in order to effectively

generalize across a wide range of tasks in diverse and unconstrained environments. The

motivation behind the research conducted in this PhD is rooted in the recognition that robots

will require adaptive skills to successfully perform these tasks in various locations, guided by an

AI-based high-level planner.

Emulating the human ability to adapt to new environments poses a significant challenge for

the fields of robotics and artificial intelligence. The aim is to develop robots that can seam-

lessly adjust their behavior and skills to suit the demands of unfamiliar settings, mirroring the

adaptability demonstrated by humans. As such, the main objectives for the thesis were:

1. To develop a robotic system which utilized a reinforcement learning multi-environment

planner and a traditional navigation method for low-level control.

2. To develop a multi-task learning framework which learns a disentangled representation of

robotic tasks, with experience sharing and generalization capability.

3. To explore the reinforcement and imitation learning solutions for long and complex tasks,

utilizing the idea of sub-tasks and combinatorial generalization.

95

96 Chapter 6. Conclusions and Future Work

This chapter will summarize how these objectives have been achieved and tested in both

simulation and real-world environments. By achieving these objectives, this thesis contributed

to the state of the art.

In Chapter 3 of this thesis, we introduced the concept of multi-environment navigation. This

enabled an AI-controlled robotic navigation framework which was based on multi-task deep

reinforcement learning. We demonstrated our work with the problem of visual navigation in

both simulated and real-world environments. This work combined techniques from multi-task

learning, reinforcement learning and visual navigation. The result took aspects from each

to formulate a more deployable robotic system. By utilizing attentional task allocation and

environment type classification, we enabled the agent to navigate in multiple environments within

one training session while sharing learning between environments. Overall, the MERLIN model

outperformed the SOTA visual navigation model in both performance and training speed for

the multi-environment setting, as well as the single-environment setting. We observed different

behaviours depending on the surroundings in both the simulated and real-world environments.

We also demonstrated the model’s ability to transfer to the real world after training offline in a

discrete simulation environment. This work satisfied the first objective of the thesis.

In the second technical chapter, we approached the problem of multi-task learning from a

neurobiological perspective. This work achieved the second objective of the thesis. Taking

inspiration from neurobiology and pedagogy studies on memory acquisition, we hypothesized

the latent space in a policy neural network could be disentangled into subdomains. The

subdomains each contain the learned information for either the skill or the knowledge of a task.

These should be independently transferable to solve unseen tasks. We successfully demonstrated

this disentanglement in imitation learning, using a gated VAE architecture. With our method,

we were able to outperform the SOTA model, in two different environments, both in terms of

success rate and speed. During our experiments, we discovered that skill and knowledge can not

be completely disentangled, this finding echoes the studies in pedagogy and language acquisition.

Even in humans, certain elements of procedural memory are entangled with declarative memory.

This disentanglement of skill and knowledge was a fundamental step toward combinatorial

generalization. Combing this chapter with the work in Chapter 3, we explored the generalization

aspect of machine learning.

6.2. Limitations and Short-Term Future Work 97

In the last technical work presented in Chapter 5 of this thesis, we proposed a compositional

task representation learning framework. This work achieved the third objective of the thesis.

The CASE framework utilized a novel subgoal estimation approach from reference trajectories.

This reduced the cost of learning complex task sequences within an imitation learning setting.

These “near future” subgoals were recalculated at each step using compositional arithmetic in

learned latent representation space. This made it significantly easier to learn long and complex

sequences of tasks, including those with implicit or poorly defined subtasks. In addition to

improving learning efficiency for standard long-term tasks, this approach also made it possible

to perform one-shot generalization to previously unseen tasks, given only a single reference

trajectory for the task in a different environment.

Overall, this thesis presents several novel solutions for combinatorial generalization. By utilizing

reinforcement and imitation learning in a multi-task learning framework, we demonstrated skill

and knowledge recombination, and long-term reasoning tasks across multiple environments.

This has led to 3 publications at ICRA and IROS based on the work in Chapter 3 [114], Chapter

4 [115] and Chapter 5 [113] respectively. This thesis shows that a better understanding of human

behaviours can provide valuable insight into generalizable machine learning. The techniques

presented in this thesis show several clear directions for future work.

6.2 Limitations and Short-Term Future Work

One potential area for future work is to explore the integration and unification of the various

techniques presented in the thesis. While combining these contributions may require significant

development, it has the potential to create a valuable benchmark for future reinforcement

learning and imitation learning systems. By investigating the synergies and interactions between

the different approaches, it may be possible to develop a more comprehensive and robust system.

We will next consider possible extensions to the chapters independently. During the experiments

in Chapter 3, we find the optimal number of sub-networks is not directly proportional to the

number of environments during training. In fact, the optimal number of sub-networks is often

lower. We suspect this is due to the transferring of skill and knowledge between each navigation

task, as similar behaviour can be observed across similar types of environments. Therefore,

98 Chapter 6. Conclusions and Future Work

it would be interesting to explore letting the network determine the optimal number of sub-

networks automatically. By dynamically increasing or decreasing the number of sub-networks

during training and testing, the framework could adapt to various tasks with minimal additional

resources cost while maintaining performance.

In the real-world application of Chapter 3, the robot demonstrated an ability to auto-correct

the overshot in rotation. However, this behaviour often took several attempts to complete.

This is likely caused by the limited viewing angles in the training environment. At the time

of development, the AI2-Thor environment had limited handling of angular movement. This

limited our ability to introduce angular change in the training. During the noise resilience

experiments, we did not introduce any angular noise in the system, the shifted samples are all

taken from the same angular view as the original state. This minor limitation caused the robotic

system to perform slightly less reliable than its potential. The recovery movement often took

more steps to complete than the actual task.

In Chapter 5 the look-ahead parameter k was determined experimentally during this work.

While previous research [29] also followed this approach and results were favourable, it may be

possible to develop a better method for determining an optimal k. We could instead explore a

learned approach where the optimal k parameter is estimated on the fly, based on the current

conditions. With this method, the network can better avoid the overlapping issue during training,

and potentially achieve a better performance overall.

6.3 Directions for the Field

In the long term, the contributions of this thesis pave the way for advancements in combinatorial

generalization in machine learning. It has been recognized that the ability to generalize beyond

learned experiences remains a significant challenge in AI research, as highlighted in the work

of Battaglia et al.[10]. Combinatorial generalization, particularly with relational inductive

biases embedded into the framework, will be a crucial building block for AI agents to achieve

human-like capabilities.

Combinatorial generalization refers to the unique capacity of human intelligence to combine

and construct new inferences, predictions, and behaviours from known experience building

6.3. Directions for the Field 99

blocks. Combinatorial generalization refers to the signature ability of human intelligence

which is able to combine and construct new inferences, predictions and behaviours from

known experience building blocks. Early research has concluded that a human’s capacity for

Combinatorial generalization is based on the cognitive ability to represent structure and reason

about relationships between entities[49, 35]. This enables humans to solve novel problems by

inferring the relation between the new problem and our known abstract hierarchy. We can then

pick and choose the combination of known skills and knowledge to solve the problem. This

ability to make analogies by comparing and contrasting relational structures is critical for both

combinatorial generalization and domain adaptation. The work presented in Chapter 3 and

Chapter 5 offers an opportunity to embed this type of structure. More specifically, a relational

graph of expert networks from chapter 3 may help build an abstract knowledge graph within the

compositional latent space of chapters 4 and 5. This graph should automatically adapt and grow

when exposed to new problems.

A general direction for future work is closing the simulation gap and making the training

environment and setting more realistic. The difficulty in transitioning between training and

real-world environments has been well documented. Although we have had some success within

this thesis, broader applications in the real world are likely to be challenging. Unfortunately, it

is likely that more advanced simulators will require greatly increased computing resources and

would adversely affect training speed. This issue has been the major challenge in reinforcement

learning research being deployed in the real-world. The nature of reinforcement learning

demands interaction with the environment during training, and this is difficult and costly for

a real world environment. Most of the time learning a successful policy in simulation does

not transfer to real-world deployment, especially for fields such as robotics[28]. More recent

research on this topic often focuses on the simulation side, making the simulation more dynamic

and randomized [84], or more detailed and synthesized to mimic reality [15]. Our work in

Chapter 3 took the approach of making the simulation using a real-world image, however, this

is costly and inaccurate. Even better simulations take the physical properties of the system

into account [5]. However, this on only half of the solution, making the simulation mimic

reality more accurately is very costly in many aspects, especially in computational resources

and training time. It is possible to develop a universal training framework which enables the

agent to achieve domain adaptation, especially with robotic systems.

100 Chapter 6. Conclusions and Future Work

Another vital step towards a true general AI is the development of a universal agent. This

would be a single agent which can simultaneously learn to solve a large number of disparate

tasks, ideally sharing learning between these tasks. The closest prior work is [85] but this work

learned to solve each task separately through isolated training. One avenue for exploring a truly

general agent is learning within modern video games. There have been several recent examples

where video games are used as training environments for research [112, 38, 23]. However, these

researches almost always focus entirely on a single game or a single environment within the

game, and common skills are not transferred between games. A truly general agent would be

able to generalize over many games, and be able to share related skills like navigation and

problem solving, despite the different abstractions for these skills present in each environment.

The biggest challenge is to consider how skills and knowledge can be effectively shared between

environments with vastly different observation and action spaces. Only the most abstract aspects

of these skills can be shared.

Overall, we hope that these paths for future work will all bring us closer to an AI agent which

can solve multiple problems and adapt well to new tasks, when deployed on real-life robotic

hardware. This would surely usher in a new age of AI and robotics.

Bibliography

[1] Multi-task learning for HIV therapy screening | proceedings of the 25th international

conference on machine learning.

[2] Robin Amsters and Peter Slaets. Turtlebot 3 as a robotics education platform. In

International Conference on Robotics in Education (RiE), pages 170–181. Springer.

[3] Jacob Andreas, Dan Klein, and Sergey Levine. Modular multitask reinforcement learning

with policy sketches. In International Conference on Machine Learning, pages 166–175.

PMLR.

[4] Marcin Andrychowicz, Dwight Crow, Alex Ray, Jonas Schneider, Rachel Fong, Peter

Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight

experience replay. In Neural Information Processing Systems(NIPS).

[5] OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob

McGrew, Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray,

et al. Learning dexterous in-hand manipulation. The International Journal of Robotics

Research, 39(1):3–20, 2020.

[6] Abdul Fatir Ansari and Harold Soh. Hyperprior induced unsupervised disentanglement of

latent representations. In Proceedings of the AAAI Conference on Artificial Intelligence,

volume 33, pages 3175–3182.

[7] Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex

Vitvitskyi, Zhaohan Daniel Guo, and Charles Blundell. Agent57: Outperforming the atari

human benchmark. In International Conference on Machine Learning, pages 507–517.

PMLR.

101

102 BIBLIOGRAPHY

[8] Shi Bai, Fanfei Chen, and Brendan Englot. Toward autonomous mapping and exploration

for mobile robots through deep supervised learning. In 2017 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pages 2379–2384. IEEE.

[9] Bram Bakker, Jürgen Schmidhuber, et al. Hierarchical reinforcement learning based on

subgoal discovery and subpolicy specialization. In Proc. of the 8-th Conf. on Intelligent

Autonomous Systems, pages 438–445. Citeseer.

[10] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius

Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan

Faulkner, et al. Relational inductive biases, deep learning, and graph networks. arXiv

preprint arXiv:1806.01261, 2018.

[11] Marc Bellemare, Will Dabney, Robert Dadashi, Adrien Ali Taiga, Pablo Samuel Castro,

Nicolas Le Roux, Dale Schuurmans, Tor Lattimore, and Clare Lyle. A geometric

perspective on optimal representations for reinforcement learning. Advances in neural

information processing systems, 32, 2019.

[12] Samy Bengio, HM Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi,

and Roman Garnett. Advances in neural information processing systems 31. In Annual

conference on neural information processing systems 2018, NeurIPS 2018, 3–8 December

2018. Montréal Canada.

[13] J. Borenstein and Y. Koren. Real-time obstacle avoidance for fast mobile robots.

19(5):1179–1187. Conference Name: IEEE Transactions on Systems, Man, and Cyber-

netics.

[14] J. Borenstein and Y. Koren. The vector field histogram-fast obstacle avoidance for mobile

robots. 7(3):278–288.

[15] Konstantinos Bousmalis, Alex Irpan, Paul Wohlhart, Yunfei Bai, Matthew Kelcey, Mrinal

Kalakrishnan, Laura Downs, Julian Ibarz, Peter Pastor, Kurt Konolige, et al. Using

simulation and domain adaptation to improve efficiency of deep robotic grasping. In 2018

IEEE international conference on robotics and automation (ICRA), pages 4243–4250.

IEEE, 2018.

BIBLIOGRAPHY 103

[16] Alper Kamil Bozkurt, Yu Wang, Michael M Zavlanos, and Miroslav Pajic. Model-free

reinforcement learning for stochastic games with linear temporal logic objectives. In 2021

IEEE International Conference on Robotics and Automation (ICRA), pages 10649–10655.

IEEE, 2021.

[17] Timo Bräm, Gino Brunner, Oliver Richter, and Roger Wattenhofer. Attentive multi-task

deep reinforcement learning. In Joint European Conference on Machine Learning and

Knowledge Discovery in Databases, pages 134–149. Springer.

[18] Christopher P Burgess, Irina Higgins, Arka Pal, Loic Matthey, Nick Watters, Guillaume

Desjardins, and Alexander Lerchner. Understanding disentangling in beta-vae.

[19] Mark Burgin. Theory of Knowledge: Structures and Processes, volume 5. World

scientific.

[20] Yash Chandak, Georgios Theocharous, James Kostas, Scott Jordan, and Philip Thomas.

Learning action representations for reinforcement learning. In International conference

on machine learning, pages 941–950. PMLR, 2019.

[21] Elliot Chane-Sane, Cordelia Schmid, and Ivan Laptev. Goal-conditioned reinforcement

learning with imagined subgoals. In Marina Meila and Tong Zhang, editors, Proceedings

of the 38th International Conference on Machine Learning, volume 139 of Proceedings

of Machine Learning Research, pages 1430–1440. PMLR.

[22] Devendra Singh Chaplot, Dhiraj Prakashchand Gandhi, Abhinav Gupta, and Russ R

Salakhutdinov. Object goal navigation using goal-oriented semantic exploration. 33:4247–

4258.

[23] Devendra Singh Chaplot and Guillaume Lample. Arnold: An autonomous agent to play

fps games. In Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[24] Kevin Chen, Junshen K. Chen, Jo Chuang, Marynel Vazquez, and Silvio Savarese. Topo-

logical planning with transformers for vision-and-language navigation. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages

11276–11286.

104 BIBLIOGRAPHY

[25] Ricky TQ Chen, Xuechen Li, Roger Grosse, and David Duvenaud. Isolating sources of

disentanglement in variational autoencoders.

[26] Ching-An Cheng, Xinyan Yan, Nolan Wagener, and Byron Boots. Fast policy learning

through imitation and reinforcement.

[27] Sonia Chernova and Manuela Veloso. Interactive policy learning through confidence-

based autonomy. 34:1–25.

[28] Paul Christiano, Zain Shah, Igor Mordatch, Jonas Schneider, Trevor Blackwell, Joshua

Tobin, Pieter Abbeel, and Wojciech Zaremba. Transfer from simulation to real world

through learning deep inverse dynamics model. arXiv preprint arXiv:1610.03518, 2016.

[29] Konrad Czechowski, Tomasz Odrzygóźdź, Marek Zbysiński, Michał Zawalski, Krzysztof

Olejnik, Yuhuai Wu, Łukasz Kuciński, and Piotr Miłoś. Subgoal search for complex

reasoning tasks. 34:624–638.

[30] Bin Dai and David Wipf. Diagnosing and enhancing vae models.

[31] Tim De Bruin, Jens Kober, Karl Tuyls, and Robert Babuška. Integrating state representa-

tion learning into deep reinforcement learning. IEEE Robotics and Automation Letters,

3(3):1394–1401, 2018.

[32] Coline Devin. craftingworld. original-date: 2019-07-11T16:56:42Z.

[33] Coline M Devin, Daniel Geng, Pieter Abbeel, Trevor Darrell, and Sergey Levine. Com-

positional plan vectors.

[34] Wei Gao, David Hsu, Wee Sun Lee, Shengmei Shen, and Karthikk Subramanian.

Intention-net: Integrating planning and deep learning for goal-directed autonomous

navigation. In Conference on Robot Learning, pages 185–194. PMLR.

[35] Geoffrey P Goodwin and PN Johnson-Laird. Reasoning about relations. Psychological

review, 112(2):468, 2005.

[36] Giorgio Grisettiyz, Cyrill Stachniss, and Wolfram Burgard. Improving grid-based slam

with rao-blackwellized particle filters by adaptive proposals and selective resampling.

BIBLIOGRAPHY 105

In Proceedings of the 2005 IEEE international conference on robotics and automation,

pages 2432–2437. IEEE.

[37] Shixiang Gu, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine. Continuous deep q-

learning with model-based acceleration. In International conference on machine learning,

pages 2829–2838. PMLR.

[38] William H Guss, Brandon Houghton, Nicholay Topin, Phillip Wang, Cayden Codel,

Manuela Veloso, and Ruslan Salakhutdinov. Minerl: A large-scale dataset of minecraft

demonstrations. arXiv preprint arXiv:1907.13440, 2019.

[39] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie

Tan, Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic

algorithms and applications. arXiv preprint arXiv:1812.05905, 2018.

[40] Masayoshi Hashima, Fumi Hasegawa, Shinji Kanda, Tsugito Maruyama, and Takashi

Uchiyama. Localization and obstacle detection for robots for carrying food trays. In 1997

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), volume 1,

pages 345–351. IEEE.

[41] Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot,

Dan Horgan, John Quan, Andrew Sendonaris, Ian Osband, et al. Deep q-learning

from demonstrations. In Proceedings of the AAAI Conference on Artificial Intelligence,

volume 32.

[42] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew

Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual

concepts with a constrained variational framework.

[43] R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bach-

man, Adam Trischler, and Yoshua Bengio. Learning deep representations by mutual

information estimation and maximization.

[44] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. 29.

[45] Berthold KP Horn and Brian G Schunck. Determining optical flow. 17(1-3):185–203.

106 BIBLIOGRAPHY

[46] Chuan-En Hsu, Mahdin Rohmatillah, and Jen-Tzung Chien. Multitask generative ad-

versarial imitation learning for multi-domain dialogue system. In 2021 IEEE Automatic

Speech Recognition and Understanding Workshop (ASRU), pages 954–961. IEEE, 2021.

[47] Keishi Ishihara, Anssi Kanervisto, Jun Miura, and Ville Hautamaki. Multi-task learning

with attention for end-to-end autonomous driving. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pages

2902–2911.

[48] Mansur Kabuka and A Arenas. Position verification of a mobile robot using standard

pattern. 3(6):505–516.

[49] Charles Kemp and Joshua B Tenenbaum. The discovery of structural form. Proceedings

of the National Academy of Sciences, 105(31):10687–10692, 2008.

[50] Alex Kendall, Matthew Grimes, and Roberto Cipolla. Posenet: A convolutional network

for real-time 6-dof camera relocalization. In 2015 Proceedings of the IEEE international

conference on computer vision (ICCV), pages 2938–2946.

[51] Dongsung Kim and Ramakant Nevatia. Symbolic navigation with a generic map. 6(1):69–

88.

[52] Junsu Kim, Younggyo Seo, and Jinwoo Shin. Landmark-guided subgoal generation in

hierarchical reinforcement learning. 34.

[53] Ye-Hoon Kim, Jun-Ik Jang, and Sojung Yun. End-to-end deep learning for autonomous

navigation of mobile robot. In 2018 IEEE International Conference on Consumer

Electronics (ICCE), pages 1–6. IEEE.

[54] Thomas Kipf, Yujia Li, Hanjun Dai, Vinicius Zambaldi, Alvaro Sanchez-Gonzalez,

Edward Grefenstette, Pushmeet Kohli, and Peter Battaglia. Compile: Compositional

imitation learning and execution. In International Conference on Machine Learning,

pages 3418–3428. PMLR, 2019.

[55] Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs, Alvaro Herrasti,

Daniel Gordon, Yuke Zhu, Abhinav Gupta, and Ali Farhadi. Ai2-thor: An interactive 3d

environment for visual ai.

BIBLIOGRAPHY 107

[56] Tejas D Kulkarni, Karthik R Narasimhan, Ardavan Saeedi, and Joshua B Tenenbaum.

Hierarchical deep reinforcement learning: Integrating temporal abstraction and intrinsic

motivation. In Neural Information Processing Systems(NIPS).

[57] Abhishek Kumar, Prasanna Sattigeri, and Avinash Balakrishnan. Variational inference of

disentangled latent concepts from unlabeled observations.

[58] Nicholas C Landolfi, Garrett Thomas, and Tengyu Ma. A model-based approach for

sample-efficient multi-task reinforcement learning.

[59] Przemyslaw A Lasota, Gregory F Rossano, and Julie A Shah. Toward safe close-proximity

human-robot interaction with standard industrial robots. In 2014 IEEE International

Conference on Automation Science and Engineering (CASE), pages 339–344. IEEE.

[60] Seunghak Lee, Jun Zhu, and Eric P Xing. Adaptive multi-task lasso: with application to

eqtl detection. In Advances in neural information processing systems, pages 1306–1314.

[61] Sergey Levine and Vladlen Koltun. Guided policy search. In International conference on

machine learning, pages 1–9. PMLR.

[62] Siyuan Li, Jin Zhang, Jianhao Wang, Yang Yu, and Chongjie Zhang. Active hierarchical

exploration with stable subgoal representation learning.

[63] Yitao Liang, Marlos C. Machado, Erik Talvitie, and Michael Bowling. State of the

art control of atari games using shallow reinforcement learning. In Proceedings of the

2016 International Conference on Autonomous Agents & Multiagent Systems, AAMAS

’16, pages 485–493. International Foundation for Autonomous Agents and Multiagent

Systems. event-place: Singapore, Singapore.

[64] Bo Liu, Xuesu Xiao, and Peter Stone. A lifelong learning approach to mobile robot

navigation. 6(2):1090–1096.

[65] Jun Liu, Shuiwang Ji, and Jieping Ye. Multi-task feature learning via efficient l2, 1-norm

minimization.

[66] Kara Liu, Thanard Kurutach, Christine Tung, Pieter Abbeel, and Aviv Tamar. Hallucina-

tive topological memory for zero-shot visual planning. In International Conference on

Machine Learning, pages 6259–6270. PMLR.

108 BIBLIOGRAPHY

[67] Shikun Liu, Edward Johns, and Andrew J Davison. End-to-end multi-task learning with

attention. In Proceedings of the IEEE/CVF conference on computer vision and pattern

recognition, pages 1871–1880.

[68] Bruce D Lucas, Takeo Kanade, et al. An iterative image registration technique with

an application to stereo vision. In Imaging Understanding Workshop, pages 121–130.

Vancouver, British Columbia.

[69] Zhao Mandi, Fangchen Liu, Kimin Lee, and Pieter Abbeel. Towards more generalizable

one-shot visual imitation learning. In 2022 International Conference on Robotics and

Automation (ICRA), pages 2434–2444. IEEE, 2022.

[70] Bar Mayo, Tamir Hazan, and Ayellet Tal. Visual navigation with spatial attention. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), pages 16898–16907.

[71] Robert McCormick. Conceptual and procedural knowledge. 7(1):141–159.

[72] Oscar Mendez, Simon Hadfield, and Richard Bowden. Markov localisation using heatmap

regression and deep convolutional odometry. In 2021 IEEE International Conference on

Robotics and Automation (ICRA), pages 9638–9644. IEEE.

[73] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed

representations of words and phrases and their compositionality. 26.

[74] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy

Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for

deep reinforcement learning. In International conference on machine learning, pages

1928–1937. PMLR.

[75] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G

Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.

Human-level control through deep reinforcement learning. 518(7540):529–533.

[76] Steven D. Morad, Roberto Mecca, Rudra P. K. Poudel, Stephan Liwicki, and Roberto

Cipolla. Embodied visual navigation with automatic curriculum learning in real environ-

ments. 6(2):683–690.

BIBLIOGRAPHY 109

[77] Hans P Moravec. The stanford cart and the cmu rover. 71(7):872–884.

[78] Adithyavairavan Murali, Animesh Garg, Sanjay Krishnan, Florian T Pokorny, Pieter

Abbeel, Trevor Darrell, and Ken Goldberg. Tsc-dl: Unsupervised trajectory segmentation

of multi-modal surgical demonstrations with deep learning. In 2016 IEEE International

Conference on Robotics and Automation (ICRA), pages 4150–4157. IEEE.

[79] David Nistér, Oleg Naroditsky, and James Bergen. Visual odometry. In 2004 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition (CVPR),

volume 1, pages I–I. Ieee.

[80] Guillaume Obozinski, Ben Taskar, and Michael Jordan. Multi-task feature selection.

2(2.2):2.

[81] Junhyuk Oh, Satinder Singh, Honglak Lee, and Pushmeet Kohli. Zero-shot task gener-

alization with multi-task deep reinforcement learning. In International Conference on

Machine Learning, pages 2661–2670. PMLR.

[82] G. Oriolo, M. Vendittelli, and G. Ulivi. On-line map building and navigation for au-

tonomous mobile robots. In Proceedings of 1995 IEEE International Conference on

Robotics and Automation, volume 3, pages 2900–2906 vol.3. ISSN: 1050-4729.

[83] Sujoy Paul, Jeroen Vanbaar, and Amit Roy-Chowdhury. Learning from trajectories via

subgoal discovery. 32.

[84] Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-real

transfer of robotic control with dynamics randomization. In 2018 IEEE international

conference on robotics and automation (ICRA), pages 3803–3810. IEEE, 2018.

[85] Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander

Novikov, Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias

Springenberg, et al. A generalist agent. arXiv preprint arXiv:2205.06175, 2022.

[86] Bethany Rittle-Johnson and Robert S Siegler. The relation between conceptual and

procedural knowledge in learning mathematics: A review.

110 BIBLIOGRAPHY

[87] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirk-

patrick, Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural

networks.

[88] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirk-

patrick, Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural

networks.

[89] Nikolay Savinov, Alexey Dosovitskiy, and Vladlen Koltun. Semi-parametric topological

memory for navigation.

[90] Stefan Schaal. Is imitation learning the route to humanoid robots? 3(6):233–242.

[91] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding

for face recognition and clustering. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 815–823.

[92] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust

region policy optimization. In International conference on machine learning, pages

1889–1897. PMLR.

[93] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proxi-

mal policy optimization algorithms.

[94] Soroush Seifi, Abhishek Jha, and Tinne Tuytelaars. Glimpse-attend-and-explore: Self-

attention for active visual exploration. In Proceedings of the IEEE/CVF International

Conference on Computer Vision (ICCV), pages 16137–16146.

[95] Tianmin Shu, Caiming Xiong, and Richard Socher. Hierarchical and interpretable skill

acquisition in multi-task reinforcement learning.

[96] David Silver, James Bagnell, and Anthony Stentz. High performance outdoor navigation

from overhead data using imitation learning. 1.

[97] Avi Singh, Eric Jang, Alexander Irpan, Daniel Kappler, Murtaza Dalal, Sergey Levinev,

Mohi Khansari, and Chelsea Finn. Scalable multi-task imitation learning with autonomous

improvement. In 2020 IEEE International Conference on Robotics and Automation

(ICRA), pages 2167–2173. IEEE, 2020.

BIBLIOGRAPHY 111

[98] Jiaming Song, Hongyu Ren, Dorsa Sadigh, and Stefano Ermon. Multi-agent generative

adversarial imitation learning. 31.

[99] Jaime Spencer, Richard Bowden, and Simon Hadfield. Medusa: Universal feature

learning via attentional multitasking. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 3800–3809.

[100] Wen Sun, J Andrew Bagnell, and Byron Boots. Truncated horizon policy search: Com-

bining reinforcement learning & imitation learning.

[101] Wen Sun, Arun Venkatraman, Geoffrey J Gordon, Byron Boots, and J Andrew Bag-

nell. Deeply aggrevated: Differentiable imitation learning for sequential prediction. In

International conference on machine learning, pages 3309–3318. PMLR.

[102] Umar Syed and Robert E Schapire. A game-theoretic approach to apprenticeship learning.

20.

[103] Yee Whye Teh, Victor Bapst, Wojciech Marian Czarnecki, John Quan, James Kirk-

patrick, Raia Hadsell, Nicolas Heess, and Razvan Pascanu. Distral: Robust multitask

reinforcement learning. In Neural Information Processing Systems(NIPS).

[104] Yee Whye Teh, Victor Bapst, Wojciech Marian Czarnecki, John Quan, James Kirk-

patrick, Raia Hadsell, Nicolas Heess, and Razvan Pascanu. Distral: Robust multitask

reinforcement learning.

[105] Michael T Ullman. The declarative/procedural model: a neurobiological model of

language learning, knowledge, and use. In Neurobiology of language, pages 953–968.

Elsevier.

[106] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,

U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,

editors, Advances in Neural Information Processing Systems 30, pages 5998–6008.

Curran Associates, Inc.

[107] Matthew J Vowels, Necati Cihan Camgoz, and Richard Bowden. Gated variational

autoencoders: Incorporating weak supervision to encourage disentanglement. In 2020

112 BIBLIOGRAPHY

15th IEEE International Conference on Automatic Face and Gesture Recognition (FG

2020), pages 125–132. IEEE.

[108] Matthew J Vowels, Necati Cihan Camgoz, and Richard Bowden. Nestedvae: Isolating

common factors via weak supervision. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 9202–9212.

[109] Lu Wang, Ruiming Tang, Xiaofeng He, and Xiuqiang He. Hierarchical imitation learning

via subgoal representation learning for dynamic treatment recommendation. In Proceed-

ings of the Fifteenth ACM International Conference on Web Search and Data Mining,

pages 1081–1089, 2022.

[110] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3):279–292,

1992.

[111] Daniel B Willingham, Mary J Nissen, and Peter Bullemer. On the development of

procedural knowledge. 15(6):1047.

[112] Bichen Wu, Alvin Wan, Xiangyu Yue, and Kurt Keutzer. Squeezeseg: Convolutional

neural nets with recurrent crf for real-time road-object segmentation from 3d lidar point

cloud. In 2018 IEEE International Conference on Robotics and Automation (ICRA),

pages 1887–1893. IEEE, 2018.

[113] Bian Xihan, Oscar Mendez, and Simon Hadfield. Generalizing to new tasks via one-shot

compositional subgoals.

[114] Bian Xihan, Oscar Mendez, and Simon Hadfield. Robot in a china shop: Using reinforce-

ment learning for location-specific navigation behaviour. In 2021 IEEE International

Conference on Robotics and Automation (ICRA), pages 5959–5965. IEEE.

[115] Bian Xihan, Oscar Mendez, and Simon Hadfield. Skill-il: Disentangling skill and

knowledge in multitask imitation learning.

[116] Junhong Xu, Qiwei Liu, Hanging Guo, Aaron Kageza, Saeed AlQarni, and Shaoen Wu.

Shared multi-task imitation learning for indoor self-navigation. In 2018 IEEE global

communications conference (GLOBECOM), pages 1–7. IEEE, 2018.

BIBLIOGRAPHY 113

[117] Wei Yang, Xiaolong Wang, Ali Farhadi, Abhinav Gupta, and Roozbeh Mottaghi. Visual

semantic navigation using scene priors.

[118] Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Reinforcement learning

with prototypical representations. In International Conference on Machine Learning,

pages 11920–11931. PMLR, 2021.

[119] Xinyi Yu, Jianan Hu, Yuehai Fan, Wancai Zheng, and Linlin Ou. Multi-subgoal

robot navigation in crowds with history information and interactions. arXiv preprint

arXiv:2205.02003, 2022.

[120] Tianren Zhang, Shangqi Guo, Tian Tan, Xiaolin Hu, and Feng Chen. Generating

adjacency-constrained subgoals in hierarchical reinforcement learning. 33:21579–21590.

[121] Yu Zhang and Qiang Yang. An overview of multi-task learning. 5(1):30–43.

[122] Yu Zhang and Dit-Yan Yeung. A convex formulation for learning task relationships in

multi-task learning.

[123] Zhilin Zheng and Li Sun. Disentangling latent space for vae by label relevant/irrelevant

dimensions. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 12192–12201.

[124] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim, Abhinav Gupta, Li Fei-Fei, and

Ali Farhadi. Target-driven visual navigation in indoor scenes using deep reinforcement

learning. In 2017 IEEE international conference on robotics and automation (ICRA),

pages 3357–3364. IEEE.

	Nomenclature
	Symbols
	List of Figures
	List of Tables
	Introduction
	Challenges with robotic AI
	Unifying AI and Automation
	Solving Complex Tasks

	Motivation
	Contributions
	Summary

	Literature Review
	Deep Reinforcement Learning
	Reinforcement Learning
	Imitation Learning

	Disentanglement and Generalization
	Multi-Task Learning
	Skill and Knowledge Learning
	Disentangled Representations
	Subgoal Search

	Visual Navigation
	Summary

	MERLIN
	Problem Definition
	Methodology
	Siamese Feature Extractor and Joint State Embedding
	Task-Specific Expert Policy Sub-Networks
	Attentive Task Allocation and Soft Blending Network
	Environment Classifier

	Evaluation
	Experiments
	Baseline comparison
	Ablation Study
	Qualitative Multi-environment behaviours
	Generalization and Noise Resilience
	Live Demonstration

	Conclusion

	CPVAE
	Problem Definition
	Methodology
	Compositional Task Embedding
	Gated Variational Auto Encoders
	Disentangling Skill and Knowledge Subdomains

	Evaluation
	Implementation
	Exploring Disentanglement
	Ablation Study
	Comparison vs State-Of-The-Art
	Real Life Demonstration

	Conclusion

	CASE
	Problem Definition
	Introduction
	Exploring Task Compositionality
	Latent Space Regularization
	Compositional Subgoals

	METHODOLOGY
	Compositional representation
	Plan Arithmetic and Subgoal Waypoints

	Evaluation
	Environment
	One-shot task generalization
	Ablation Study
	Hyperparameter Search

	Conclusion

	Conclusions and Future Work
	Conclusions
	Limitations and Short-Term Future Work
	Directions for the Field

	Bibliography

