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Abstract

Deformable models have been an active area of research in computer vision for a
number of years. Their ability to model non-ridgid objects through the
combination of geometry and physics has proven a valuable tool in image
processing. More recently a class of deformable objects known as Point
Distribution Models or Eigen Models have been introduced. These statistical
models of deformation overcome some of the shortfalls of earlier deformable
models by learning what is ‘allowable' deformation, for an object class, from a
training set of examples. This semi-automated learning procedure provides a
more generic approach to object recognition, tracking and classification. Their
strength lies in their simplicity and speed of operation, allowing the robust ability
to model complex deformations in cluttered environments. However, the
automated construction of such models leads to a breakdown of the fundamental
assumptions upon which they are based. Primarily, that the underlying
mathematical model is linear in nature. Furthermore, as more complex objects
are considered, these assumptions fail completely and what is produced is an

unreliable model.

This work addresses these problems and presents novel techniques for the
automated construction and application of non-linear deformable models, which
retain the speed, and simplicity of the linear Point Distribution Model. It is
further shown how these non-linear models can be augmented with probabilistic

temporal constraints, which are essential in object tracking and classification.

This work presents, in essence, three developments to the field. Firstly, a
piecewise linear approach to modelling non-linearity is proposed and results
demonstrated that show its accuracy in modelling both low and high dimensional
datasets with heavy non-linearity. The technique is then extended to the
automated construction of models. Secondly, it is shown how the piecewise
approach can be augmented with temporal constraints and used in both model
prediction, animation and for the support of multiple hypotheses during tracking.

It is further shown how these temporal models can be extended to incorporate



information from other sources, providing more reliable tracking in the absence
of complete training data. Thirdly, it is shown how elements can be combined
statistically and used to infer information about an object from its shape alone.
Using human motion capture as an example, it is demonstrated that models can
be assembled which allow 3D structural information about body pose and motion
to be inferred from a monoscopic image sequence using only natural features of

the body as markers.
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Chapter }

1 Introduction

The term Computer Vision covers a broad field of research encompassing many
techniques, applications and disciplines but is commonly summarised as

"the science of making a computer see...."

However, the goal is often to allow the computer to understand what it sees to
some extent, and it is here that the science embraces aspects of artificial
intelligence. This artificial understanding, or interpretation, of a scene stems
from human perception and our attempt to mimic the functionality of the human
visual system. It is natural to attempt to emulate the way in which humans
perceive or interpret the world and this approach has been instrumental
throughout the course of vision research, with developments such as foveal
vision systems and stereoscopic depth reconstruction. The most fundamental of

such approaches is that of model based vision.

The image plane of a camera is akin to the retina of the eye, and images
projected onto it are the 2D projection of the 3D world. This loss of information
presents no obstacle for the human brain which interprets the image seamlessly,
constantly updating its model of the world. The ability to judge depth through the



disparity of objects falling upon the retinas provides essential clues to the brain
about the structure of the real world. However, even when this stereoscopic
information is unavailable, the human brain can still interpret the scene and
accurately estimate the position and orientation of objects. This is due to the huge
knowledge base the brain accumulates about the 3D world, its laws, and the

shape and structure of objects and how they project onto the retina.

If the human brain can achieve such feats for millions of objects, then the
rationale of providing a similar knowledge of a small subset of objects to a
computer is an obvious solution. This is the premise of model based vision,
where an internal representation of the world or object is provided to a computer
allowing it to locate, recognise, track or interact with real world objects. This a
priori knowledge about objects can be encapsulated and represented in numerous

ways.

Probably the simplest form of model based vision is that of template matching
[Ballard 82]. Given a known object or feature to be located in an image, a
template, representing object features, is applied to the image at every location.
By formulating template matching with a scoring mechanism, the fit of the
model at any location can be assessed and the probable position of objects or
features estimated. Although a relatively time consuming approach, template
matching algorithms can provide effective object location for constrained
applications and have proven invaluable in areas such as industrial inspection.
Hardware implementations are commonplace allowing large numbers of

templates to be matched in real time.

Industrial inspection has proven a successful application of real time vision
systems as the nature of the problems is typically heavily constrained. If the
application of biscuits on a conveyor belt is considered, the problem of object
location is greatly simplified by the process and nature of the object. The
production line produces only biscuits, so the variability of shape is heavily
reduced. Biscuits are typically flat and as such can be assumed to be 2D objects,
which adhere to ground plane constraints. In addition, lighting inconsistencies

and background clutter can be controlled and modelled accurately. Given a



ridgid internal model of an object, probable locations can be identified within the
image by matching the features of the object with the extracted features of an
image (such as edges or corners). This is often applied as a hypothesise and test
procedure, where possible locations of an object are generated and compared to
the image. Each hypothesis is then assessed using some metric where the highest
scoring hypotheses correspond to the likely location of objects. As more complex
objects are considered, techniques such as geometric hashing [Wolfson 92] can
be used to allow affine object transformations. However, when real world objects
and less constrained environments are considered these tools are insufficient at

modelling object variability.

The problems of recognition are compounded when everyday, unconstrained
objects are considered. In addition to the variability of lighting, shading and
complex scenes containing cluttered backgrounds, even ridgid 3D objects will
produce considerably differing views depending upon their position and
orientation. Consider a book. The shape of the book projected onto the image
frame will vary immensely as its orientation changes. More complex still is the
goal of building a generic model of a book where the 3D shape parameters of the
object vary immensely between examples. A common solution to this problem is
to represent the object in terms of its 3D structure and use the 2D projection of
the internal model to match with the 2D projection of the real world object.

Models that bend or articulate introduce further complexity to the task of object
recognition and tracking. In addition to the object variation described above,
articulated objects also produce variability of shape and structure in the image.
Many researchers have tackled this by extending the 3D internal model to that of
articulated geometric primitives with tight joint constraints, which closely mimic
the movement of the real world object. However, as these types of models are
typically hand-coded they do not offer a generic solution that can be applied to

all objects.

Deformable objects which can alter their shape to fit an object under some global
shape constraints overcome these problems by encapsulating a large amount of

an object’s variability into a constrained deformation of a contour or object. By



learning this deformation from a training set of example shapes, they produce a
set of tools which allow models to be easily constructed for any number of

objects under a multitude of situations.

This thesis is concerned with the construction of generic models of deformation
and their application to the recognition and tracking of complex 3D objects.
Chapter 2 will present a review of relevant literature to the work and discuss the
shortfalls of current formulations. Chapter 3 will introduce linear Point
Distribution Models and describe the Active Shape Model approach to object
tracking. Chapter 4 will discuss the use of colour in image segmentation and
feature extraction. Chapter 5 will present a non-linear approximation technique
based upon a piecewise linear model. Chapter 6 will extend the piecewise linear
approach to more complex, high dimensional training sets and demonstrate the
use of such models in the classification of American Sign Language. Chapter 7
will discuss the addition of temporal constraints. Using motion capture as an
example it is shown how time dependent deformation can be both learnt and
reproduced from a model. Its is further shown how these temporal constraints
can be used to support multiple hypotheses during tracking. Chapter 8 discusses
the extension of PDMs into the 3D domain. Chapter 9 presents a new approach
to markerless based motion capture which incorporates many of the previously
discussed elements to allow the 3D pose and motion of a human body to be
extracted from a monoscopic image sequence. Finally a discussion and

conclusions are presented.

This manuscript also contains two appendices. Appendix 1 presents the k-means
and fuzzy k-means (FCM) algorithms along with associated techniques.
Appendix 2 presents a new approach to the surface segmentation of volumetric
data. Although this work is extremely relevant to 3D PDM construction it stands

as an individual piece of research and hence is consigned to the appendices.



2 Literature Review

2.1 Introduction

An initial literature review was performed which surveyed the field of 3D
computer vision. The review covered types of image data from 2D images, range
data and depth maps to volumetric segmentation. Acquisition methods,
reconstruction and image segmentation were also covered and conclusions drawn
to support the remainder of the research. This initial survey was too general for
inclusion within this manuscript and hence is available as a separate technical

report [Bowden 96].

The conclusions of the report were that contour or surface based approximations
(specifically statistical contour models) are important for the following reasons:

» Image searching is localised along contour boundaries and hence
provides significant computational savings over more traditional low
level image processing techniques. This benefit is more apparent where
real-time processing of image sequences or large volumetric datasets
are considered.

» The ability to introduce a priori knowledge about object shape and

deformation into a contour provides a robust deformable template



which can be applied to an image where the absence or occlusion of
object features and cluttered/complex backgrounds would result in the
failure of other techniques.

« The ability to accurately segment objects from images or sequences
provides smoothed object boundaries.

e The ability to aid in the classification of objects under affine

transformation.

The remainder of this chapter will present a more specific review of related
literature, namely in the area of statistical models of deformation and associated

approaches.

2.2 Contour Models

The seminal work of Kass et al on Snakes or the Active Contour Model (ACM)
presented a class of semi-automatic methods for segmentation using energy
minimising curves [Kass, 1988; Kass, 1987]. In these methods, a user draws the
approximate boundary of the region of interest in an image. Then, an elastic
contour is fitted to the boundary points and the curve is iteratively refined until
its internal energy defined by its curvature is minimised while responding to
external forces derived by image edges. Many researchers have shown how these
active contour models can be used to locate and track an object in an image
[Etoh, 1992; Ueda, 1992; Cipolla, 1992].

Zhou and Pycock segment cells from 2D images using statistical models applied
like snakes [Zhou, 1995; Zhou, 1995]. Models are built up for different forms of
cells; the interpretation process optimises the match between models and the data
using a Bayesian distance measure. Lobregt and Viergever extend upon this
model, presenting solutions to the problems of unwanted deformation like
shrinking and vertex clustering [Lobregt, 1995]. There is a wealth of published
work on variations on the basic model proposed by Kass et al, all use the same
basic model with small constraints added to allow a priori knowledge of shape to

be imposed upon the model and hence provide better performance.



Terzopolous and Vasilescu [Terzopoulos 91] extended the snake model to
include an inflation force that helps remove the need for initial contour
placement and thus avoid convergence on local minima. The inflation force
drives the snake model outwards towards the object boundary like an inflating
balloon. Terzopolous and Vasilescu formulated the model as a finite element
mesh and later extended the model to a thin plate spline, demonstrating
successful results in the reconstruction of range data and volumetric CT data
surface representations [Mclnery 93]. Bowden et al extended this work further

and is discussed in more detail in Appendix 2 [Bowden 97].

Several researchers have proposed B-Spline variations of the active contour
model [Rueckert, 1995; Schnabel, 1995; Blake 1998]. Schnabel and Arridge
looked at the problems associated with high curvature in active contour models,
proposing a curvature matching technique for isophoto curvature matching. They
look at the applications of using this approach to segment high curvature
contours of the brain from medical images. Blake and Isard have combined many
of their publications on the subject in the text ‘Active Contours’ which covers the
construction, tracking and applications of B-spline contour approximations
[Blake 1998].

It has been shown that these 2D models can be used to reconstruct 3D surfaces
from volumetric data by applying snakes to individual slices to extract contours
that can then be reconstructed into a 3D model [Carlbom, 1994; Goshtasby,
1995]. A typical implementation of such a system uses the final model from one

slice as an initial estimate for the next to reduce user intervention.

Ivins and Porrill presented Active Region Models [lvins 98], an adaptation to
Kass's Active Contour Models where colour regions within an image are used to

locate and track the boundarires of regions within the image.

A Neural network approach was proposed by Chiou et al called the neural
network based stochastic active contour model (NNS-SNAKE) which integrates

a neural network classifier for systematic knowledge building, and an active



contour model for automated contour location, using energy functions to

stochastically locate the most probable contour.

2.3 Statistical Models of Deformation

A Point Distribution Model (PDM)[Cootes 95] gets its nickname of ‘Smart
Snake’ from its obvious similarity to elastic snakes (Active Contour Models,
ACM [Kass, 1987]). The major difference is that while snakes retain shape
information in the elasticity and rigidity of their constituent points, a PDM uses a
statistical model to specify allowable deformations. This not only makes the
PDM less computationally expensive than the ACM but deformation is easier to
build into the model.

Since they were proposed by Cootes et al, a wealth of research has been
undertaken into Point Distribution Models. A PDM (the underlying mathematical
model) or Active Shape Model (the model’s applied name) is a statistical model
which can be constructed from a training set of correctly labelled images. A
PDM represents an object as a set of labelled points, giving their mean positions
and a small set of modes of variation which describe how the object’s shape can
change. These modes of variation are gained from Principal Component Analysis
(PCA) on the training set and represent the largest eigenvectors of the covariance
matrix. An Active Shape Model exploits the linear formulation of PDMs in an
iterative search procedure capable of rapidly locating the modelled structures in
noisy, cluttered images, even when partially occluded [Cootes, 1995].

Turk and Pentland [Turk 91] present a method for extracting only the number of
eigenvectors equal to the number of training examples and not the dimensionality
of the set, in a similar manner to that of Cootes et al [Cootes 95] and this is

discussed in more detail in Chapter 3.

It has been shown by Bowden et al that the PDM provides sufficient dimensional
reduction inherent to the model to enable the simple classification of static shape
[Bowden, 1995; Bowden, 1996]. These authors outline a simple method for

using this dimensional reduction to classify shape deformation from the variation



weights from the mean. They show how static gestures can be recognised in real-
time for a PDM of the human hand.

Lantis, Taylor and Cootes have also extended their initial work from contour
models to shape and grey-level models [Lantis, 1994]. They use a combined
PDM that uses both shape and a grey scale maps to locate and identify human

faces.

Turk and Pentland use principal component analysis to describe face images in
terms of a set of basis functions or ‘eigenfaces’. Though valid modes of variation
are learnt from a training set, and are more likely to be more appropriate than a
‘physical’ model, the eigenface is not robust to shape changes, and does not deal
well with variability in pose and expression. However, the model can be matched

to an image easily using correlation-based methods [Turk 91].

Magee and Bole presented Vector Distribution Models, where points around a
connected contour are converted into a vector, and these vectors are concatenated
into a final training vector on which PCA is performed [Magee 98]. These
authors went on to discuss the use of Canonical Analysis, a similar procedure to
PCA where two co-variance matrices are formed, one describing Intra class
variation and one Inter class variation. After extraction of a generalised eigen
system a new eigen space is extracted. Although this space may not necessarily
be optimised for dimensional reduction, it is useful for data classification as the

first components of the model represent inter-class variation [Magee 99].

Swets and Weng [Swets 96] presented a technique called a combined eigen-
canonical transform which combined canonical analysis with PCA to give data
reduction and improved classification. Canonical analysis was performed on data
after it had been projected down into the lower eigen space gained from PCA

similar to that outlined in section 6.

Initial work of extending the PDM (Active Shape Model) to 3D has already been
proposed by [Hill, 1995].



Ferryman et al use PCA on 3D rigid models to build a deformable model for
various different car shapes which is used to locate and track moving traffic
[Ferryman, 1995]. The process is very similar to that of the PDM. However,
instead of modelling the object as points that make up the boundaries of the
object, points are chosen at landmarks such as corners, and the model built up

from the known interconnection of these points.

O’Toole et al presented work for 3D models of faces represented as a mean face
with weightings that can be used to deform the model [O’Toole 96]. Faces were
built up as 3D surfaces from a set of 65 male and 65 female heads. PCA analysis
was performed to provide a compact model. They show that the primary mode of
variation of the eigenface data set provides the mapping from a male head to a

female head.

2.4 Non Linear PDMs

The linear formulation of the PDM relies on the assumption that similar shapes
will produce similar vectors. This being the case, it is a fair assumption that the
training set will generate a cluster in some shape space. However, it is unfair to
assume that this cluster will be uniform in shape and size. As more complex
models are considered the training set may even generate multiple, separate

clusters in the shape space.

Under these circumstances the linear PDM will begin to fail as non-linear
training sets produce complex high dimensional shapes which, when modelled
through the linear mathematics of PCA, produce unreliable models. The nature
of non-linear shape spaces will be discussed in depth in later chapters but a
number of authors have addressed the problems associated with the construction

of non-linear PDMs.

Where rotational non-linearity is known to be present within a model this can be
removed/reduced by mapping the model into an alternative linear space. Heap
and Hogg suggested using a log polar mapping to remove non-linearity from the

training set [Heap 95]. This allows a non-linear training set to be projected into a
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linear space where PCA can be used to represent deformation. The model is then
projected back into the original space. Although a useful suggestion for
applications where the only non-linearity is pivotal and represented in the paths
of the landmark points in the original model, it does not provide a solution for
the high non-linearity generated from other sources.

Higher order non-linearity is often the result of incorrect labelling of training
examples. By carefully selecting landmark points by hand, a near optimum
labelling can be achieved which will minimise the non-linearity of a training set.
However, for all but the most simple of cases this is not a feasible solution. Often
semi-automated procedures are used where a user can speed up the process of
labelling example shapes for analysis. Fully automated procedures are rarely
used due to the problems of correctly assigning landmarks and the highly non-

linear models that this produces.

Work done by Baumberg and Hogg goes some of the way to solving non-
linearity in deformable models by using a B-Spline representation. Landmark
points for the Spline are represented as a PDM [Baumberg, 1995]. The curvature
of the B-Spline takes on some of the non-linearity of the model and therefore

reduces the problems presented with linear PDM representing non-linear models.

It has been proposed by Kotcheff and Taylor that non-linearity introduced during
assembly of a training set could be eliminated by automatically assigning
landmark points in order to minimise the non-linearity of the corresponding
training cluster [Kotcheff 97]. This can be estimated by analysing the size of the
linear PDM that represents the training set. The more non-linear a proposed
formulation of a training set, the larger the PDM needed to encompass the
deformation. The procedure was demonstrated using a small test shape and
scoring a particular assignment of landmark points according to the size of the
training set (gained from analysis of the principal modes and the extent to which
the model deforms along these modes, i.e. the eigenvalues of the covariance
matrix). This was formulated as a minimisation problem, using a genetic
algorithm. The approach performed well but at a heavy computation cost
[Kotcheff 97].

11



As the move to larger, more complex models or 3D models is considered, where
dimensionality of the training set is high, this approach becomes unfeasible. A
more generic solution is to use accurate non-linear representations. As linear
PCA is used for linear PDMs, so, non-linear PCA can be used to model non-

linear PDMs and many researchers have proposed approaches to this end.

Sozou et al first proposed using polynomial regression to fit high order
polynomials to the non-linear axis of the training set [Sozou 94]. Although this
compensates for some of the curvature represented within the training set, it does
not adequately compensate for higher order non-linearity, which manifests itself
in the smaller modes of variation as high frequency oscillations. In addition, the
order of the polynomial to be used must be selected and the fitting process is

time consuming.

Sozou et al further proposed modelling the non-linearity of the training set using
a backpropagation neural network to perform non-linear principal component
analysis [Sozou 95]. This performs well, however the architecture of the network
is application specific; also, training times and the optimisation of network
structure are time consuming. What is required is a means of modelling the non-

linearity accurately, but with the simplicity and speed of the linear model.

Several researchers have proposed alternatives, which utilise non-linear
approximations, estimating non-linearity through the combination of multiple
smaller linear models [Bowden 97; Bregler 94; Cootes 97; Heap 97]. These
approaches have been shown to be powerful at modelling complex non-linearity

in extremely high dimensional feature spaces [Bowden 97].

The basic principle behind all these approaches is to break up any curvature into
piecewise linear patches, which estimate the non-linearity rather than modelling
it explicitly. This is akin to the polygonal representation of a surface. A smooth
curved surface can be estimated by breaking it down into small linear patches. In
the field of computer graphics this technique is performed to reduce render time.

There exists, of course, a trade off between visual accuracy and computation

12



speed (where the minimum numbers of polygons are used to achieve the desired
appearance). The same problem is present in non-linear PDM estimation, where
the minimum number of linear patches that accurately represent the model must

be determined.

Bregler and Omohundro suggested modelling non-linear data sets of human lips
using a Shape Space Constraint Surface [Bregler 94]. The surface constraints are
introduced to the model by separating the space surface into linear patches using
cluster analysis. However the dimensionality of these 'lip' shape spaces is low as

is the non-linearity due to the simplified application of the work.

Cootes and Taylor suggested modelling non-linear data sets using a Gaussian
mixture model, which is fitted to the data using Expectation Maximisation
[Cootes 97]. Multiple Gaussian clusters are fitted to the training set. This
provides a more reliable model as constraints are placed upon the bounds of each
piecewise patch of the shape space, which is modelled by the position, and size
of each Gaussian.

Both of these estimation techniques become unfeasible as dimensionality and
training set size increase. However by projecting the training set down into the
linear subspace as derived from PCA the dimensionality and therefore
computation complexity of the non-linear analysis can be reduced significantly to
facilitate statistical and probabilistic analysis of the training set. This projection
relies upon the dimensional reduction of PCA while retaining the preservation of
the important information, the shape of the training set [Bowden 97; Bowden 98]

and will be discussed fully in the following Chapters.

2.5 Tracking

By treating the problem of model fitting and tracking as an optimization
technique the problems of discontinuity can be overcome. Hill et al proposed
using genetic algorithms to model the discontinuous changes in shape
space/model parameters [Hill 91][Hill 92]. Cootes et al present the use of genetic

algorithms for initial image search and initialisation of PDMs within the image
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frame [Cootes 95]. The use of genetic algorithms to overcome the complexities
of tracking with the piecewise non-linear model has been investigated. However,
the performance of such an approach relies largely on the formulation and

structure of the genetic algorithm itself.

Blake et al emphasised the advantage of using low-parameter descriptions of
deformable models in terms of B-Splines [Blake 93]. In this method, a
deformable model is regarded as a linear combination of basis templates, and the
state of the model is specified by a vector of coefficients for these templates. The
mode leads naturally to a Kalman filter formulation in which the model is driven
by an explicit local search for edges lying perpendicular to its boundary. These
suggested movements are then used to update the model via the Kalman filter.
Ivinns and Porrill suggested a similar approach but propsed an alternative to the

Kalman filter using an explicit least-squares approximation [lvins 98].

Numerous approaches and variations exist on the subject of object tracking but a
recent development is that of CONDENSATION [Blake 98][Isard 98]. Blake and
Isard presented the Stochastic Conditional Density Propagation
(CONDENSATION) algorithm in which the location of a contour or object is
probabilistically tracked over time using a model of the object’s dynamics to
predict movement. Objects are not represented by a single parameterisation but
instead by a probability density function (PDF) which represents all possible
parameterisations of the model. By generating multiple hypotheses from this
distribution at each iteration, and checking each hypothesis against the image for
supporting information, CONDENSATION allows objects to be tracked which

exhibit discontinues movement in complex noisy scenes.
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3 Linear Point Distribution Models

3.1 Introduction

The principle behind the Point Distribution Model (PDM) [Cootes 95] is that the
shape and deformation of an object can be expressed statistically by formulating
the shape as a vector representing a set of points that describe the object. This
shape and its deformation (expressed with a training set, indicative of the object
deformation) can then be learnt through statistical analysis. The same technique
can be applied to more complex models of grey scale appearance or
combinations of these techniques [Cootes 93][Lantis 95][Cootes 98]; however,

the underlying linear mathematics for model representation remains the same.

This chapter will introduce the principle, construction and application of Point
Distribution Models. Section B.2]will provide an overview of PDM construction.
Section $.3]will discuss the use of PDMs in tracking deformable objects and
section B.4] will briefly discuss the reconstructive ability of models. Lastly

conclusions will be drawn.
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3.2 Constructing a Point Distribution Model

3.2.1 Overview

To construct a point distribution model the shape of an object is expressed

mathematically as a vector. For a simple 2D contour, each pose of the model is

described by a vector xi(1 (12" = (X1, Y1, - - - ,»Xn ,¥Yn), representing the set of points
specifying the path of the contour (see [Figure 3.2.7). A training set E of N
vectors is then assembled for a particular model class. In each example, the
points which specify the shape of the contour are selected such that there is a
correspondence of features between examples, e.g. in the hand example, if the |
point (x;y;) is the tip of the middle finger, it should remain so throughout all
training examples. In order to achieve this it is often necessary to align the
examples with each other and resample the contour by identifying landmark

points to provide consistency throughout the training set.

(Xn—lyyn-l)

(X1,Y1 (Xn.Yn)

Figure 3.2.1 - 2D Contour of a hand

As the vector, X;, is effectively a point in a 2n dimensional space (x; 0[J2") and
each vector is similar in shape, each example will produce a similar point in this
2n dimensional shape space. In fact, it would be expected that the training set
will form a relatively tight cluster. By analysing the shape of this cluster, the
deformation contained within the training set can be learnt and generalised. This

Is done by making the assumption that the shape of the cluster is hyper-elliptical
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and performing Principal Component Analysis (PCA) upon the mean zeroed
training set to discover the position and parameters of the ellipsoid in shape

space.

PCA projects the data into a linear subspace with a minimum loss of information
by multiplying the data by the eigenvectors of the covariance matrix constructed
from the training set. By analysing the magnitude of the corresponding
eigenvalues, the minimum dimensionality of the space on which the data lies can
be calculated and the information loss estimated.

The principle is demonstrated in [Figure 3.2.2) where the primary orthogonal axis
and its bounds are determined which describe the 3D elliptical cluster. The

centeroid of the cluster (i.e. the mean vector) is the mean shape of the training
set. The vector v; is the primary axis of the cluster with v, the secondary
orthogonal axis and vj the third. Once this analysis has been performed the shape
can be restricted to lie within this cluster so constraining the shape of the model.
From this learnt model of deformation, all shapes that were present in the
training set E can be reconstructed. In addition, many other shapes (hopefully
viable) not present within the original training set can also be constructed i.e. the

PDM generalises the shape space contained in E.

Hyper-elliptical

/ Cluster

V3

v = eigenvectors

Figure 3.2.2 - Hyper-elipsoid in n Dimensional Space
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Unfortunately, for all but the most simple of PDMs this hyper-elliptical
assumption does not hold true and the linear mathematics behind the process
generates a weak/un-robust model. This will be discussed in more detail in
Chapter 5.

The construction of a Point Distribution Model can be summarised with the
following algorithm,
1. Assemble a training set of shapes that represent an object class and its
indicative deformation.
2. Resample each example to provide a consistent dimensionality
throughout the training set.
3. Minimise the difference between examples by aligning each training
example using rotation, scaling and translation.
4. Normalise the training set to provide numerical stability
5. Learn the shape space by performing Principal Component Analysis
(PCA)

N.B. Steps 2 and 3 can be reversed depending upon the schemes used.

The remainder of this section will consider each of these steps in turn.

3.2.2 Obtaining Training Examples

In order to learn the natural deformation of an object class, a training set is first
assembled. This training set must be indicative of the object deformation that is

to be learnt.
Typically, training examples are extracted by hand (as in [Cootes 95][Ferryman
95][Heap 95]) to ensure that a uniform and well-labelled training set is obtained.

However, for all but the most simple of objects this is an unfeasible approach.

Other approaches to the automatic and semiautomatic generation of training

examples are the use of snakes [Kass 88] to segment simple deformable objects
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from image sequences. In a temporal image sequence the pose of a converged
snake can be used as an initial estimate for the next frame reducing the
susceptibility of snakes to their initial location. Cootes et al have also proposed
using the PDM itself to locate new objects by bootstrapping the procedure and
using a partially 'learnt' PDM to constrain segmentation of future models.

Other researchers have shown how incremental eigen models can be used to
recalculate the deformation of a model in light of new training examples without
the need for a full decomposition on the co-variance matrix [Hall 98]. Although
it has not been demonstrated that this could be used in the construction of
examples, it is evident that this type of procedure could be invaluable in the
automated construction of deformable models. An initial PDM could be used to
locate and extract further examples which could then be added to the model,

without the need for a full recomputation of the model.

A simple but effective approach can be achieved by tracing by hand a 2D contour
representing features from an image and recording the path taken as the shape is
traced. Although this aids in the assembly of a model, producing a chain code
representation of the contour, it must be correctly labelled and resampled to put
training examples within a mathematical framework on which PCA can be

performed.

Automated methods produce similar results and can easily be achieved where
only external boundaries are required. Throughout this work a common
technique used to automatically extract contours is a simple boundary-tracing
algorithm on binary blobs to extract the external contour of objects. This is
facilitated through the use of a blue screen techniques to aid binary segmentation

and will be seen in later chapters.

3.2.3 Landmark Point Assignment

In order to perform statistical analysis on a training set the procedure assumes a
single cluster is formed in shape space by the training set. This assumption works

on the principle that common points along the contour boundary do not change
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between examples. Similar shapes therefore produce similar vectors which
occupy a tight cluster in shape space. However, in order for this assumption to

hold true, consistent points along the contour must be located.

The acquisition method for training data, as previously discussed, depicts the
extent of this problem. Where a simple chain code representation is generated,
there is no guarantee of consistency between examples. In fact, examples will
generally differ in length due the size, shape and orientation of the object and
how it projects onto the image plane. As the shape deforms, the number of pixels
constituting the contour varies. As PCA relies on learning a hyper-ellipsoid in n

dimensions, all examples must be n dimensional.

A simple form of resampling can be performed by equally spacing the new n
dimensional vector along the original point contour using linear interpolation.
However, this simple resampling scheme leads to a break down of the single
cluster assumption (see Chapter 6.5.5). To provide a better sampling scheme
landmark points are identified which correspond to specific features of the
contour and resampling performed between them. These landmarks could be
high curvature areas, corners or the physical features of an object. Whether
extracted manually or automatically, the number of successfully located

landmark points will increase the correspondence between training examples.

Techniques such as snakes and the bootstrap PDM methods mentioned in the
previous section help alleviate this problem as they produce examples which are
naturally within the PCA co-ordinate frame.

Other labelling techniques have been proposed such as Genetic Algorithms (see
Chapter 2).

3.2.4 Training Set Alignment

Cootes et al suggested aligning training examples by calculating the scaling,
translation and rotation of each model to minimise the sum of the squares of

distances between equivalent points for all examples. This exhaustive process
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although suitable for simple 2D contours of low dimensionality does not provide

a suitable approach for more complex high dimensional objects.

In order to reduce the computational complexity of the approach it is possible to
locate specific features of the object such as high points in curvature, or the
moments of the object, and minimise according to these features. This can be
done by analysing the constituent points of the contour and extracting specific
features. Figure 3.2.3]demonstrates an approach to alignment by calculating the
primary axis of the 2D contour: (a) The contour is first translated so the centroid
of the object is at the origin; (b) By performing PCA on the contour points, the
principal axis of the shape can be determined; (c) Finally the contour is rotated so

the moments of the shape are aligned with the axis of the co-ordinate system.

A

@ ©

ol

Figure 3.2.3 - Aligning the training set

(a) Move centeroid to origin, (b) Find Principal axis of shape
(c) Rotate to align object

It is necessary to rescale the training set to provide numerical stability during the
learning process. However, if each shape is simply normalised, important
information about the relative size of examples is lost. A suitable scaling for the
contour can be extracted by calculating the mean distance of contour points from
the origin (centroid) over the entire training set and scaling each accordingly,

where

: X o1
Equation 3.2-1 x,| == and |¥ :WZ|Xj|
J:

i
X
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This gives a pseudo normalisation where all training examples are approximately
unit length while retaining the subtle size variation between examples. As this
procedure uses the moments of the contour as features, this alignment can be

performed prior to resampling and used to aid landmark point assignment.

3.2.5 Learning Shape Space

Once a resampled training set E of N examples, X; (i=1, ..., N), is assembled. The
training set E is aligned (using translation, rotation and scaling) and the mean
shape calculated by finding the average vector. To represent the deviation within
the shape of the training set Principal Component Analysis is performed on the
deviation of the example vectors from the mean using eigenvector decomposition

on the covariance matrix S of E where,
. _1 g - AT
Equation 3.2-2 —WZ (X =X)(x; =X)
1=

The t unit eigenvectors of S (corresponding to the t largest eigenvalues) supply
the variation modes; t will generally be much smaller than 2n, thus giving a very
compact model. A deformed shape x is generated by adding weighted
combinations of v; to the mean shape:

t
Equation 3.2-3 X=X+ Z bj VJ
J:

where by is the weighting for the j™ variation vector.

The formulation of the PDM can also be expressed in matrix form [Cootes 95]

Equation 3.2-4 X=X+Pb

where P =(v,,v,,...,v,) is a matrix of the first t eigenvectors where

v, 00 and b = (b,,b,,...,b,)" is a vector of weights.
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Chebyshev's theorem [Walpole 98] links the probability of the occurrence of data
lying within the area of a normal distribution from the mean. This theorem is
summarised by [Elsayed 96] and demonstrates that there is a
probability of .998 that the data will lie within three standard deviations of the
mean. Principal Component Analysis makes the assumption that the training set

Is a multivariate Gaussian. As \/I =0, (the standard deviation of the variance
along v;), suitable limits for b; are between 12,5\/)\*] and J_rg\//Tj, where ) - is the

j™ largest eigenvalue of S. Hence the multivariate Gaussian is bounded such that

it encompass in excess of 98% of the deformation.

d P¥,¥+u

0 0

0.50 0.192
o 0.341
1.50 0.433
1.6450 | 0.450
1.960 0.475
20 0.477
2.50 0.494
25750 | 0.495
30 0.499

Table 3.2-1 - The area probability under a normalised Gaussian distribution

When high dimensional data sets are considered, eigenvector decomposition
becomes a time consuming process, as the co-variance matrix is a square 2nx2n
matrix for a 2n dimensional data set. The memory requirements needed to store
this matrix also become prohibitive as the size of the matrix approaches the size
of a computer’s physical memory. However, it is not always necessary to solve a
matrix for all eigenvectors. If the number of training examples, N, is less than the
dimensionality 2n, the number of eigenvectors that can be extracted from the co-
variance matrix cannot exceed the number training examples (N-1). For high

dimensional problems, this is often the case and significant computational
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benefits can be gained by solving for a smaller N x N matrix derived from the

same data. If the covariance matrix,

S :% N (%, ~X)(X; =X)"

is rewritten as

S :iDDT
N

where D isa 2nx N matrix with the examples as columns.

Cootes et al demonstrated that if a new matrix T is a smaller N x N matrix

1
T==—D'D
N
and e (i=1, .., N) are the unit, orthogonal eigenvectors of T with the

corresponding eigenvalues . :

Te, =y.e, (i=1,.., N)

then
1
N D' De, =ye,
premultiplying by D yields

%DDT De, =y,De,

and therefore
S(Dei ) =Yi (Dei )
Thus if e; is an eigenvector of T, then De; is an eigenvector of S and has the same

eigenvalue. The N unit orthogonal eigenvectors of S are then v; (i=1, ..., N),

where

1
y;N

with corresponding eigenvalues A, = ;.

De,

Equation 3.2-5 Vi
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3.2.6 Human Head Example

To demonstrate the construction of a 2D PDM a model of a human head was
constructed. Figure 3.2.4]|shows the training set used to generate the model along
with the source image from which the contour was extracted. The contour is

selected such that it follows the high intensity edges of the face.

Figure 3.2.5 - Landmark points of the 2D Head PDM

Each 2D contour consists of 66 points (i.e. n=66), 40 for the external contour of
the face, 6 for the mouth and 10 for each eyebrow. As each point is a 2D point in
the image frame this generates an example x J 2" 0 2. After the training
set has been aligned, PCA is performed to extract the primary modes of
deformation i.e. the eigenvectors. The eigenvalues provide bounds for the
deformation along any mode or eigenvector as previously discussed, but by
analysing the eigenvalues further the true dimensionality of the model can be

determined.
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Figure 3.2.6/shows the normalised eigenvalues sorted into descending order. As
there are 9 training examples, this results in 8 eigenvectors (i.e. N-1 modes,
where N=9). The larger the eigenvalue the more significant the corresponding
eigenvector or mode of variation. As the number of the mode increases, so the
significance of the mode decreases. By analysing these eigenvalues, the linear
subspace on which the data lies can be determined and the information loss

estimated. The use of this technique is discussed further in section 5.3.

Graph showing Normalised Eigenvalues for 2D Head PDM
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Figure 3.2.6 - Graph showing Normalised Eigenvalues for the 2D Head PDM

Figure 3.2.6]also shows the sum of the normalised eigenvalues. As the number of
modes increase this sum of the normalised eigenvalues approaches 1. If this is
converted into a percentile, it provides an indication of the amount of
deformation contained within the accumulated modes. The combination of all 8
modes results in a sum of 1 or 100%. Therefore using all 8 modes of
deformation, the model is capable of representing 100% of the deformation in the
training set. It can be seen that the primary mode alone accounts for 40% of the
deformation represented within the training set. It can further be seen that the
90% of the deformation is contained within the first 6 modes. If the loss of 10%
of deformation is tolerable then the data can be said to lie upon a six dimensional
space and not 122 as originally formulated. This provides a dimensional

reduction of 122 to 6 and will be discussed further in section 5.3.
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Figure 3.2.7 - Primary mode of the 2D Head PDM
igure 3.2.7[shows the primary mode of variation drawn at intervals along the

primary axis from ig\/X from the mean. This primary mode has clearly picked

out the turning motion of the head. The model has generalised the training set and
learnt what is typical deformation for the object. By applying different weighting

combinations of b; to [Equation 3.2-3|new examples of the face under deformation

can be generated.

3.3 Active Shape Models

3.3.1 Overview

The Point Distribution Model contains the constraints on deformation for a
model class that has been learnt from a training set of examples. Cootes et al
describe Active Shape Models (ASMs) as the application of this deformable
model (PDM) to tracking objects within the image frame. In order to facilitate
this, the object must be able to ‘'move' in addition to deform within the image. For
a 2D contour, this movement consists of a translation, scale and rotation.
Assuming a constant scaling in x and y this generates four parameters which
position and orient the model within the image frame, where an instance X of the

model is given by

X =M (s,6)x] + X, , where

Xc :(Xc’yc’xc’yc“"!XC’yc)T
M (s,0) is a rotation by @ and a scaling by s, and (x,yc) is the position of the

centre of the model in the image frame.
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The ASM assumes that the next pose of the model X', will be a small variation
on X (the initial pose) and requires that X be close to the desired feature. The
model is then iteratively refined by calculating a new pose for the model X' by
adjusting s, 8, X, Y. and the deformation parameters b in order to find the closest

pose to the desired model in a least squares sense.

Throughout the course of this text the term least squares gradient descent

tracking will be used to describe the common ASM tracking algorithm.

The ASM tracking algorithm can be summarised as
1. Initialise a model X, close to a desired feature in the image frame.
2. While still tracking,
3. Using a local feature detection scheme assesses the next best
movement of the model X".
4. Update the parameters s, 6, X, Y. to minimise the distance
between X and X".
5. Update the shape parameter weightings b to mimise the distance

within the constraints of the model.

Each of these steps will now be considered in turn.

3.3.2 ASM Initialisation

Due to the local search method used when deforming the contour (see next
section) and the least squares parameter approximation, it is important that the
initial contour is placed close to the desired feature. Hill et al described how a
Genetic Algorithm (GA) search can be used to facilitate this [Hill 92a][Hill 92b].
Cootes et al have also demonstrated how multi-scale approaches to image
searching can be used to reduce this susceptibility to model initialisation and
providing more robust tracking [Cootes 98]. However, given an object of a
specific class, other indicative features can be used to initialise the model. As
these features are only required for initialisation or re-initialisation when the

contour is lost, the computational complexity of such strategies is less important.
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In chapter 9 it will be demonstrated how colour features, such as those discussed

in chapter 4, can be used to initialise a model within the image frame.

3.3.3 Feature Detection

A PDM which consist of a 2D contour, typically represents the edges of an
object within an image. An edge is a high rate of change in pixel intensity and
edge detection algorithms are commonplace in image processing [Ballard 92;
Russ 94]. However, as only a local search of the image is necessary and edges

must be perpendicular to the contour, hence normal convolution methods are not

necessary.

¢

Figure 3.3.1 - Local edge detection along boundary normals

demonstrates a contour within a grey scale image with four key

points along the boundary. The intensities along the normal n,are shown in the

histogram along with the continuous approximation to this data and the first
derivative. The peak of this first derivative provides a position along the normal
for the best fit edge. Once found, the control point can be moved to this new

location.

If point along the contour Py, is denoted by I3m(xm, Y,.),» where (Xm,Ym) is the pixel

in the image frame, the normal of the contour can be estimated as
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ﬁ ((ymﬂ_ym);(ym_ymﬂ) = (Xm+l_xm)z(xm_xm—1)) WhICh can be rewritten as

m

ﬁm (( Ym+1;ym—1) - (Xm+1;Xm—1))

n, . :
||_.m|| is therefore a one pixel length vector
nm

perpendicular to the contour at point m. Using this locally estimated normal, the

The unit vector normal n_ =

m

intensity of pixels either side of the contour can be examined and any high

intensity gradients (edges) located.

As the contour is designed to lie tangential to the high intensity edges within the
image a 2D convolution is not necessary. Therefore, only the contour normal
need be searched. This localised search provides a large computational saving
over other convolution based methods such as the original formulation of the
snake where an entire gradient image is pre-computed [Kass 87]. This also
demonstrates the applicability of the colour enhancement approaches described

in chapter 4, as they can be used without a significant computational overhead.

A pixel's intensity gradient along a 1D line can be estimated using a number of

schemes. The simplest is possibly the local difference in intensity dI, =1, —1._,
where | is the intensity of a pixel. A 2nd derivative 1D Laplacian function

d?l, =dl,,, —dI, = 1.,, — 2, + I._, (which has a zero crossing valuge) provides an

indication of a strong edge when d’l. =0, or more realistically
when m_in([dzli]z). However, these methods are susceptible to noise and best

results have been achieved using a 1D Gaussian derivative kernal which both

smooths (blurs) in addition to detecting edges where

Gaussian, = 1,_, +41, —-41,,, -1

_, +5l.

1_5|i+1 i+2 i+3

The best edge along a normal, and hence the movement for a point P, upon a

contour can therefore be estimated as

|
P =P, +n, xw,where w=arg max(Gaussiaan+ﬁmXi)
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Once a new position P’y has been located for each point m along the contour, a
new vector representing the model X" is constructed by concatenating the points
into a vector as done earlier. This provides a new (noisy) shape vector where
each contour point has been moved to its best match edge location where

X'=X+dX

In order to calculate the constraints on the shape of the object, the contour must
be transformed into the PCA co-ordinate space. In doing this the parameters (s,
8, X, Yo Which provide the mapping from the model space to image space are

derived.

3.3.4 lterative Refinement

Once a model has been initialised in the image frame, the model need only make
small iterative refinements to its shape and position between frames. Providing a
high frame rate can be achieved (and hence this assumption holding true), local
search techniques can be used to reduce the computational complexity of model

tracking.

The parameters X, Y. are first calculated by finding the centeroid of the new

contour X',

><I
[EEN

=12

_Zyi’,where X'= (X0 Y1 %00 Yaree e X010 Vi)

>

S|

therefore the mean point of the contour is equivalent to the contour position in

the image frame where

Equation 3.3-1 X = (Xe Yo Xes Yereens Xeu Ve )T
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The rotational parameter d@ is calculated by taking the average dot product of

contour points Pi'(xi Y )With the model contour points P, (xj Y )

Using |v,[v,[cos8 =v, s v,

Equation 3.3-2 do = cos‘1% Z ﬁﬁ:ﬁﬁ E?ﬁ:—f,)g

The scaling parameter ds is calculated by taking the average difference of the

length of the contour from the centeroid between iterations.

. 1
Equation 3.3-3 == ) —P|—|P'=P!
quation ds =5 (P -RI-IP-R)
This can be performed in both x and y separately to allow shearing of the

contour.

This 'noisy' contour is then transformed into the PCA space and the residual

movements of the contour points, dx, calculated where

Equation 3.3-4
dx =M ((s(L+ds))™,—(8 +dB))[M (s,0)[x] + dX —dX_]-x

As all rotation, scaling and translation has now been removed, the residual
movements, dx, can only be resolved by deforming the model. This is done by
projecting the residuals into the PDM and finding the set of weightings which

provide the closest ‘allowable’ point in space to dx.

From Equation 3.2-4 |
X+dx=X+P(b+db)

therefore

db = P'dx
or db =P"dx since PT =P, as the columns of P are mutually orthogonal and
of unit length [Cootes 95].
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The weighting vector is then adjusted to ensure that each parameter lies within

the range learnt during PCA where
b'=b+db,and -3/A <b <3A

The procedure then repeats using these new parameters for the next iteration.

3.4 Reconstructive Ability

The PDM learns shape space and in doing so generalises what is valid
deformation, allowing valid unseen data to be reproduced in addition to the
original training examples. Figure 3.4.1]shows a PDM of the hand tracking a real
hand within the image. In this figure the first finger has been bent, however, the
model remains with the finger extended. This is due to the fact that during
construction no examples were provided in the training set that represented this
type of deformation of the model. As no deformation is learnt the model is
constrained to the extended pose. These constraints on shape provide a robust
model for tracking where occlusion or clutter is present. If part of the hand is
obscured the model will fill in the missing contour as the deformation of all
points are statistically linked together.

|== RGB32 image 320 by 240 a

Figure 3.4.1 - Constrained PDM tracking hand
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To illustrate the reconstructive ability of the PDM a sample training set was
constructed which consisted of examples of leaf. Each leaf was segmented from
images using a colour threshold and boundary-tracing algorithm. The contour
was aligned as described in section B.2.4]and four landmark points identified at
the horizontal and vertical extremities of the boundary. Further points were then
introduced at regular intervals between the landmarks. Before PCA is performed
all shape vectors are normalised to provide numerical stability. The resulting
PDM is shown in After PCA, 99.9% of the deformation contained
in the training set is encompassed by the 44 eigenvectors corresponding to the 44
largest eigenvalues. Figure 3.4.2|show the primary 5 modes of variation, which
corresponds to the 5 largest eigenvalues after PCA. The centre shape shows the
mean, and the deformation from left to right shows the effect of each mode of

variation.

It can be seen that the 1% mode of deformation encompasses the horizontal size
of the shape, i.e. how elongated the leaf is. The 2™ mode is partly responsible for
the curvature and size of the sample at its extremities, through their combination

all training leaf samples can be reconstructed.

o000 0] 1 1§
meee PPPPPDDO0OCAAIKS
e N VAABB0000000TGL
e DO0000000LNN
~ex DD0000000000000U

Figure 3.4.2 - First Five Modes of variation of the leaf PDM
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Using the primary 44 modes of variation the accurate reconstruction of shape is
possible. However, this is more information than is required for the purposes of
the investigation. By reducing the number of modes further, two objectives are
achieved. Firstly, the size of the model is reduced. Secondly, only the major
deformations of shape are modelled and the finer deformation disregarded, i.e.

the shape is smoothed while retaining the important information.

Figure 3.4.3|shows the results of using only the first nine modes of variation to
reconstruct the shape. Notice that although the overall shape of the leaf is

preserved the model is considerably smoothed.
Figure 3.4.3 - Training examples and the reconstructed shape using 9 modes
of variation

Although this smoothing is a lossy compression technique, the information that
is discarded is of little use. This is due to small leaf samples where their
extraction resulted in blobs of the order of tens of pixels rather than hundreds.
The resulting boundary is heavily ‘step-like’ due to the pixelisation of the shape.
During re-sampling, bilinear interpolation results in the boundary being
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smoothed into unrepresentative shapes which are indicative of the modality used,
and not the actual leaf sample. By using the minimum number of modes to
reconstruct the shape, the errors introduced into the shape by the image size are
discarded and a better estimation of shape provided. Figure 3.4.4]shows a small
leaf sample, with the interpolated/resampled boundary and the resulting
smoothing which comes from PDM reconstruction. It should be noted that the
smoothed boundary produced by the PDM goes some way to reconstructing the
information lost during acquisition. This is due to the statistical nature of the
PDM and its knowledge of what a leaf ‘should look like’.

(@) (b) ()

Figure 3.4.4 - Training examples and the reconstructed shape using 9 modes
(a) Original Image of leaf (b) resampled boundary of leaf (c) reconstructed
boundary of leaf

3.5 Conclusions

The statistical constraints of the PDM provide several benefits over other model-
based approaches. Firstly, the model is taught to fit known objects and
deformations even when slightly different from those present within the training
set. However, it does not allow deformation for unseen/unfamiliar objects i.e. it
generalises shape. Secondly, the mean distance of constrained contour points to
detected/desired edges can be used as a valuable error metric for model fitting.
The constraints provide robustness to noisy, partially occluded object boundaries
as well as background clutter and lastly the constraints allow the contour to
statistically infer contour shape in the absence of local information from other

available information.
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Chapter 4

4 Enhancing Tracking Using Colour

4.1 Introduction

The colour content of an image is an important attribute, which is often
discarded. Common practice in the processing of PDMs and snakes is to merely
assess the intensity of pixels, processing as if grey scale i.e. calculating the mean
intensity of the red, green and blue colour channels.

This chapter will discuss how colour can be used to enhance the appearance of
objects in tracking algorithms. It will also be demonstrated how colour alone can
provide a reliable feature for locating and tracking moving objects. Section
will demonstrate how the simple weighting of colour channels can be used to
enhance specific features within an image. Section will discuss the use of
perceptual colour representations (alternative colour spaces to red-green-blue,
RGB). Section wiII discuss the advantage of colour in delineating regions.
Section {.5khows how more complex colour models can be constructed and used
to locate and track a humans. Section [t.6]demonstrates how these ideas can be
extended to provide a reliable, computationally inexpensive solution to head and
hand tracking, although these techniques extend to any colour object. Finally

conclusions are presented.
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4.2 Weighted Greyscale Images

In the previous chapter it was shown how high intensity edges could be located
locally along a boundary. These high rates of change in pixel intensity were
located by assessing the first or second derivative of the intensity along a normal
to a boundary. This calculation is normally performed upon the grey scale values
of pixels. However, as has already been mentioned, the ready availability of
colour provides a far more distinguishable difference between foreground and
background objects within an image. By performing processing upon a grey scale
representation, calculated from the colour channels (typically the average
intensity of the three colour channels) a considerable amount of information
about object boundaries is lost.

Figure 4.2.1- RGB image of iso-intensity

Figure 4.2.1]shows an image consisting of three colour regions. Each region has
the same intensity in its colour channel: the red area has r=255, g=0, and b=0; the
green area has r=0, g=255 and b=0; etc. By taking the average of the three colour
channels at each pixel, the resulting image would have a constant intensity of 85
and no distinction would be possible between the various areas. However, in the
colour image, it is visually apparent that such a distinction does exist and very

clear boundaries are defined.

It is clear that reducing the colour information to one channel literally ‘throws'
information away, information which may be invaluable to the application at
hand. One solution to this would be to process each colour channel individually.
This can be done by assessing normals for each colour in turn, calculating three
second order derivatives, and taking the average, where
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However, this is still an averaging approach and as such will smooth edges. In
addition, the approach effectively requires each normal to be assessed three times

and hence results in a significant decrease in speed.

If an object of interest is sufficiently prominent within one of the colour
channels, then the intensity of that channel can be used instead of the mean

intensity.

€
€@ 9 €

COLOUR IMAGE GREY SCALE IMAGE

RED CHANNEL GREEN CHANNEL BLUE CHANNEL

Figure 4.2.2 - The Separate Channels of a Colour Image

Figure 4.2.2|shows a colour image of a person in front of a blue backdrop, along
with the grey scale version of the image and the three separate colour channels
shown as grey scale intensity images. The grey scale image retains much of the
distinctions between regions seen in the colour image due to the small number of
highly distinct regions and the uniform background. The individual colour
channels, however, each emphasise certain aspects of the image. The blue
channel has a lighter background than red or green with a lower contrast figure.
This is to be expected, as the blue background will generate high intensities in
the blue channel. The red channel emphasises the skin regions of the subject, due
to the high red component in skin tones. If the object to be located or tracked
within the image were hands or head then using the red channel for image

processing would produce far superior results than tracking on the mean intensity
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(as the mean intensity effectively smoothes out this distinction). However,
simply processing upon the red channel may disregard other important features.
In addition, other channels could potentially be used to subdue features that are
not desirable, i.e. the background. As it is known that the background is depicted
best in the blue channel, subtracting this from the red channel will further

increase the distinction between regions.

(b)

Figure 4.2.3 - Enhancing features Using Colour Channels

(a) Blue channel subtracted from red (b) Inverse of (a)

Figure 4.2.3{a) demonstrates the results of subtracting the blue channel from the
red channel. Figure 4.2.3[b) shows the inverse of (a), which improves the
visualisation of the distinction between regions. Although the overall contrast
between skin and the surrounding area appears less, the segmentation of the skin
from the overall image is greatly enhanced. The background and body have

almost completely been removed.

If the simple conversion to grey scale is formulated as the average pixel intensity

of the three colour channels, this can be expressed as

I — rX,y-l-gX,y-l-bX,y
X,y 3

then subtracting the blue channel from red can be expressed as the weighted

average of the pixels,

I — arx,y+ﬁgx,y+xbx,y
X,y max(l,|a+,8+)(|)

where
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a=16=0,x=-1
by tailoring these colour coefficients for specific applications, features can be

enhanced or subdued as required. [Figure 4.2.4|shows the results of further
enhancing the skin regions by applying the coefficients a =-2,3=0, x =2.

=

Figure 4.2.4 - Enhancing features Using Colour Channels

4.3 Perceptual Colour Spaces

The RGB-colour space (typically used in computer applications) allows three
primary colour channels to be used to specify up to 16.7 million colours by
representing the colour space as a 3D-colour cube (each channel having 256
discrete intervals). This provides a simple mechanism for constructing and
representing a broad spectrum of colours. However, this is not an intuitive
representation in terms of human perception, where similar colours (as judged by
the eye) may occupy completely different areas of rgb-space. This is confirmed
by the initial observations made from It has already been noted that
the intensity of each colour region has the same value, even through the
distinction between the areas is visually apparent. Furthermore, the central green
region looks brighter to the human eye than either the red or blue regions. The
notion of a perceptual colour space is to model the colour volume so to better

correspond with how the human eye perceives colour and relative intensities.
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Discussions of colour perception usually involve three quantities, known as hue,
saturation and lightness. Hue distinguishes among colours such as red, green and
purple. Saturation refers to how far colour is from a grey of equal intensity, i.e.
red is highly saturated, pink is not, although both have similar hue/red-
component. Lightness embodies the achromatic notion of the perceived intensity
of an object. These perceptual colour spaces include Hue, Saturation, Value
(HSV) (or HSB for Brightness); Hue, Lightness and Saturation, (HLS) (or HSL

for Luminosity); and Hue, Value, Chroma, HVC [Foley 199LO].
A

\%
120° A
Green Yellow

Cyan Cyan

HSV HLS
Figure 4.3.1 - HSV and HLS Colour Spaces

Hue Saturation Value (HSV or HSB) colour space is a hexcone or six sided
pyramid where Hue is the angle around the vertical axis, S is the distance from
the central axis and V is the distance along the vertical axis. Colours along the
vertical axis have zero saturation and are therefore grey scale values. Hue,
Lightness Saturation (HLS or HSL) colour space is a double hexcone and can be

thought of as a deformation of the HSV space.

The notion of separating colour from intensity provides a more robust method for
colour feature extraction. Where colours change from shading or lighting
differences, it would be expected that this would result in changes in intensity

but not in colour.
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Figure 4.3.2 — Separate Channels of HSL Image
shows the same colour image from section [.2] converted in hue,

saturation and luminosity with each channel shown as an intensity image. It can

clearly be seen that the difference between the areas of the image is far more
distinct in both hue and saturation than in any of the rgb colour channels (Figure |
. The saturation image provides excellent segmentation between the skin
and other areas of the image frame, producing a distinct boundary between the
skin and background elements.

Some devices provide colour space conversions in hardware. However, for the
most part this must be implemented in software. For real-time systems where
each pixel must be transformed independently, this overhead can become a
significant speed-limiting factor. However, with contour based approaches this
conversion does not produce a significant overhead, as only pixels along normals

to the contour are assessed and hence need conversion.

A similar coefficient weighted expression to that demonstrated for rgb space can

be used in HSL space, where

I — ahx,y+ﬁsx,y+xlx,y
X,y max (L|h+s+l|)

Provided hsl values are normalised to the range 0 — 1.
Further extensions can be made by combining both RGB and HSL weighted

techniques. However, coefficient selection becomes a complex task. Instead, a

more generic, automated method of enhancing/extracting features is required.
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4.4 Colour Thresholding

As was demonstrated in the previous section, areas of skin produce high values
in the saturation channel of the HSL colour image (Figure 4.3.2). These high
areas can be used to threshold the areas of skin from the image in a similar
manner to grey level thresholding. This technique is not dissimilar to

chroma/luma keying.

‘ 6 ‘ b g]ary AND’ed W\it?

Saturation Thresholded Binary Luminosity

Figure 4.4.1 — Thresholded HSL Image

Figure 4.4.1]shows the saturation channel of the colour image. As the areas of
skin produce high values of saturation, these areas can be extracted simply by
thresholding the colour saturation channel into a binary image mask. The white-
segmented areas correspond to the location of skin within the mask.
shows the results of taking the logical AND of the binary image with the
luminosity channel and demonstrates how the head and hands can be extracted
using colour saturation instead of intensity to delineate colour regions of the

image while retaining the internal features of objects or regions.

It should be noted that although the head and hands consist of various colour
changes due to the features such as eyes, nose and the effects of non-diffused
lighting, few of these features are apparent (to the eye) in hue or saturation. This
IS due to the separation of the colour information from the brightness or
luminosity. The luminosity contains the information of how bright a pixel is and
the hue-saturation h-s pair provides the information about colour. Rather than
performing thresholding in 0O°of rgb, it can be performed in 0O° of h-s space.
This provides a slight computational saving but has the added advantage that
with the intensity component removed, much of the lighting/shading differences

are absent. This provides a more uniform colour space in which to work.
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Discarding the luminosity component of the colour effectively compresses the hsl
colour space down onto a two-dimensional hexagon. In this space, consistent
colours of varying luminance will produce clusters on the h-s hexagon. By
discarding the luminosity for HLS and the value component of HSV spaces, both
spaces become compressed onto the two-dimensional hexagon and the

distinction between the two spaces is lost.

45 Gaussian Colour Models

For a number of years, research at the School of Computer Science, Carnegie
Mellon University has used normalised rgb colour spaces to probabilistically
label and segment regions of skin from image sequences for the location and
tracking of the human face [Waibel 94] [Hunke 94] [Yang 98]. They have
demonstrated that human skin clusters in a small region of colour space: Human
skin colours differ more in intensity than actual colour, and under certain lighting
conditions, a skin colour distribution can be characterised by a multivariate
normal distribution in a normalised colour space [Yang 95]. Rainer, Stiefelhagen
and Yang use this colour labelling to provide a rough estimate of the location of
a head within the image frame to initialise a model based gaze tracking system
[Stiefelhagen 97] [Stiefelhagen 98]. The normalisation of the colour space
removes much of the variability in skin colour between individuals and lighting
inconsistencies such as shadows [Yang 98]. Ivins and Porril used a normalised
rgb colour space to label and track, in real-time, various colour regions of an
industrial robot arm [lvins 98].

McKenna, Gong and Raja have extended this work on colour labelling into the
HSV colour space [McKenna 97]. Using a Gaussian mixture model to represent
the colour space, they have shown how multiple models for individuals can be
used to probabilistically label an image and determine the most likely person
present. Azarbayejani and Pentland have used similar methods in HSV colour
space to automatically segment both the hands and head from stereo image pairs,
and using this, calculate the position and trajectory in 3D space [Azarbayejani
96].
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Work by these authors has shown that human skin naturally clusters in a small
region in colour space. Hunke and Waibel show that in a normalised rgb colour
space, statistical bounds can be approximated for colour clusters and used to
segment the human head from an image [Hunke 94]. Using colour as a feature
for tracking has several problems: firstly, the colour representation of a face
obtained by a camera is influenced by many factors such as ambient light, object
movement, and the effect of diffused and specular reflections of an object
moving relative to a light source. Secondly, different cameras produce
significantly different intensity responses for the same wavelength of light.
Thirdly, video signal encoding standards, such as PAL or NTSC, do not respond
to the full colour space and effectively flatten the resulting colour spectrums of
objects. Finally, human skin colours differ in rgb space from person to person
[Yang 98]. McKenna et al demonstrated how these problems could be partially
overcome by performing probabilistic classification in HS space, where

variations in intensity have been removed [McKenna 97].

Human skin actually occupies a small cluster in HS space regardless of race or
skin pigmentation. Differences in skin tone are primarily expressed by variation
in the intensity of the colour: once the intensity has been removed the h-s colour

space that they occupy is remarkably similar.

In order to verify this fact, four subjects were taken from different ethnic origins.
For each subject, pixels were sampled in rgb from the skin tones on the palm of
the hand. The results can be seen in the two graphs shown in |Figure 4.5.1]and
These two graphs allow the visualisation of the volume of the rgb
colour cube in which the samples lie. It is clear that a fairly distinct single cluster
is generated by the samples. However, this sample occupies a relatively large
sub-volume of the total colour space. This is due to the difference in intensity of
the samples along its major axis i.e. the variation in intensity of the pixels across

any one sample.

Each sample pixel was then converted into HSL space, the luminosity discarded
and the results shown in Figure 4.5.3] The Hue-Saturation space shows a far

‘tighter' cluster with little variation in either hue or saturation. It is also important
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to note that this colour ‘fingerprint’ of human skin is now 2 dimensional rather
than the original 3D-rgb space.

The large number of sampled pixels and similarity in each of the four ethnic skin
types makes the comparison of each difficult. To simplify, the mean and standard

deviations in each colour channel can be calculated by

r=1 rand g, = 1Z(ri—F)2
n& \n £

Figure 4.5.4 |demonstrates the colours generated for the skin of four subjects with
varying racial origin and pigmentation.
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Red Blue Plot of Human Skin Samples
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Figure 4.5.2 - Human Skin Samples Plotted in Red Blue Space
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Red Green Plot of Human Skin Samples

Green
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Red Blue Plot of Human Skin Samples
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& Caucasian m Sri'Lanka ~ Chinese (1 African

Figure 4.5.4 - Colour distributions of four skin types in r-g and r-b colour

spaces

Figure 4.5.4|shows the mean value for each subject plotted with the error bars
representing + 2o . It can be seen in the Red/Green and Red/Blue plots that the
various skin tones represent relatively small, overlapping clusters in RGB space,
with subtle differences between subjects as would be expected. The darkest mean

intensities are produced by the Chinese sample which would seem to contradict



any stereotypical observations about skin type. However, this is attributable to
the distance of the hand from the camera during sampling. The Chinese sample
was taken at a much closer distance than the other skin samples and hence
produced darker results. However, this variation in lighting makes little
difference to the results of the Hue Saturation plot.

Mean and Std Deviations of HS Skin Samples
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Figure 4.5.5 — Colour distributions of four skin types in HS space

The Hue Saturation plot shows the same statistical representation of the various
skin types in h-s space. It can clearly be seen that this results in a far tighter
colour cluster, which seems to vary little between skin types. Even the Chinese
sample that produces dark results due to lighting is indistinguishable in the HS

plot.

By using this single extracted cluster in HS space and fitting a multivariate
Gaussian to it, a probabilistic measure that any pixel is human skin can be
determined. A more accurate Gaussian PDF can be constructed by performing
PCA on the colour cluster, and approximating its primary axis in addition to its

bounds, or using the sum of Gaussians as used in chapter 5. If a sample pixel
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from a new image is within the Hue-Saturation bounds of the Gaussian cluster
then that pixel is marked as a probable location. Selecting a threshold for which
probabilities of lower values are set to FALSE, and higher TRUE produces a
binary image. By performing erosion then dilation, noisy points are removed and
clusters of probable skin location consolidated into blobs. A simple blobbing
algorithm can then be used to calculate approximate locations of skin artefacts

within the image.

Figure 4.5.6 — Extracting Blobs of Skin

Figure 4.5.6|shows a sample image frame after processing. The results from the
blobbing algorithm are used to calculate the centre of objects by finding the
mean pixel of the blob and the approximate size by assuming circular blobs and
calculating the radius of a blob from the area (i.e. the number of points in the
blob). This is used to place a cross over the segmented features for demonstration
purposes. In this instance the three largest blobs found within the image are
deemed to constitute the head and the hands. The largest connected blob
extracted from the colour labelled image can be used as a rough initial estimate

for the position of the head.
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4.6 Tracking Colour Features

Using a single Gaussian cluster to probabilistically segment skin tones from an

image leads to noisy segmentations for two reasons:

1. The assumption that a single bivariate Gaussian is a good representation of
the colour cluster is not completely valid.
2. Background clutter can be misclassified.

Specular reflections are particularly vulnerable to misclassification. Another
draw back with the technique is that all the pixels of the image must be
transformed into HSL space and colour classification applied. This process
quickly becomes a computational overhead and when real-time applications are

considered (25Hz or more) the approach becomes unfeasible.

One alternative is to locally search for skin using a Region of Interest (ROI) or
window. Only pixels that fall within the ROI need to be converted and classified
which significantly speeds up the procedure. In addition, background clutter,
outside the ROI, cannot be misclassified. This produces a much cleaner
segmentation without the need for erosion/dilation as previously described.

In order to limit processing to within the window (ROI), a mechanism for
moving the window must be devised. This is itself a colour tracker, as the
window must track the object in order to successfully segment the skin tones.

If the assumption is made that the binary-segmented object has a central white
mass surrounded by black background, then the centre of gravity of the blob
should be at the centre of the window.

Using a binary image window of size sy, sy where, Iy is zero for the background

and one for segmented skin, the centre of gravity for the segmented feature can
be calculated by
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A simple translation can then be calculated to position the centre of the window

at the centre of gravity for the next iteration of the algorithm.

This assumption about the shape of an object within the window can also be used
to calculate a new window size for the next iteration. Figure 4.6.1]shows a
window of size 45x77 pixels with a binary segmentation of a hand achieved
using the Gaussian probabilistic threshold described earlier. The figure also
shows the horizontal and vertical histograms of the image. If the earlier
assumption about the location of an object within the window holds true, then it
can be assumed that these histograms will be approximately Gaussian, with their
peaks at the centre of gravity previously calculated. By making this Gaussian
assumption, the standard deviation in both x and y can be calculated and the
bounds of the window for the next iteration estimated. Figure 4.6.1]also shows
this fitted Gaussian curve superimposed upon both the x and y histograms. The
Gaussian curve is estimated by calculating the standard deviation of the
histogram in both x and y. Once done it is known that one standard deviation
from the mean (o ) represents 34.1% of the information, 2o represent 47.7% of
the information and 30 represents 49.9% (See Chebyshev's theorem, Section
3.2). It is therefore known that =20 from the mean encompasses 95.4%. This
simple calculation can be used to resize the window ensuring that over 95% of
the information is encompassed by the ROI. In the Figure 4.6.1]the window is

resized to +2.20 where,

1 )
S22 e %8

newsize, = 4.40 = 4.4
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Figure 4.6.1 — Approximating the bounds on an object using a Gaussian

Assumption

This simple procedure is iterated for each new image frame of a real-time image
sequence. It relies upon a good initial location of the window. However, this can

be achieved by performing the full image segmentation as described in section
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An Algorithmic overview is:

1. Construct PDF for colour thresholding model

2. Assign probability to each colour pixel from PDF

3. If probability is greater than some threshold mark pixel as TRUE else
FALSE

4. Search image for largest blob

5. Calculate centre of blob and initialise window to this position

6. Calculate the approximate size of the blob and use to initialise window size

s =g =2 bobus

X y T

7. While window size is greater than some threshold,
8. Capture new image
9. Segment window using PDF and threshold
10. Calculate mean white pixel in x and y
11. Move window to X,y

12. Calculate the standard deviationinxandy, o,,0,
13. Resize window to 2.20,,2.20,

14. Returnto 1

If the object is much larger than the window, then the Gaussian that is fitted will
be far larger and hence the window will grow in size until equilibrium is
achieved. Conversely, if the window is too large, the resulting Gaussian will be
far smaller than the window and hence the window will reduce in size until
equilibrium has been achieved. This approach allows colour objects to be
segmented and tracked quickly as the minimum amount of processing is

necessary on each frame.

(@) and (b) shows the progress of applying this active sampling
window to a live image sequence. As the hand is moved and rotated in the image

frame, the window dynamically recalculates its parameters to retain the hand
within its ROI. (c) shows the same procedure applied to the head
with no change in parameters. Although the model is trained upon a single
human, it has proved a generic skin tracker for all subjects regardless of skin type

and without the need for relearning the colour space of skin. If however, the
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lighting is changed, this requires that a new skin model be learnt due to the large
variations in frequency for different sources of light (i.e. fluorescent tube or
daylight). This provides a generic tracking approach for applications with

consistent illumination.

Figure 4.6.2 — Tracking head and hand in the image frame using colour

4.7 Conclusion

This chapter has demonstrated how colour can be used without high
computational cost to enhance vision algorithms. Several colour spaces have
been discussed and the benefits of 'perceptual’ colour spaces demonstrated. It has
been shown that object colour is a powerful feature capable of facilitating the
robust tracking of objects in its own right. It has also been shown that with
simple techniques, colour features can provide a fast, robust approach to tracking

any generic colour object.

Throughout the remainder of this work, many of the simple techniques presented
here will be used to enhance techniques in general. Chapter 10 will actively use
the colour tracker approach presented in Section but throughout the
remainder of this work the use of colour in PDM tracking and boundary

segmentation is implicit.
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5 Cluster Based Non Linear Point Distribution Models

5.1 Introduction

As was already mentioned in chapter 2, the major drawback with models which
rely upon principal component analysis to model deformation is the non-linearity
which is introduced either as natural curvature, inherent to the model, or
introduced during the alignment and construction process of the PDM. This non-
linearity within shape space (or PCA space) results in poor performance due to

the linear nature of the underlying mathematics.

Bregler and Omohundro proposed estimating non-linearity by breaking PCA
space down into piecewise linear clusters which could then be modelled with
multiple hyperplanes [Bregler 94]. More details on this technique are discussed
section 5.4. However, these Constraint Surfaces do not place any limits upon the
local linear patches within the model and hence the surface extends to infinity
producing un-specific models. The work of Bregler also concentrates on
extremely low dimensional shape spaces with minimum non-linearity, where
little concern is given to the application of computationally expensive
techniques. In practice, the technique does not perform well in high dimensional

spaces (as will be shown) due to both the computational complexity of cluster
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analysis and PCA, in addition to the problems associated with discontinuous

i

shape spaces .

The remainder of this chapter will propose an alternative approach, which,
although similar in nature, produces a more specific model. The construction of
such models along with the parameter selection will also be discussed. Section
will present the use of dimensional reduction techniques to disregard
redundancy in high dimensional data, allowing analysis to be performed in lower
dimensional spaces. Section B.4]will discuss the method behind piecewise linear
approximations. Section 5.5 will then demonstrate the use of the technique with
example data sets. Section will discuss the application of the model. Finally
the technique will be evaluated and compared to other approaches in section

and conclusions drawn.

5.2 An Example of non-linearity

One of the classic examples within the field of neural networks is that of a helical
data set. Helical datasets are often used to assess a neural network’s ability at
creating a non-linear mapping. shows a helix in three dimensions
from a front and plan view. Although the helix exists in 3D, it is actually a one-
dimensional data set, and can be smoothly paramertised by a single value if the

primary non-linear axis, which follows the path of the helix, can be extracted.

! see Figure 5.4.5 and associated text for details
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Figure 5.2.1 - Linear PCA, three-dimensional helical data set

(a) a helix using three orthogonal axis, (b) a single non-linear axis

Figure 5.2.1{a) shows the helix represented using three primary axes as

determined by linear principal component analysis: X is the mean value and
exists outside the bounds of the helix, the vectors vi, v, and v are the three
orthogonal axes as extracted through PCA. The helix does not lie on any single

axis and all three must be used in order to reproduce the path of the helix.

In terms of shape space, where the primary concern is to encompass the bounds
of a training set in the most compact and constrained way possible, this is an
extremely inaccurate representation as both the mean shape and primary modes
are not indicative of the training set shape (ie the helix). Using this linear
approach would not only allow paths to be produced which are indicative of the
helix but many other non-representative paths within the volume bounded by the

vectors vy, Vo and Va.
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b) shows the helix parameterised by a single non-linear axis which
closely follows the path of the helix. Any point on the helix can be represented
by a single parameter which indicates the distance along this primary axis from
some origin. In order to accurately represent the non-linear data set, a means of
extracting the non-linenear axis is required. Unfortunately the data set is seldom
parameterised by a single axis and the problem of extraction is compounded by

the high dimensional nature of computer vision applications.

Figure 5.2.2— Non-linear PCA, three dimensional helical dataset

(a) non-linear modes of variation (b) segmenting shape space with multiple
planes

Figure 5.2.2(a) shows a secondary axis fitted to the data set. Here, the secondary
mode changes dependent upon the position along the primary axis. The fitting,
therefore, becomes a computationally expensive process in even the lowest of
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dimensional spaces. b) shows how the space can be segregated
through the use of multiple hyper-planes. This is akin to the procedure used by a

neural network when fitting to a data set. Although faster than attempting to fit
true curved axis to the data, it is essentially estimating the curvature to a
specified degree and hence has a loss in accuracy. This procedure also becomes
an infeasible approach as the dimensionality of the space increases. In order to
find a suitable technique for performing non-linear PCA, two considerations
must be addressed: the dimensionality of the data set must be reduced to a
managable level; a means of estimating the non-linearity (while retaining a low
computational complexity in both analysis and run time implementation) of the

final model is required.

5.3 Reducing Dimensionality

It is often important to decide what is the actual dimensionality of a data set, as
the true dimensionality is often lower than the dimensionality of the space in
which the data lies. This statement is more accurate when large dimensional
spaces are considered. For example a data set may exist in two dimensions, but if

it lies along a straight line then the true dimensionality is 1D. If, in general, the

position xOO" of a point in N-dimensional space were representable by a
relationship of the form x = x(u), where u is a pointin 0", then the data is said
to be M-dimensional. The transformation x:0" — O"provides the mapping
between the two spaces and allows any point x 00" to be dimensionally reduced

to OV [Waite, 1992]

Using PCA, the value of M can be determined and the information loss
estimated. This procedure also provides the transformation matrix that facilitates

the projection O™ - OV.

The process of principal component analysis realigns the axis to fit the major
deviation of the data set. These extracted axes can be used to describe the data in
a new co-ordinate frame, which is the principle behind the PDM. As is typically

the case, training data can be represented using fewer eigenvectors than the
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original dimensionality (see Chapter 2). This is itself a lossy dimensional
reduction technique and relies on transforming the shape space into a lower
dimensional space. In this reduced dimensional space the original data and its
deformation from the mean can be expressed using the fewest number of
parameters possible as determined from the eigenvectors of the covariance

matrix.

By transforming the eigenvectors into percentiles it can be quickly seen how the
dimensionality of the reduced space relates to the information loss of the
reduction technique. By using the same analysis of this information as is used in
the construction of the PDM (see section 3.2) a suitable mapping can be

determined which provides minimal loss of information, typically less than 1%.
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Figure 5.3.1- Table showing eigenvalues of co-variance matrix extracted via
PCA

Figure 5.3.1 shows an example bar chart of eigenvalues extracted from a co-
variance matrix, converted into percentiles and sorted into order. It can be seen
that the 1st mode contains the majority of the deformation within the data set
with the subsequent eigenvectors contributing in diminishing amounts. By
summing the percentage contribution of each of the eigenvectors, a suitable
dimensionality for the reduction can be determined (see section 3.2). For this
example 99% of the deformation is encompassed within the first 6 eigenvalues
with the last three contributing little to the information. These smaller 3 modes
can therefore safely be discarded without adversely affecting the information
content of the data set. It is also useful to note that these smaller modes are often
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largely attributable to noise within the data set and hence discarding this

information can have benefits in smoothing the data.

Once the dimensionality, M, of the reduced space 0" has been determined, the
M primary eigenvectors can be used to project the original data set into this lower
dimensionality. This is achieved by projecting the training examples onto each of
the eigenvectors in turn, and recording the distance from the mean. The resulting
transformed training set will therefore be represented in the lower dimensional
space (using the co-ordinate frame of the eigenvectors), while the important

information about the shape and size of the data remains preserved.

The dimensionally reduced vector is calculated as x, OO = (dy, do, ....., dw),

where the j™ component,

dj = Vj * (X - Y) Equation 5-1
or alternatively in matrix form where P = (v,,Vv,,...,v,)" is a matrix of the first
t eigenvectors

X, = P’ (X - X) Equation 5-2

To reconstruct the original vector X, from the d; component of the reduced vector
Xr,

nr
X =X + Z dj Vj Equation 5-3
J:

Note that equation 5-2 is the formulation for the linear PDM, where each
component of the reduced vector is effectively the weighting parameter of the

final shape.

This does not provide a true dimensional reduction, as M eigenvectors v, ,,
must be stored for use in the transformation between the reduced and original
dimensional spaces. However, the primary concern, which is perfectly satisfied
by this technique, is to reduce the dimensionality of the training set for non-linear

analysis.
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5.4 Estimating Non-linearity

It has already been shown how non-linearity can be estimated by breaking the
shape space down through the use of multiple planes (Figure 5.2.2). A similar
procedure can be performed by breaking the curvature of the space up into
piecewise linear patches which estimate any curvature present. This is similar to
the polygonal representation of a parameterised surface. As the number of
polygons increase, so the visual accuracy of the resultant surface increases.
However, as in most graphical (polygonal) representations there is a trade-off
between the number of polygons (and hence render speed) and the accuracy of
the representation. This optimum number of polygons is easily selected for
graphical representation dependent upon simple visual criteria. For high

dimensional data sets this number is more difficult to determine.

Figure 5.4.1 - Cluster Based Approximation
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Figure 5.4.1]shows the helical data set broken down into smaller clusters which
themselves can be treated as linear patches. The centres of each of these clusters
when connected allow the estimation of the primary mode of the helix. Each
cluster contains local information on how the data set varies, and must be
analysed further in order to provide an accurate representation of the space.
However, providing the space is segregated into a sufficient number of clusters,
each can be treated as piecewise linear patches which encompass the major
curvature of the space. The assumption that each cluster is approximately linear
allows a local linear mathematical model to be used, such as principal component
analysis. To provide a smooth transition between these linear patches it is
important that there is a good overlap between them. This is important where a
gradient descent approach is to be used in tracking, as a single iteration of the
model may not be sufficient to allow the model to make the transition between

two adjacent, non-connecting clusters.

+2.5,/b,

A

+2.5,/b,

v

-25.b,

Figure 5.4.2 - Linear principal components of a curved data set

Figure 5.4.2]shows a synthetic data set with 2000 members in a two-dimensional
curve. Performing standard linear PCA on this data set gives two primary modes,
which are represented by the red arrows. Using suitable limits to bound these
modes (2.5 times the square root of the corresponding eigenvalue from the mean
shape) gives the bounding box shown in the diagram. It can be clearly seen that

the mean shape is only just within the training set and the boundaries encompass
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far more of the space than is inhabited by the data points. The blue lines show the

ideal primary and secondary non-linear axis of the data set.

Using this piecewise linear approximation to model the non-linear data set results
in a more constrained model which better represents the original shape space.
Figure 5.4.3] demonstrates the use of (a) cluster analysis to break down the
original space into linear patches, and (b) the resulting bounds of these patches
after linear PCA have been performed upon them for increasing number of

clusters. (c) shows the results of the fuzzy k-means algorithm.
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Figure 5.4.3 - Cluster analysis on shape space
(a) Cluster centres and bounds, (b) k-means (c) Fuzzy k-means

igure 5.4.3(a) shows the results of running a k-means clustering (see Appendix
1) algorithm on the synthetic data set with curvature. The red points depict the
centres of the final extracted clusters and the circles show the approximate

bounds of these clusters. Using cluster analysis to segregate the space, PCA is
then performed upon each cluster and the results are shown in Figure 5.4.3(b).
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Each bounding box shows the extent of each linear patch, modelled as + 2.5\/)\_i

(as described earlier). It should be noted that as the number of clusters is
increased the resulting model better encompasses the curvature, although the rate

of increase in accuracy diminishes as more patches are used.

It is clear from the 2-cluster example that it performs significantly better than the
single linear PCA model and greatly reduces the redundant space, which is
incorporated into the final model. When the number is increased to 3 or 4
clusters there remains a visible benefit in the accuracy of the model. However, as
the number of clusters is increased further it becomes increasingly hard to
determine if the benefits in model specificity can be justified against the increase
in computational complexity. In the analysis of true data, where it becomes
impossible to visualise the high dimensionality of the space, such visual
assessment is not possible. An alternative method of assessment for choosing the
number of clusters can be provided through normal cluster analysis as described
in Appendix 1. From Figure 5.4.4]the natural number of clusters can be estimated
to be 5 which ties in with the visual observations discussed earlier.

Number of Clusters against Resulting Total Cost Function
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Figure 5.4.4 - Cost graph for synthetic curved data set

Figure 5.4.3(c) shows the results of using a fuzzy k-means clustering algorithm
(see Appendix 1) on the same data set. It can be clearly seen that using the fuzzy
algorithm significantly increases the overlap between adjacent clusters and

provides a smoother composite model for estimating non-linearity. This is
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important during tracking, especially when using a gradient descent approach
(iterative refinement approach). This ensures there exists a smooth path between

the composite elements of the model.

Bregler and Omohundro [Bregler 94] made no provision for this problem when
separating the shape space into sub-clusters and hence this adds to the observed

model error which will be shown during comparison in section

This technique also allows discontinuous surfaces to be modelled accurately,
which is an important consideration when attempting to model non-linearities for
computer vision applications. If a test example were to be considered in which a

break exists in the training set (see Figure 5.4.5), then existing techniques would
attempt to model this discontinuity by a single model. The resulting linear PDM

would be similar in nature to that shown in Figure 5.4.2(a).

Figure 5.4.5 - Modelling Discontinues Data Sets - Types of Model

(@) Linear PDM, (b) Polynomial Regression PDM,
(c) Constraint Surface (d) Composite NLPDM

shows an example discontinuous data set with various forms of
PDM model fitted: (a) shows the linear PDM which models the entire space as a
single rectangle, the mean within the central null space; (b) shows the non-linear
axis of a polynomial model smoothly parameterising the curvature, still with a

mean shape within the null space; (c) shows the constraint surface approach of
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Bregler which models the space as two finite thickness infinite hyperplanes; and

(d) shows the composite NLPDM technique proposed here.

If new points are considered and the closest valid shape found within the model,

the performance of each approach can be assessed.

Figure 5.4.6 - Modelling Discontinues Data Sets - Nearest Valid Shape

(a) Linear PDM, (b) Polynomial Regression PDM,
(c) Constraint Surface (d) Composite NLPDM

It can be seen from Figure 5.4.6]that the linear PDM performs poorly for both the
modelling of curvature and the discontinuity of the data set: many points remain
unconstrained within the central null area. The polynomial model works well at
modelling curvature; however, it performs poorly at modelling discontinuity.
Although points on the extremities are drawn closer to the original training set
shape, points within the null area remain unchanged. The constraint surface
models curvature to an extent, but draws all model points to lie along the
hyperplanes and does not work well for the discontinuity. In addition, the
unlimited extent of the hyperplanes introduces further errors at boundaries,
allowing points to be misclassified to the wrong hyperplane. The composite

NLPDM seems to be able to model both types of non-linearity correctly, and
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only introduces boundary errors due to the rectangular assumption of linear

patches.

An example of complex discontinuous surfaces can be found in Section 7.3.

5.5 Composite NLPDM

This section presents two test cases to demonstrate the validity of the approach at
modelling non-linear data sets. The examples were chosen to represent both high
non-linearity and high dimensionality. The construction of the composite non-
linear PDM is outlined below.
An algorithmic overview is given below.
1. Perform PCA on training set
2. For each training example do

Project training example onto eigenvectors, recording distance from
mean.

Concatenate these distances into a reduced dimensional vector.
3. Perform cluster analysis on dimensionally reduced data set to determine
natural number of clusters
4. Use this natural number to segregate the data set into multiple clusters using
fuzzy k-means

5. Perform PCA on each cluster of training set

5.5.1 Robot Arm

The first example that will be considered is of a relatively low dimensionality,
but with high non-linearity present. The robot arm example meets these criteria
as the nature of its hierarchical, pivotal construction guarantees a non-linear data
set. The training data for the robot arm example was constructed automatically
from a synthetic model used to generate examples that encompassed the total
possible movement of the arm. Figure 5.5.1] shows the construction of the arm
model. The 2D representation of a robot arm consists of four rectangles, each
rectangle described by four key points at its corners. This gives a total of 16 2D

key points which, when concatenated together, provide a 32 dimensional vector
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that describes the shape of the arm at any time. The model also incorporates 3
pivotal joints, which allow the constituent sections of the arm to rotate about
each other. Examples were generated for the arm in all its various positions by
taking examples of the model as the joints were rotated from +45°in 10°

intervals. This resulted in a 32 dimensional training set containing 918 examples.

K

Figure 5.5.1 - The construction of a non linear robot arm data set

hows examples taken from the synthetic training set.

a0

Figure 5.5.2 - A selection of training examples from the robot arm data set

As the dimensionality of the model is already low (i.e. 32D) it is not necessary to
perform dimensional reduction on the model and therefore k-means analysis can
be carried out on the raw data set. Performing standard cluster analysis (see
Appendix 1) the graph in is produced and indicates the natural
number of clusters to be approximately 20. Using this number of fixed clusters
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the fuzzy k-means algorithm is applied in order to segregate the data set into its

constituent linear patches.

Number of Clusters Against Cost for Robot Arm Data Set
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Figure 5.5.3 - Cluster analysis on raw robot arm data set

Figure 5.5.4|shows the resulting boundaries on the data set after PCA has been
performed on the extracted clusters projected into 2-dimensions. Note that
rectangles are skewed due to the projection of each model (mg.3;) down from 32

to 2 dimensions. This figure clearly shows the non-linearity of the model and

how the linear patches estimate this curvature.

m;

Figure 5.5.4 - Linear patches of the robot arm data set
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In order to validate the hypothesis that reducing the dimensionality of the data set
before analysis does not affect the information content of the resulting model, the

procedure was repeated upon the data set after dimensional reduction.

PCA was first performed upon the raw data set and from the eigenvalues a
suitable reduction was determined. 99% of the deformation is contained within
the first 4 eigenvectors, corresponding to the four largest eigenvalues. The data
set was then projected down into this 4 dimensional space using equation 5-1
(page 65). Cluster analysis was then performed to extract the natural number of
clusters and the fuzzy k-means algorithm performed to extract the membership of
each cluster. The results of cluster analysis can be seen in Apart
from the difference in the scale of cost, the graph is almost identical to that

previously produced and, as in Figure 5.5.4] provides a natural number of
clusters equal to approximately 20.

Number of Clusters Against Cost for Original and Reduced Robot Arm Data Set
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Figure 5.5.5 - Cluster analysis on the reduced robot arm data set

Once the cluster membership has been extracted, each element of the clusters is
transformed back into the original space using the equation 5-2 (page 65) before
PCA is performed. This procedure leads to the loss of up to 1% information due

to the lossy compression technique used. As an alternative, the reduced vectors
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can be used merely as pointers to the original data set, since the 1st element of
the reduced data corresponds to the 1st element of the original data. Once this
reverse mapping has been completed, PCA is performed on each of the fuzzy

clusters to produce the composite model as done previously.

The lower cost solutions for the reduced dimensional data results from the
disregarded data no longer contributing to the overall cost of the k-means
function. However, although this makes little difference to the selection of the
natural number, it provides a huge computational saving as the analysis is
performed in a 4 dimensional space rather than one of 32. In fact, if the
assumption is made that the primary modes contain the largest contribution to the
separation of shape space (which is known), then this cluster analysis could
feasibly be performed with even higher dimensional reductions. However, it is

not obvious how this number would be selected.

Primary Mode

el ﬁ INENNARLE

Figure 5.5.6 - Primary modes of the linear robot arm PDM

Figure 5.5.6|shows the primary and secondary modes of variation of the linear
PDM. The non-linearity of the model is clear in the distortion of the dimensions
of the robot arm. The primary mode encompasses movement along the

horizontal, but also has distortion in the size of the arm, which must be rectified
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by other higher modes of variation. The second mode encompasses movement in
the vertical, with more extreme size distortions, especially at the head of the
model. Below the mean on the second axis, the model takes on shapes which

were not present within the training set by inverting the arm back upon its self.

shows examples from the final composite non-linear model. It
demonstrates that much of the non-linearity has been removed except in the end

of the model where small abnormal deformations can still be seen. By increasing
the number of clusters this can be reduced further, but at a computational cost at

run-time.

Figure 5.5.7 - Examples from the non-linear robot arm PDM

5.5.2 Image Space

An image training set was constructed from a sequence of 200 images of a head
turning in the image frame. No alignment was performed so as to produce as
non-linear a problem as possible. Each frame is 80 by 60 pixels in size,
producing a 4800 dimensional training vector. PCA is first performed and the 33
eigenvectors corresponding to the 33 largest eigenvalues extracted. These vectors
account for 99.9% of the deformation in the training set. shows the

first and second modes of variation after linear PCA
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Figure 5.5.8 - Primary modes of the image PDM

Each vector is then projected into this PCA space (using equation 5-1 page 65)
giving a new dimensionally reduced training set on which cluster analysis can be

performed. This generates a dimensional reduction of 4800 to 33.

Cluster analysis results in an estimate for the natural number of clusters, k=15.
PCA is performed on each of the 15 clusters in turn to generate the composite
non-linear model. Selected shapes reconstructed from the composite model are
shown in Notice that each model has reduced blurring, due to the
original data set being subdivided into smaller clusters. Each cluster now has less

information to encode and hence linear PCA can better estimate the deformation.

A6CEE

Figure 5.5.9 - Examples from the composite non-linear image PDM

As mentioned earlier the technique also has the advantage that the hyper surface,
or volume, on which the data lies need not be contiguous. For example, given an
image sequence of two people, one with glasses and one with a beard, both linear
PCA and the high order non-linear approaches will model the data set with a
principal mode which interpolates between the two. However, there is no
example in the training set where both glasses and a beard are present. The

cluster-based technique will separate these two distinct clusters, allowing the
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model to ‘jump’ between the two, better representing the training set. This issue

and its implications will be discussed in the following chapters.

5.6 Application of the Model

To apply the model to an image, a similar procedure to the linear PDM (see
section 2.3) can be used. After making an iterative refinement to the model
within the image frame, the closest possible shape within the learnt bounds of
the model is calculated. This constrained shape is then used as the model pose for

the next iteration.

In the case of the linear PDM, this constrained shape is found by projecting the
model into the PCA space and reconstructing the closest allowable model (point
in shape space) that is within the bounds of the linear model. The same procedure
can be used in the composite model. However, the closest allowable point may
exist in any of the clusters which constitute the non-linear model. The centre of
each cluster can be used to check for closest cluster in Euclidean distance from
the model point. However, using a Euclidean distance metric makes the
assumption that all clusters are of the same size. [Figure 5.6.1] illustrates this
problem. Assuming a point p in shape space, it should be apparent that the point
belongs to the cluster C1. Using a Euclidean distance metric will result in the
point being assigned to the cluster C2 due to the size difference in the clusters.
However, the point p is actually closer to the cluster C1 even though in
Euclidean space the point is further from the centre C1 due to the standard

deviation of the clusters.
Pe

Reconstructed point p

Original point p

Desired point p

Figure 5.6.1 - Distance Metrics in Shape Space
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To overcome this problem a Mahalnobis distance metric can be used. However,
due to the simplicity of the k-means-clustering algorithm, it is a fair assumption
that if the selected natural number is correct then clusters will be similar in size.
It is important to bear this consideration in mind, especially when discontinuous
surfaces are considered. In these situations, many clusters may be of different

sizes and therefore the Mahalnobis approach should be used.

An algorithmic overview for model application is:

For a new shape S,

1. Transform S from image frame to PDM model basis eg. Normalise and align
(as in alignment of training set)

2. Locate closest cluster centre and hence linear patch P; using either Euclidean
or Mahalnobis distance metric

3. Project S down onto linear patch P;

4. Project back up to reconstruct closest allowable shape S’

5. Transform S' back into image frame co-ordinates

5.7 Evaluation and Performance

To asses the performance of the approach to the modelling of non-linear data sets
an error metric must be defined which provides a measure of the accuracy of an
approach. As has already been demonstrated, a common problem with the linear
representation of non-linear data is the tendency to over-generalise shape and to
incorporate non-valid deformations into the model. These non-valid
deformations often manifest themselves as the distortion in scaling of the model
as observed in the robot arm example (section 5.5.1). In this example, the robot
arm should remain constant in size and area as it rotates around its pivotal joints.
Since this size is the major artefact of the linear representation, it provides a

suitable error metric with which to assess non-linear performance.

Random points chosen from within the linear PCA space are selected and then
projected into the composite model. The constraints of the model are applied and
the resulting (supposedly valid shape) assessed by calculating the length of the
model perimeter (projected onto the image plane). Since the ideal length of a
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valid shape should remain constant (in this case 66 pixels), any deviation from
this constant can be used as a measure of the model's inability to reproduce valid

shapes.

A number of random shapes were generated and passed through the model, the
absolute difference from the ideal length recorded and the mean calculated over
the test set. This procedure was then repeated for the constraint surface, a nearest
neighbour approach and the cluster based NLPDM proposed here for varying
numbers of clusters between 1 to n (where n equals the number of training

examples). The procedure is outlined thus,

1. Take nrandom shapes X/,
2. Project each X*" into non-linear model and find closest reconstructed point
x recon
i
3. Calculate length in image plane of projected model X/, L**"

4. Calculate length in image plane of any valid model X, L™

n

Calculate deformation error metric e =1 Z

recon valid
L™ -L
i

Equation 5-4

This error metric provides a zero error if the resulting reconstructed model is
valid in shape. Therefore, the higher the error, the worse the performance of the
constraints and hence the worse the performance of the model. By repeating this
procedure for varying number of clusters between 1 (which is effectively a linear
PDM) and 912 clusters (the number of training examples and therefore nearest
neighbour), we can assess the advantage on model specificity as the number of

clusters increases. Figure 5.7.1[shows the resulting graph from this analysis.
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A Comparison of non-linear Models at Constraining Invalid Shapes
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Figure 5.7.1 - Graph showing error rates of non-linear approximation
techniques

The single hyper plane constraint surface, the nearest neighbour approach and the
cluster based NLPDM all perform comparably and provide far lower error rates
than either the multi-plane constraint surface or the linear PDM. However, the
cluster based NLPDM (CB-NLPDM) provides lower errors until 5 patches are
reached. With only a single linear patch the CB-NLPDM is effectively a linear
PDM and as such does not produce errors that exceed the linear PDM. However,
the other approaches produce significantly higher errors than even the linear
model until sufficient patches have been introduced. As the number of clusters
increases, so the error rate decreases, showing that the procedure does indeed
increase the model's ability at representing non-linearity. The yellow trace on the
graph shows the error results of the unconstrained surface approach of Bregler
[Bregler 94] which, although performing slightly better between 25 and 70
patches, produces higher error rates at the pre-chosen patch number of 20 which
was determined earlier from cluster analysis. It is important to note that this error
graph confirms the results of the cluster analysis for the natural patch number, as

further increases beyond 20 result in less significant results in the final model.
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This confirms the conclusion that the approach for the selection of the natural
number of clusters is valid, and hence the number of patches needed by the

model is correct.

As the number of clusters increases to 912 (which is the number of examples
within the training set) the error reaches zero. This is to be expected: when the
number of clusters is equal to the number of training examples, each cluster
contains only one member. The procedure then becomes a nearest neighbour
approach. Since each nearest neighbour is in fact a valid training example, the
validity of the shape is ensured, hence the zero error. This fact also explains the
error results of the nearest neighbour approach which performs comparably to
the other techniques. The question could be posed, why not use a nearest
neighbour approach to perform the procedure simply and accurately? However,

there are two issues, which have not as yet been considered.

1. The speed of the procedure increases as the number of linear patches
(clusters) increases, as each patch is itself a linear PDM.

2. A nearest neighbour approach is only valid if every possible model pose is
represented within the training set. This is often not the case and the power of
the linear PDM is the ability to model shapes not present within the training
set by linearly interpolating between examples.

It is therefore apparent that in order to consider the validity of any technique, two

questions must be posed.

Does the model stop non-valid shapes from being produced?
(which has already been addressed in

Does the model allow valid shapes which were not present within the training set

to be reproduced?

In order to answer this latter question a new set of experiments must be devised.
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By constructing a new set of n examples that are all valid in shape and
deformation not present within the training set (possible due to the synthetic
nature of the test case), the ability of the CBNLPDM at reproducing unseen,
valid shapes can be assessed. Using the same equation 5.4 (page 82) along with a
Euclidean distance measure between the 'original valid but unseen data' and the

‘reconstructed shape' this feature of the model can be assessed.

1. Take n valid shapes not present in the training set X ™"
2. Project each X" into non-linear model and find closest reconstructed point
x recon
i
3. Calculate the length in image plane of projected model X/, L

4. Calculate the length in image plane of any valid model X, L"*"

n

Calculate deformation error metric =+ Z

[recon _ | valid |
i

n

Euclidean distance error =+ Z D(X joen - Xi”ew)

Using these error metrics it would be expected that if the model were performing
perfectly any valid shape projected into the model would have zero deformation
error and zero Euclidean error. However, using the nearest neighbour approach
would result in a zero deformation error but produce a high distance error. The

result of performing this analysis on the data for both approaches is shown in

Figure 5.7.2) Figure 5.7.3]and [Figure 5.7.4] The test set consisted of examples

generated from *38°angles and 17° intervals producing 135 valid, but unseen,

examples with which to test the various models.
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A Comparison of non-linear Models at Reproducing Valid Unseen Shapes
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Figure 5.7.2 - Graph showing error rates of non-linear approximation
techniques for Constraining Valid Unseen Data

Figure 5.7.2|shows the results generated via the deformation error metric for
valid, but unseen, shapes applied to the various models. From this graph it can
clearly be seen that the linear PDM produces a low baseline error of around 2.5
pixels deformation. This demonstrates the ability of the linear PDM to
encapsulate the deformation of the training set, allowing valid shapes to be
reproduced which were not present within the original data. It is not until in
excess of 85 linear patches are used that either the nearest neighbour or
constraint surface performs comparably to the linear PDM. The nearest
neighbour approach generates the highest error rates as was suspected. The
constraint surface with 4-hyperplanes produces the same results as the proposed
NLPDM technique, both of which produce by far the lowest errors. Using 20
linear patches, both techniques produce their lowest error rates of approximately
0.5 pixels deformation, which again confirms the selection of the natural number
of clusters for the data set.
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A Comparison of non-linear Models at Allowing for Valid Shapes
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Figure 5.7.3 - Graph showing error rates of non-linear approximation
techniques for Allowing Valid Unseen Data

A Comparison of non-linear Models at Allowing for Valid Shapes

error metric (euclidian distance error)
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Figure 5.7.4 - Graph showing error rates of non-linear approximation
techniques for Allowing Valid Unseen Data

Figure 5.7.3|shows the results generated via the Euclidean distance error metric
for valid, but unseen, shapes applied to the various models. The figure uses a

logarithmic scale due to the extremely high error rates produced by the nearest
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neighbour approach. Figure 5.7.4|shows the same data (without the nearest
neighbour approach present) on a linear scale. It can clearly be seen that the

nearest neighbour approach produces error rates far in excess of any other
approach. The linear PDM produces a low baseline error, which could be
reduced further by increasing the number of modes of variation. The constraint
surface with 1-hyperplane produces much higher error rates than the linear PDM
and does not perform comparably with the linear PDM until around 450 linear
patches, where each patch effectively has only two members. If a patch has only
two members then it can have only one hyperplane, which means that more
planes are required to model the data. This is confirmed by the 4-hyperplane
approach which produces error rates identical to the NLPDM model, both of
which produce errors of around 0.7-0.8 at the chosen number of clusters. If all
these graphs are considered, the lowest errors are produced at 20-30 linear
patches which suggests that the natural number may be slightly higher than was

chosen. However, changing this number would result in little gain in accuracy.

Model Approach Ability to Ability to Ability to Allow
Constrain Constrain Valid Valid Data
Unseen Data Data
Linear PDM BAD POOR/GOOD GOOD
Nearest Neighbour GOOD BAD BAD
Constraint Surface 1 GOOD BAD POOR
hyperplane
Constraint Surface 4 POOR GOOD GOOD
hyperPlanes
Cluster Based GOOD GOOD GOOD
NLPDM

Figure 5.7.5 - Table Showing Comparison of Techniques

If the performance of each technique is considered for each of the comparative
studies performed, the conclusions can be summarised in a table, as shown in
From this table it can be demonstrated that the proposed NLPDM
approach produces superior performance in all aspects of modelling.
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5.8 Conclusions

In conclusion, a NLPCA technique has been presented which models non-
linearity by breaking the problem down into a set of linear models, which
estimate high dimensional curvature. This has the advantages of the speed and
simplicity of linear PCA, whilst providing a robust solution to object modelling.
It has been shown how this technique performs in comparison to similar
techniques and how the simple selection of model parameters can produce
optimum solutions in the final model. These models have been shown to work on
both low dimensional, high non-linear, and high dimensional, high non-linear
problems where other procedures would fail.
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Chapter §

6 Cluster Constraints on Shape Space

6.1 Introduction

Thus far techniques have been discussed to project a non-linear data set into a
lower dimensional space where further analysis is feasible. Once the shape space
and its non-linearity have been estimated through cluster analysis, this
segregation is modelled through multiple linear PDMs. The position and bounds
of each linear patch is obtained by performing PCA on each extracted cluster and
its members. The dimensional reduction allows the non-linear analysis
(clustering) to be performed on high dimensional problems, but provides no
added benefit to the final model. Each sub PCA cluster has the original
dimensionality of the training set.

The inherent dimensional reduction of the linear PDM often provides a useful
representation during classification. However, by breaking the original space up
into linear patches this benefit of the model is lost. To provide static
classification as demonstrated in [Bowden 96] a linear PDM formulation would
still need to be maintained in addition to the composite model. This would not be

the case if each patch of the composite model segregated the space in such a way
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as to naturally aid classification. By retaining the dimensional reduction of the
linear model throughout, and applying the constraints to the reduced data set,

several advantages are achieved:

1. The dimensional reduction is retained throughout the model, providing a
simplified model for classification.

2. For complex models where the number of clusters is high, the computational
complexity of applying constraints is decreased.

3. Any noise within the model is filtered out by the linear PDM before

constraints are applied.

The remainder of this chapter is concerned with the application of constraints to
the dimensionally reduced data. Section B.2]will discuss the application of these
constraints. Section p.3]will evaluate the approach and make comparisons with
the previous chapter. Section [6.4] will demonstrate how this new model can be
used in classification using sign language as an exemplar application. Section
will evaluate the performance of the proposed appraoch and lastly, conclusions

will be drawn.

6.2 Constraining Shape Space

The basic procedure proposed in the previous chapter is outlined in
where OV is the original dimensionality of the training set and O is the
reduced dimensionality of the training set after it has been projected down into

the PCA space (x:0O" - OV).

Previous work by the author and other researchers (see section 2.4) has shown
how the reduced dimensionality of PCA space is invaluable in the classification
of static poses of the model. Indeed, this is often used as an important tool in
classification. It is therefore beneficial to combine these techniques in the

modelling of a non-linear data set.
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Figure 6.2.1 - Cluster Based non-linear PDM

Figure 6.2.2]gives an overview of this new approach, which will be referred to as
‘Constraining Shape Space' or CSSPDM. In this procedure the dimensional
reduction of the PCA is retained throughout the entire model. In addition to the
cluster analysis, PCA is performed on each cluster in the dimensionally reduced
space, constraining the model in PCA space. The model must then be projected
back up into the original dimensionality to extract the final shape.

Multi-Cluster PDM
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Figure 6.2.2 - Cluster Based non-linear Constraints on Shape Space

An algorithmic overview is given below.

1. Perform PCA on training set

2. For each training example, do:
Project training example onto eigenvectors, recording distance from
mean.

Concatenate these distances into a reduced dimensional vector.
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3. Perform cluster analysis on dimensionally reduced data set to determine
natural number of clusters present
4. Use this natural number to segregate the data set into multiple clusters using
fuzzy k-means
4. Perform PCA on each cluster of training set
PCA is performed on the reduced dimensionality cluster. Here models
must be transformed to the reduced space at runtime, the closest
allowable shape from the model reconstructed and transformed back to

the original dimensionality.

6.3 Evaluation

In principle, this procedure should produce identical results to that produced by
applying the constraints to the original training set, with the added advantage of
the computational saving of performing the constraints within the reduced space.
However, in practice this approach performs better due to the data smoothing
effect of the initial linear projection, which reduces the dimensionality. Each
linear patch has a far lower dimensionality, hence the linear patch can be
modelled to encompass all the deformation. The initial linear projection is where
the data smoothing (lossy compression) occurs and as such the model's accuracy

is limited by this single factor.

In order to assess the performance of the technique the experiments detailed in
chapter 5.7 can be repeated and the error graphs produced. Returning to the robot
arm example (chapter 5.5.1), after the initial dimensional reduction from 0% to
O* the reduced dimension training set is fuzzy-clustered in the same manner.
From this data clustering PCA is performed on each linear patch in [0*space. As
the maximum number of eigenvectors for each cluster cannot exceed the
dimensionality of the space, each cluster is constructed so as to encompass 100%
of the deformation (i.e. all four modes are used). This means that no decisions
need be made for the dimensionality of individual clusters and therefore

simplifes the procedure of model construction.
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The error metrics previously defined (section 5.7) are now used to assess the new
model's ability at both reproducing valid shapes and constraining non-valid

shapes.

Constraining Invalid Shapes in Reduced Shape Space
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Figure 6.3.1 - Error graph showing ability to constrain non-valid shapes

Figure 6.3.1]demonstrates the result of measuring the performance of this new
technique on the non-valid test set described in the previous chapter for
increasing numbers of linear patches. This procedure was repeated for the
original training set perturbed by noise and for a completely random training set.
As would be expected, increasing the number of linear patches decreases the

error rate and hence results in less invalid deformation being produced.

The dotted lines show the error produced by the single linear PDM in
comparison to each of the data sets. The linear PDM produces identical results to
that of using a single linear patch in the CSSPDM. The single cluster contains
100% of the deformation of the reduced data and therefore has no effect. Due to
the dimensional reduction of the linear PDM being the same as that used in
reducing the dimensionality of the data, the single cluster has no effect as they
are essentially the same. However, because the linear PDM remains present

throughout the technique the resulting loss of data ensures that no level of
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constraints can perform better than the 2.7 error rate produced by the information
loss of the data projection. Surprisingly however, for models with between 200
and 500 linear patches, the technique does produce higher accuracy rates but
only in the order of fractions of a pixel. By altering the dimensional reduction to
utilise more eigenvectors in the initial projection and hence retaining more
information from the model, this baseline error can be reduced further. However,
this poses the same question as the linear PDM and the trade-off between

accuracy and compactness/robustness (see section 3.2.6).

The important features of are that the error rate is significantly
reduced by increasing the number of linear patches initially, and the most benefit

can be deemed to be at around 20 linear patches which correlates with the initial
analysis of the data set.

Comparison of Constraining Shape Space for non-valid Deformation
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Figure 6.3.2 - Error graph showing comparison of Constraining Shape space

against previously discussed Techniques

Figure 6.3.2]|shows the error line produced from the random data set in
uperimposed upon the results of the previously discussed approaches from

section 5.7. It can clearly be seen that although Constraining Shape Space does
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not produce the lowest error rates, it does perform comparably with the lower of
the error plots generated by other techniques. Since it has already been
established in the previous chapter that the CBNLPDM produces the most
desirable results, the comparative performance of this solution is of primary
concern. The data smoothing of the dimensional reduction can be attributed to
the smoothed error graph produced by this technique. Although the error rate
does not reach zero, like many of the other approaches, it follows the same trend
until more than 60 linear patches are used. Since the model only utilises 20, this
artefact of the approach can be disregarded, as model complexity would never
reach this level. It is also important to bear in mind that the minimum error of the
Constrained Shape Space approach can be reduced further by reducing the
information loss of the dimensional reduction (the initial linear PDM projection)

and including more information in the model i.e. using more eigenvectors.

A Comparison of non-linear Models at Allowing Valid Shapes
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Figure 6.3.3 - Error graph showing ability to model valid shapes

igure 6.3.3 shows the result of measuring the performance of this new technique
upon the valid unseen test set (described in the previous chapter) for increasing

numbers of linear patches. The performance would be expected to be comparable
with the linear PDM model (as the initial projection is a linear PDM). Although
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the performance is not as high as the CBNLPDM, it performs significantly better
than the constraint surface or nearest neighbour approach which are not shown
on this graph due to the extremely high error rates they produce (around 45). In a
similar manor to the linear PDM, the CSSPDM error rate can be further reduced
by reducing the dimensional reduction of the initial projection to include more
deformation. However, this in turn will increase the dimensionality of the model
and hence computational complexity in analysis and runtime application. When
the huge dimensional reductions that can be achieved for analysis are considered,
this slight degradation in performance can be justified. In this example the
reduction from 32 to 4 may not be considered advantageous but when larger
dimensional examples are considered (examples in next section and later

chapters) the benefits of this approach can be seen.

To summaries these techniques,

An algorithmic overview is given below.

1. Perform PCA on training set

2. For each training example do
Project training example onto eigenvectors, recording distance from
mean.
Concatenate these distances into a reduced dimensional vector.

3. Perform cluster analysis on dimensionally reduced data set

4. Perform PCA on each cluster of training set

When performing PCA on individual clusters two approaches can be taken.

(1) PCA can be performed on the reduced training set cluster. Here models must
be transformed to the reduced space at runtime, the shape reconstructed and
transformed back. This is slightly more computationally expensive, but has the
advantage that the original encoding remains and therefore aids simple pose
analysis/recognition.

(2) PCA can be performed on the original training set clusters after the clusters
are transformed back into the original space. This technique is slower in analysis

but faster at runtime and ensures that little high frequency information is lost.
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6.4 Classification

6.4.1 Introduction

Due to the nature of constraining shape space, much of the segregation of the
data set which is important to classification is contained within the model. In
addition to this, the improved modelling capability of the non-linear estimation
allows more complex problems to be tackled. If the assumption is made that
similar poses of a model produce similar training vectors and each pose of the
model corresponds to a point in shape space, it is therefore a fair assumption that
similar poses of the model will produce tight clusters within this shape space.
These clusters should automatically be modelled by the non-linear constraints
that are placed on the model and facilitate more complex static pose recognition.
The application of gesture recognition provides an ideal application for the proof
of this assumption.

6.4.2 Sign Language & Gesture Recognition

American Sign Language or ASL has a finger spelt alphabet similar to other
national sign languages. These simple gesture alphabets are used to spell names
or words (letter by letter), for which there is no signing either known or present
in the vocabulary. ASL provides a more suitable problem domain over British
Sign Language as the BSL finger spelt alphabet is a two-handed system.
Although this two handed system in reality provides a method of signing which
is far easier to understand, it presents added difficulty for computer vision tasks
due to the problems associated with occlusion.

Watson presented a review of work related to hand gesture interface techniques
which consisted of glove sensor-based techniques, vision-based techniques and
the analysis of drawing gestures [Watson93]. These were later summarised and
techniques evaluated in by Handouyahia, Ziou and Wang [Handouyahia 99] and

are discussed later in this chapter.
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hows the ASLElaIphabet with images taken from the training set.

Figure 6.4.1 - The American Sign Language Finger Spelling Alphabet

It can clearly be seen from that each letter of the alphabet
corresponds to a specific pose of the hand, with the exception of the letter 'z’

which is a dynamic gesture and requires movement. This being the case, each

gesture should occupy a distinct area in shape space.

6.4.3 Constructing the Non linear Hand Model

Several image sequences were recorded which encapsulated numerous
occurrences of each of the letters of the alphabet. These sequences included three
'runs' through the alphabet, along with a small selection of simple sentences and
words. These image sequences were recorded using a blue backdrop and sleeve

to allow simple extraction using chroma key techniques.

2 American Sign Language alphabet is almost identical to the alphabet of International Sign
Language (ISL).
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Once these sequences had been extracted, the hand was segmented to produce a
binary image, and a contour-tracing algorithm initiated to extract the external
contour of the hand for each image frame. shows: (a) a sample
image frame of the hand; (b) the binary image produced from chroma keying;
(c) and (d) the resulting extracted boundary. The procedure was then repeated
for every image frame, providing training examples of the hand as it moves
throughout the alphabet and the possible shapes it can take as it makes transitions

between the letters.

Figure 6.4.2 - Extracting Training Examples for ASL Data Set

(a) Hand image, (b) Segmented hand, (c) Extracted Contour (d) Resampled

Contour

Before any statistical analysis can be performed, the training examples must first
be resampled and aligned. The contour was automatically allocated 3 landmark
points around the contour as shown in Figure 6.4.2{d). These landmark points
were allocated at the start and finish of the contour and one at the vertical
extremity within a 10° arc of the centeroid of the boundary. Once done, these
landmarks were used to resample the boundary using linear interpolation to
produce a contour consisting of 200 connected points. The low number of
landmark points and the simple landmark identification used guarantees that non-
linearity through non-optimum landmark point assignment will be present within
the training set. However, this non-linearity will be modelled through the use of
the Constrained Shape Space non-linear model discussed earlier. No rotational
alignment was performed to preserve as much information about the pose of the
model within the shape space. This again would introduce non-linearity into the

model. The rotation non-linearity is necessary in the recognition of gestures.
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Poses produced by the dynamic gesture (‘'z' for example) are similar to other
gestures ('g") except for the rotation of the hand pose around the camera’s z-axis.
If this rotation were to be removed, then the distinction between these two poses
would be lost. Again the non-linear constraints will model this non-linearity and
allow simple distinctions to be made.

Finally any translation of the hand model in the xy image plane was removed by
translating the origin of the contour to that of the wrist, located by taking the
mean of the start and finish points of the contour. This approach removes any
translation of the hand in the image plane, but assumes that the hand is kept at a
consistent distance from the camera throughout the training set and hence has no

need to be scaled.

Once the training set had been prepared, a total of 7441 example contours were
produced and labelled with the actual letter the pose corresponded to. Poses that
were deemed transitory poses between real gestures were labelled as null

gestures.

Under the normal procedure for the construction of a PDM, the last phase before
PCA is performed would be to normalise all contour boundaries, ensuring a
consistent training set. However, for reasons that have already been mentioned
with regard to rotation, it is important that this information is preserved.
Theoretically the length of vectors on which PCA is performed should not affect
the resulting model except for its overall size. However, due to the nature of
floating-point arithmetic and the problems associated with overflow errors, it is
still necessary to reduce the size of the computations. This is facilitated by
dividing each training vector not by its own length (as in normalisation), but by
the length of the mean vector of the training set. This effectively normalises the

training set but retains any subtle size deviations between examples.

6.4.4 The Linear ASL Model

The Linear ASL model is now generated by performing linear PCA upon the
training set. [Figure 6.4.3| shows the primary modes of the linear ASL PDM and

how these modes deform the model from the mean.
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Figure 6.4.3 - The linear ASL PDM Model

It can clearly be seen that the major modes of variation include large amounts of

deformation which, when put together, will produce an unreliable model capable
of producing far too much deformation (see examples in

By analysing the eigenvalues of the covariance matrix it can be determined that

the first 30 eigenvectors corresponding to the 30 largest eigenvalues encompass
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99.6% of the deformation within the model. Unfortunately, due to the natural
rotational non-linearity and high order non-linearity which has been introduced
into the model during re-sampling (as discussed in the previous section), this
linear model is unsuitable for tracking and classification. Figure 6.4.4] shows a
selection of invalid shapes that can be constructed from the linear ASL PDM.
These examples were produced by generating random vectors that were within
the bounds of the linear model. It is the linear PDM’s ability to allow invalid
shapes which make the model unreliable for tracking and classification. These

invalid deformations are due to the linear approximation of the non-linear data

A W
= Y D

Figure 6.4.4 - Example Invalid Shapes produced by the linear ASL PDM

set.

6.4.5 Adding non-linear Constraints

Using the procedure previously outlined, non-linear constraints to the model are
added by performing cluster analysis on the dimensionally reduced data set after
it has been projected down into PCA space. From the linear model it has been
determined that the 30 primary modes encompass 99.6% of the deformation, by
projecting each of the training vectors down into this space (as previously
described), a dimensional reduction of 400 to 30 is achieved. Cluster analysis is
now performed upon the reduced data set.
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Figure 6.4.5 - Cluster Analysis on Dimensional Reduced ASL Training Set

igure 6.4.5|shows the resulting cost graph from the cluster analysis of the

reduced data set and the natural number of clusters estimated to be 150. The

fuzzy k-means algorithm is then used to segregate the space into 150 clusters.

These clusters are then learnt by performing PCA on their members.

Figure 6.4.6 - Constrains on PCA space for the ASL Model
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Figure 6.4.6]|shows the PCA space for the model projected into 3 dimensions for
visualisation purposes, with the constraints shown as the bounding boxes (first
two primary modes) of the linear patches (clusters) extracted via PCA. Notice the
two distinct clusters produced in the direction m;, meaning that the shape space is
discontinuous and there is no smooth path between the two distinct areas of
shape space. This is due to the simple landmark identification and the problems
associated with it. Further discontinuities may exist in the model which are not
apparent in the dimensions that are shown in These types of spaces
and solutions to the problems they introduce will be discussed in the chapter on

temporal dynamics (specifically sections 7.3-7.4 for the ASL shape space)

Y2
SR AR

Figure 6.4.7 - Example Shapes Produced by the constrained non-linear ASL
PDM

Figure 6.4.7] shows random shapes generated within the constrained model, If
these are compared with those produced in Figure 6.4.4) it can be seen that the
constrained model contains far less invalid deformation and therefore results in a
more reliable model for tracking. Each random shape is also very close to a
natural gesture in ASL and it is this correlation between cluster and gesture that

can be used to perform gesture recognition.
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6.4.6 Recognising Gestures

Ideally for an alphabet with 26 characters, the model would contain 26 clusters,
where each cluster directly corresponds to a specific letter. However the non-
linearity of the model requires far more clusters to encompass the deformation
reliably. As a result, multiple clusters may correspond to a single letter. This is

due to:

1. The presence of null (transitional) poses of the hand within the training set
should not correspond directly to any specific letter. As these null poses will
be distributed throughout the space it is incorrect to assume that it is possible
to model them with a single cluster.

2. The landmark point assignment used may result in two very similar poses of
the model occupying completely different areas of the PCA space (i.e.
discontinuous shape space). Therefore, again, it is incorrect to assume that
any single letter will produce a single tight cluster.

3. The presence of dynamic gestures like 'z' requires movement of the hand to
complete the gesture. This movement results in a trajectory in PCA space that
corresponds to a letter rather than a cluster. This trajectory may require

multiple clusters in order to model the deformation.

Once these issues are considered it is apparent that in order to classify any
specific gesture, multiple clusters must be assigned to each letter rather than
single clusters as previously used in previous work by the author [Bowden 96;
Bowden 97]. This can be achieved by analysing the training set and
probabilistically assigning each cluster to a specific letter. This provides a
conditional probability that the model represents a letter given that model is in

any specific cluster. These conditional probabilities are constructed in a

probability matrix as shown in
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letterA letterB letterZ null

Cluster; Pca Pce s Pc.z Penu
Cluster, Pc,a Pes e Pe,z Pe,nu
Cluster, Pc,a Pc.s e Pc,z Pe,nun
Cluster,,q Pc,,.a Pc.B e Pc,,z Pegnu
Cluster, Pe,,a Pc.e a Pe..z Pegonui

Figure 6.4.8 - Probability Matrix for ASL Classification

As each of the vectors from the training set has been pre-assigned a letter which
provides a label for each shape of the training set, the matrix can be constructed
by calculating which cluster a specific training example belongs to, and assigning
that cluster to the labelled letter. Each training example is projected down into
the PCA space and the closest cluster, a, located. The value along the row a, Pg
which corresponds to the letter 3 is then incremented. This procedure is carried
out for the entire training set and each row normalised to calculate the

conditional probability that any cluster belongs to a letter i.e.

z P(Ietter|CIusteri) =1. Now by locating which cluster the model exists in there

is a conditional probability that the model is representing a letter, with the
highest probability for a cluster representing the most likely letter. By analysing
this matrix information about how this correlation is achieved can be extracted.

Table 6.4-1 shows how many clusters each letter uses in this mapping.
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Letter N' Clusters Letter N' Clusters

a 23 (0] 16
b 9 P 9
c Q 10
d R 15
e 26 S 15
f 13 T 20
g 14 U 15
h 13 \%

i 12 w

j 11 X

k Y

| 4 Zz 26
m 11 NULL 130
n 8

Table 6.4-1 - Correlation between ASL Gestures and Clusters in non-linear

Model

Cluster N' Cluster N' Cluster N' Cluster N' Cluster N' Cluster N'
N' Letters N' Letters N' Letters N' Letters N' Letters N' Letters
1 4 27 2 53 4 79 3 105 4 131 2
2 2 28 3 54 3 80 3 106 2 132 5
3 2 29 3 55 1 81 6 107 2 133 4
4 3 30 4 56 2 82 3 108 2 134 2
5 4 31 1 57 2 83 2 109 4 135 1
6 2 32 2 58 2 84 2 110 5 136 7
7 5 33 2 59 7 85 3 111 3 137 2
8 4 34 3 60 3 86 2 112 2 138 2
9 5 35 1 61 1 87 2 113 2 139 3
10 5 36 3 62 2 88 5 114 3 140 3
11 2 37 2 63 2 89 2 115 4 141 2
12 4 38 3 64 1 90 5 116 3 142 2
13 2 39 4 65 3 91 3 117 4 143 2
14 3 40 3 66 4 92 5 118 5 144 0
15 1 41 4 67 6 93 1 119 4 145 5
16 4 42 3 68 2 94 1 120 3 146 3
17 3 43 2 69 4 95 2 121 2 147 3
18 6 44 4 70 2 96 2 122 2 148 4
19 6 45 2 71 4 97 4 123 2 149 5
20 4 46 4 72 6 98 4 124 3 150 4
21 3 a7 2 73 3 99 4 125 2 Average 2.98
22 1 48 2 74 3 100 4 126 3
23 1 49 7 75 1 101 1 127 3
24 1 50 2 76 4 102 2 128 4
25 2 51 5 77 3 103 3 129 1
26 1 52 3 78 3 104 3 130 1

Table 6.4-2 - Correlation between Clusters of non-linear model and ASL

Gesture
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Table 6.4-2 shows the number of ASL gestures that correspond to each cluster. It
would be expected that each cluster would correspond to only one letter,
however due to inconsistencies in labelling and the complexity of the model this
IS not the case. The average cluster corresponds to 2.98 letters, but the matrix
gives us a probability that the cluster corresponds to a specific letter; The highest

probability entry in the matrix gives the best estimate to the recognised letter.

Highest Probabilistic Match Second Highest Probabilistic Match

Minimum 0.285714 0
Maximum 1 0.454545
Mean 0.706031 0.210881

Table 6.4-3 - Analysing the Resulting Probabilities

Table 6.4-3 shows the range of probabilities that result for this procedure. Using
an unseen test set of segmented hand shapes with (hand labelled) letter ground
truth for comparison, the average probability for the best match of the matrix is
around 0.7. The maximum value of 1 demonstrates that some clusters exclusively
belong to specific gestures and this can be confirmed by the presence of clusters
assigned to only one cluster in Table 6.4-2. The next highest probability from the
matrix is also shown with the mean value being much lower than that of the best
match, demonstrating that although there is some ambiguity between gestures

there is significant distinction probabilistically as to the function of each cluster.

By comparing the resulting highest probability match with the original labelled
letter for each of the training examples and converting this to a percentage, a

measure of the classifications accuracy can be determined.

Out of a total of 4741 examples the highest probability match was correct in
3348 cases, with the second highest probability match being correct in 1000
cases. This gives a 70.62% accuracy for the most likely match, with 20.09%

accuracy for the next most likely match. From this it can be said that there is a
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91.71% chance that the correct letter for each pose will be recognised as one of

the two highest probability matches from the matrix.

6.5 Evaluation

Initially these results may not seem overwhelming, however the complexity of
performing such a task using computer vision is considerable due to the
variability of the hand and the problems associated with accurately segmenting
or extracting features which represent its shape. If other approaches are
considered this becomes apparent. [Handouyahia 99] summarises
other authors approaches the problem.

Authors/ Size of | Type of

Vocab

Representation Recognition

Properties Vocab

Capture

Success
Rate %

Gourley 26 ASL* Elect Templates Perceptron Neural Network 95
Harlindl;’| 5 ASL"n" EIecg Templates Perceptron Neural Network 96
MurkamigjI 42 JSLF" Elecg Templates Perceptron Neural Network 98
Takahashl'g 46 JSLﬂ EIec# Joint and orientation coding Template Matching 65
Gaou 13 D.Set‘n" Camera Convex/Concave coding Backpropogation Network 80
UrasE 25 ISL; Camera First size functions family K-Nearest Neighbour 85
UrasE 25 ISLE Camera Second size functions family K-Nearest Neighbour 86
FreemanE 15 D.Set’n" Camera Orientation Histograms K-Nearest Neighbour 75
HandouyahiaE 25 ISLE Camera Moment Based Size Functions Perceptron Neural Network 90
Our Method 26 ASL“H'I Camera NL Point Distribution Model Fuzzy Nearest Neighbour 71(92)

Table 6.5-1 - Table Showing a Summary of Gesture Recognition Methods

The highest accuracy rates are achieved using an electrical sensor based data
glove as an input device. Those techniques that rely upon computer vision
perform less well. The higher accuracy's are also generated for systems which
use neural networks to provide the mapping between feature space and gesture
space. If the simplicity of the CSSPDM augmented with the conditional
probabilities which provide the gesture recognition is considered then the

attraction of this approach becomes apparent.

® Details of the authors work are contained in and Handouyahia 99 and Watson 93
* American Sign Language

® Electronic sensor based glove

® Japanese Sign Language

" The type of the vocabulary is pre-defined

® International Sign Language
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It is also important to note that the CSSPDM is assessing the model at every
frame and attempting to recognise the gesture contained there in. This assessment
of each frame is static. No temporal or contextual information is used. Further
constraints could be applied from the English Language to increase accuracy (see
Chapter 7). Since humans tend to pause slightly at each gesture, the accuracy
could be further increased by accumulating probabilities over time, i.e.
consecutive frames would ‘vote' towards the current gesture, further reducing the

effect of noise.

Feature/Criteria Invariant Invariant Invariant

Selected Scale Translation Rotation Lighting RobusttoN'  Computational

Invariant of Fingers Complexity

Basic Chain Code® No Yes No No No Low
Convex-Concave Yes Yes Yes No Yes Low
Codingp

Fourier Desc.E No No No No No Low
Hu Invariant MomentsE Yes Yes Yes No No High
Alt Invariant Moments*";l Yes Yes No No No High
Principal axeg Yes Yes No No No Low
Grey Level Histogranﬁ No Yes Yes No No Low
Hist. Of Local Yes Yes No No No Low
Orientatior,;I

Size Functiong Yes Yes No Yes Yes High
Moment Based Size Yes Yes No Yes Yes Low
FunclE

Authors Methodg Yes Yes Yes Yes Yes Low

Table 6.5-2 - Table Showing the Evaluation of Features used in Various

Gesture Recognition Methods

The CSSPDM naturaly lends itself to the probabilistic classification of pose,
however if the CSSPDM is compared to other features used in Gesture

Recognition, its benefits can clearly be seen. [Table 6.5-2| [Handouyahia 99]
summarises features used by other methods.

Unlike other approaches the CSSPDM is:

1. Scale Invariant: Gestures can be executed by different people with different
hand sizes.

2. Translation Invariant: The location of the hand in the image plane can

change.
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Rotation Invariant: The hand can rotate around the cameras z-axis, other
rotations of the hand can be incorporated into the deformation of the model.
Lighting Invariant: The illumination and background of the scene can
change.

Robustness to number of fingers: Additional training data can be
incorporated into the model to allow for individual changes in hand shape
and gesture.

Computation Complexity: The simplicity of the linear mathematics and
single layer of conditional probability means the method is fast to compute.

6.6 Conclusions

This chapter has demonstrated that by projecting the dataset through a linear

PDM and hence reducing the overall dimensionality of the problem before

further non-linear constraints are applied, several benefits are gained:

1.

The data is smoothed before constraints are applied, producing better results
in the final model.

The data reduction of the CSSPDM produces a significant computational
saving over the CBNLPDM at the cost of accuracy. However this accuracy
can easily be controlled to ensure model precision is maintained.
Construction is simplified as only one decision need be made as to the
information loss of the model. In CBNLPDMs each cluster requires a
different number of eigenvectors to achieve the required accuracy while
compressing the data. However, CSSPDMs need not be concern with the
local dimensionality of clusters as the initial projection allows each linear

patch to model 100% of the deformation of that cluster.

Furthermore, it has been shown that, although the nature of the space is complex,

simple classification techniques can be applied to perform static recognition of

object shape and pose. These models allow deformable models to be constructed

which, under the linear constraints of a simple PDM, would fail to be robust

enough for “Real World” applications.
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One important consideration is that as models become more complex, the simple
gradient descent approach used on linear models begins to fail. These issues will

be addressed in the next chapter.
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7 Adding Temporal Constraints

7.1 Introduction

The deformation that has been ‘'learnt’ thus far is time independent deformation.
Models have been constructed that know what is valid deformation but not when
deformation is valid. This important temporal constraint is beneficial in
disambiguating models. When such mathematical constraints have been placed
upon the deformation of an object in order to increase robustness, the important

consideration of how a model moves with time should also be considered.

The linear formulation of the PDM makes iterative movements within the image
frame based upon the assumption that the model will not alter considerably
between consecutive frames. Providing a simple model and a slow
moving/deforming object this assumption holds true. However, as has been
demonstrated with non-linear models, this smooth iterative movement through
shape space does not provide a sufficient mechanism to ‘jump' between
discontinuities in shape space. It is therefore apparent that if complex models are
to be successfully tracked within the image frame, additional constraints must be
applied to both increase robustness and to improve the transition through shape

space.
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The remainder of this chapter is concerned with the construction and use of
temporal dynamics, which can be learnt in addition to deformation. Section
takes a graphical simulation example to construct a 3D non-linear PDM from
which temporal dynamics are learnt. These dynamics can then be used to
reproduce the deformation and motion of the model. Section [7.3]will discuss the
issues of tracking complex non-linear models and how these temporal dynamics
can be used to increase robustness and support multiple hypotheses. Section
demonstrates how these temporal constraints can be used to enhance

classification. Lastly conclusions are drawn.

7.2 Learning Temporal Model Dynamics

7.2.1 Introduction

The work thus far has discussed the computer vision applications of non-linear
models of shape and deformation, where models have been used to locate and
track objects in the image frame. The models produce graphical representations
of objects, which can be mapped to the appearance of real world objects within
the image. In the field of computer graphics, similar representations are required
for animation. The main difference is that graphical models are required to be
'life-like' and three-dimensional for rendering. The models must therefore exist in
3D. The rendering procedure then projects these models into 2D for viewing. In
computer vision applications this projection is often incorporated into the
statistical model, representing how an object deforms on the image-plane rather
than within its own 3D co-ordinate system. However, this is not always the case
and deformable models have also been applied to 3D in computer vision in order
to reduce some of the non-linearity introduced during the projection process.
[Heap 96; Ferryman 95; Hogg 83] have tackled computer vision from this 3D
perspective, which is basically the reverse mapping of the rendering procedure.
In computer graphics, [Pentland 96; Parker 97] have used statistics and
interpolated models to produce 'life-like' renderings and animations of human

facial motion.
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The use of computer vision techniques in motion capture is common placein

acquiring trajectories for key points of objects that are used to produce life-like

3D animations. Figure 7.2.1]and Figure 7.2.2|show motion trajectory files for a

running and walking human femaIeE! These were captured using reflective IR
markers on a real world human subject. The trajectories of these markers in space
were recorded in multiple camera views and the trajectories of these points
calculated using standard stereo reconstruction techniques. The model consists of
32 3D-marker points and their trajectories through space. By connecting these
points with a simple stick model the human motion can be visualized. In
computer animation, these key points would be used to animate the articulated

sections of a 3D virtual character for computer games or virtual environments.
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Figure 7.2.1 - Examples from a Key-frame animation of a Running Woman
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Figure 7.2.2 - Examples from a Key-frame animation of a Walking Woman

It is this notion of key points in the motion capture process that provides the link
between statistical models and animation, where animation key points are akin to
the landmark points used in statistical models. If statistical models of shape and
deformation can be learnt from a training set, producing realistic constraints on
the shape (or motion of landmark points), then similar learnt models of

animation trajectories can also be achieved.

° The motion capture data for the female subject was provided by TeleVirtual Ltd.
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7.2.2 The Linear Motion Model

The human motion capture data for both the running and walking woman
consists of 32 key points for each frame of the animation; these points can be
concatenated into a single 96 dimensional vector V=(X1,Y1,21, ..., X32, Y32, Z32).
The running animation consists of 474 key frames recorded at 30Hz which
produces a training set of 474, 96 dimensional vectors. The walking animation
consists of 270 key frames, again captured at 30Hz using 32 key points
producing a training set of 270, 96 dimensional vectors. Now the training sets are
in a form that enables further statistical analysis: linear PCA can be performed

upon them to produce a linear 3D PDM.

2" Mode 3 Mode

47.2% 30.2% 13.4% 4.6% 1.3%
deformation deformation deformation deformation deformation

Figure 7.2.3- The Running Linear 3D PDM

4" Mode 5" Mode

Vi

#

S,
8.3% 4.6% 2.4%
deformation deformation deformation deformation deformation

Figure 7.2.4 - The walking Linear 3D PDM
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From the eigenvalue analysis, 98.8% of the deformation of the running model is
contained within the first 10 eigenvectors, with 99.4% of the walking model

being encompassed by the 10 eigenvectors.

It can be seen from Figure 7.2.3land Figure 7.2.4|that the linear 3D PDM does

not model the trajectories of key points (and associated body parts) well. The
motion files contain perfect landmark point identification between examples.
However, the data sets are still non-linear due to the circular motion of the body
parts. This non-linearity can be seen in and will be discussed
shortly. It should be noted that the 3" mode of variation of the walking model
encompasses mainly translation. This is due to the change in speed as the walker
establishes a consistent gait, and remains a part of the model due to the absence
of the alignment of the training examples. Had the normal alignment procedure
been followed, then this translational information would have been reduced. The
translation correlates to the shift in m; of the walking model seen in
F.2.6b. However, this information is important to the realism of the animation
and must therefore remain a component of the model. It will later be removed

through the use of temporal dynamics.

7.2.3 Adding Non-linear Constraints

Using the methods previously discussed, the data sets are first dimensionally
reduced by projecting each of the training examples down onto the eigenvectors
of the linear PDM. Using the 10 primary modes of the linear model as
determined in the previous section, both the running woman data and the walking
model are projected down from 96 to 10 dimensions. These lower dimensional
data sets are shown in Figure 7.2.6 hs points drawn in 3D from two 2D views.

Cluster analysis was then performed on the reduced data sets. The resulting cost
files are shown in The natural number of clusters for the run and
walk trajectory files can be estimated to be 25 and 30 respectively. The larger
number for the walking model is due to the model translation introduced as the

subject establishes a consistent gait, as mentioned earlier.
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Run trajectory file
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Walk trajectory file
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Numer of clusters

Figure 7.2.5 - Cost files for Trajectory Data

Using the natural number of clusters for each data set, the fuzzy k-means

algorithm was used to segregate each data set into its composite clusters. Each

cluster was then modelled by performing further PCA upon its members. The

final non-linear constraints can be seen in Figure 7.2.6 |with the bounds of each
cluster drawn as a rectangle over the reduced data set.

(a) The Running Woman Data Set, ™
v

Figure 7.2.6 - Dimensionally Reduced Data sets with the Cluster Based

Constraints
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From this diagram it can be seen that the clustering algorithm has smoothly
estimated the natural curvature of the data set through piecewise linear patches.
Each cluster better estimates the model locally as each linear patch must encode

less information.

The CSSPCA has learnt the Motion Capture Space and can be used to reproduce
viable shapes from the model. However, in computer animation this is
insufficient. For animation purposes, the ability to model the trajectory through

shape space is also required, allowing the motion to be reproduced.

7.2.4 Learning Temporal Constraints
Thus far the techniques have been used to learn the shape and size of the
trajectory space, temporal analysis must be performed to estimate how the model

moves through space with respect to time.

Figure 7.2.7 - Trajectory through Reduced Shape Space

Figure 7.2.7]shows the 3D trajectory of the reduced dimensional running data set
projected down into 3 dimensions. Using simple animation techniques it is
possible to watch the model move throughout the space as the animation
sequence iterates. It is apparent that the motion is cyclic and consistent in nature

and repeats in accordance with the period of the stride of the actor. Therefore,
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given any point within the space it is possible to predict where the model will

move to next, based upon this observed motion.

The model has been estimated in a lower dimensional space; if the trajectory can
also be modelled in this lower space then it is likely that paths of motion
throughout the space could be determined and reconstructed. The key again is in
this probabilistic analysis of the training set. The deformation constraints have
already broken the shape space down into linear patches with the centre of the
clusters being the mean shape of the transition at that point in time. It is also
known that, due to the cyclic nature of the data set, the pattern of movement
repeats at regular intervals for fixed speeds of motion. Although this is not a
necessary condition, it can effectively be modelled as a self-starting, finite state
machine. This lends itself naturally to a discrete, time dependent, probabilistic

analysis of the motion.

The reduced training set can therefore be used to analyse the model and
probabilistically learn the transition of the model between clusters. This can be
done with a state transition matrix of conditional probabilities, otherwise known

as a Markov chain.

7.2.5 Modelling Temporal Constraints as a Markov Chain

A Markovian assumption presumes that the present state of a system (S;) can
always be predicted given the previous n states (Sii1, St2, ..., Stn). A Markov
process is a process which moves from state to state dependent only on the
previous n states. The process is called an order n model where n is the number
of states affecting the choice of the next state. The simplest Markov process is a
first order process, where the choice of state is made purely upon the basis of the
previous state. This likelihood of one state following another can be expressed as

a conditional probability P(S¢St.1).
A Markov analysis looks at a sequence of events, and analyses the tendency of

one event to follow another. Using this analysis, a new sequence of random but

related events can be produced which have properties similar to the original.
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The probability mass function P(C}“) denotes the unconditional probability of

being in cluster j at time t,, or being in state j after n transitions (time steps). A

special situation exists for n=0 where P(Cj’) denotes the probability of starting

in state j. However, due to the assumption that the motion is cyclic and the
trajectory file starts and ends mid-cycle, no information is available for these

initial probabilities.

The conditional probability mass function is therefore defined as

P(C‘.n C;m) gives the probability of being in cluster j at time t, conditional on

J

being in cluster k at time t,. In the trajectory file example it is fair to make the
assumption that the next state of the model can be determined from the previous
state. This can be confirmed by observing the trajectory taken through shape
space by the training set (see Figure 7.2.7). Provided stationary elements of the

chain are ignored, i.e. where P(C} |C}‘1)2 m@x(P(CHCIﬁ‘l)) and therefore choosing

the 2nd highest probability move at each time step, the continuous transition
through shape space can be achieved. If this assumption is made, then the
process becomes a first order Markov process or Markov Chain and p;jx a one

step transition probability
Pix = P(C”Cli_l)

If there are n clusters in the model, then there are n states in the chain, hence a
state transition matrix is an nxn matrix of one step transition probabilities. This
Is constructed in a similar manner to the classification probability matrix

constructed in section 6.5.6, and is a discrete probability density function (PDF).
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where p;, =0forall j,k, and Z p;, =1 forallj.

After construction of the PDF its content can be visualised by converting the
matrix to a grey-scale image. shows the resulting images for both
the running and walking data sets. It can clearly be seen that high probabilities
exist along the diagonal of the image. This diagonal, when i=j or Si=S;,
demonstrates that the model always has a high probability that it will stay within
the same local patch. This can be attributed to the discrete nature of the model,
and the fact that each patch is constructed to model local deformation. The darker
diagonal in the walking model shows that this model has a higher probability of
remaining within a local patch and is a result of the speed of movement. As both
sequences were captured at the same rate, the slower movement of the walking
model generates more frames in each local patch and hence a lower probability
that the model will make a transition to another patch. However, as the numerical
identity of each local patch within the matrix is randomly generated by the k-
means algorithm, no further conclusions can be drawn from the patterns within

the image, hence the random distribution.

M= | -
| n .
- "

(@) The Running Woman Data Set (b) The Walking Woman Data Set

Figure 7.2.8 - Discrete Probability Density Functions
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The PDF's shown in|Figure 7.2.8 provide a conditional probability that, given a
cluster at time t, the system will move to another cluster at the next time step. By
taking the highest probability move at each time step the highest probability path

can be modelled throughout the space.

Using this information and the mean shape of each cluster as key frames, the
motion of the training set can be reconstructed. If any cluster of the model is
chosen at random and the next highest probabilistic transition made at each time

step argmaxi(piyj) where i # j, the model should settle within a natural path

through the space. This is similar to a finite state machine that has a circular path
and is self starting. If the natural number of clusters selected is correct then the
cyclic period of the model should be equal to that of the training set. If the cluster
number is too high then non-equidistant cluster centres result and the model
appears to ‘jerk'. If the cluster number is greater than twice the natural number

then the model risks having a cyclic period of multiples of that of the true

motion.
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Figure 7.2.9 - Extracted Trajectory for Running Model

shows the highest probability path for the running model that
consists of 15 clusters. Each pose of the model is the mean shape (exemplar) of a

cluster. This model is reconstructed from the information that has been learnt
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from the motion file and accurately reproduces the original motion. The
animation can be further refined by linearly interpolating between these key
frames (exemplars), as the linear interpolant along a line between exemplars is
equivalent to linearly interpolating all points on the model between key frames.
This does however introduce slight non-linear deformities. These deformities can
be reduced by projecting the interpolated model into the constrained space to

extract the closest allowable model for rendering.

Figure 7.2.10 - Extracted Trajectory for Walking Model

igure 7.2.10|shows the highest probability path through the walking model,
consisting of 19 key frames that produce a cyclic path of high probability

through the Markov chain. The original model contained 30 clusters and the

redundant 11 clusters partly model the introductory gait acceleration, which can
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be seen in [Figure 7.2.11{ The red line shows this high probability path extracted
from the Markov chain. Acting like a self-starting finite state machine, if the

model is initiated within the low probability startup area of the space, the chain
quickly moves the model to the circular region, where constant cyclic movement

occurs.

Walker establishes

/ !

Walker settles
into consistent
gait

Figure 7.2.11 - High Probability Path through Walking Model Shape Space

7.2.6 Conclusions

In this section it has been shown how the reduced dimensionality and discrete
representation of the Constrained Shape Space approach to modeling non-linear
data sets can be used to provide simple analysis and reconstruction of motion.
This is done by analysing the training set and constructing a Markov Chain,
which is a discrete, probabilistic representation of the movement of the model
through shape space. It has also been shown how, using this learnt temporal
information, animated models can be produced which encapsulate the temporal

information learnt from a training set.
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7.3 Tracking with Temporal Dynamics

7.3.1 Introduction

In the previous section, temporal information was learnt from a training set in
addition to deformation. It has been shown how this temporal deformation can be
used to represent and reproduce motion. However, for many computer vision
techniques this is not the ultimate goal. What is beneficial is using this learnt
temporal information to further constrain the model, or predict the movement and

deformation of an object, thus producing more robust tracking and classification.

A large body of work has been performed on the temporal mechanics of tracking.
Many researchers have attempted to use predictive methods such as those based
within a Kalman filter framework [Blake 98]. Hill et al proposed using genetic
algorithms to model the discontinuous changes in shape space/model parameters
[Hill 91][Hill 92].

Of particular interest to the work presented in this thesis is the
CONDENSATION algorithm [lsard 98] [Blake 98] which is a method for
stochastic tracking where a population of model hypotheses are generated at each
iteration. These populations are generated from pre-learnt PDFs generated over
the model parameter space to provide a hypothosis-and-test approach to model
prediction and tracking. A more comprehensive introduction to Condensation is

given in Section 2.5.

Condensation is a powerful tool in deformable model tracking for several

reasons:

1. It supports multiple hypotheses and therefore produces robust results for
tracking with occlusion and discontinuous movement.

2. Ituses a priori knowledge about the object to predict its movement.

3. It recovers well from failure, allowing the model to ‘jump' out of local

maxima/minima.
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It has been shown that, due to the discrete nature of the piecewise linear
approach to modeling non-linearity, the approach directly lends itself to a

discrete PDF with the addition of the Markovian assumption.

Figure 7.3.1 - Constrains on PCA space for the ASL Model

This temporal information can be used to augment the CSSPDM model with
conditional probabilities, which allow the support of multiple hypotheses similar
to that used in Condensation. This is important due to the discrete nature of the
piecewise linear model. If the discontinuous shape space constructed for the
American Sign Language (ASL) alphabet is considered from Section 6.5.6 (see
Figure 7.3.1), it can be seen that shape space is segregated into at least two
separate regions due to the movement of landmark points around the boundary
(see section 2.4 for a description of these types of non-linearity). Furthermore,
connected patches of the model may not represent consistent movement of the
model in the image frame. This leads to the model jumping between patches,

even when within region 2. Under these circumstances it is not possible for the
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iterative refinement algorithm used for the classic PDM/ASM (section 3.3) to

provide the ‘jump’ between regions.

An image sequence was recorded of a hand signing the word 'gesture’ which
consisted of 170 frames. shows the model attempting to track the
image sequence for the letters ‘e’ and 'u’. The model successfully tracks the letter
'e' but when the image sequence reaches the letter 'u’ and the fingers elongate, the
model is unable to make the jump to the new cluster responsible for modeling
this letter. This problem is fundamental to the operation of the least squares

iterative refinement algorithm and is due to two reasons:

1. Only a small section of the contour (marked in frame 'u’) is responsible for
‘pulling' the contour up to follow the elongated fingers. As this section is
relatively small, compared to the remainder of the contour, it has less

influence over the overall movement.

2. The maximum movement of the contour per iteration is governed by the
length of the normal used to search around the contour. Hence this factor

limits the distance the model can move through shape space at each iteration.

Figure 7.3.2 - ASL model Tracking an Image Sequence of the word ‘gesture’
An obvious solution to these problems is to increase the search length along

normals. Figure 7.3.3|shows the results of various parameters for the least

squares iterative refinement algorithm on the ASL model. The graph
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demonstrates the effect of varying the number of iterations per frame and the
length of the normal (in pixels) either side of the contour. The cost at each
iteration is the sum of the pixel difference between the desired movement of the
model (gained from the assessment of the normals) and the final shape (after the
constraints of the model have been applied). Where multiple iterations per frame
were performed, these are displayed as fractions of a frame to visualise the
resulting error cost of iteration. The corresponding letters of the sequence are
shown with the vertical lines denoting the approximate transition between letters.
At these transitional frames, the model error rises due to the increased speed of
movement of the hand. During these faster movements the iterative refinement
procedure must make larger movements through shape space to deform with the
image. This produces the increase in error due to the limiting factor of the

localised normal search.

Increasing the number of iterations produces a resulting reduction in cost up to a
certain threshold, at which point the cost begins to rise again. This can be
attributed to the finer iterations allowing the model to achieve poses from which
it can not easily extract itself and is a further drawback of using the least squares
iterative refinement approach to fitting a non-linear model. Although the
increased normal length allows the model to achieve the aforementioned
transition to the letter 'u’, the resulting cost demonstrates a reduction in the
overall performance of the model. The larger normal search allows the contour to
affix to incorrect features in the image and hence results in degradation. Where
image sequences with heavy background clutter are considered, this problem

becomes more acute.

Another drawback of large normal searches is the resulting computational cost in
assessing the additional pixel intensity gradients. It is therefore necessary to use a
tracking paradigm that allows these quantum leaps in shape space to be made

while retaining the localised searching and constraints of the model.
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7.3.2 Finding the Optimal Ground Truth for Tracking

To locate the optimum solution (i.e. the closest allowable shape from the
Constrained Shape Space PDM, CSSPDM) for each iteration of the model, the
space was exhaustively searched. If the assumption is made that any local patch
of the CSSPDM can indeed be treated as a linear model, then the iterative
refinement procedure can be used to move locally within that patch to the closest
possible shape. Therefore, if the best match within each patch (cluster) is located

for each frame, the resulting lowest cost solution must be the (near) optimum.

This exhaustive search was performed on the 'gesture’ image sequence. For every
frame, each of the 150 clusters were assessed in turn. The mean shape of the
cluster was used as a starting shape and the iterative refinement of the model,
within the cluster, performed until the model converged (typically 40 iterations).
The cluster that produced the lowest cost solution was deemed to be the optimum
and the resulting costs plotted in along with the lowest of the least

squares approaches from

The two smoothed plots are polynomial trendlines fitted to the data to help
visualise the overall efficiency of the approaches. The optimum solution
produces a lower error than that of iterative refinement, which would be
expected. However, both exhibit similar trends. From this it can be inferred that
some of the errors produced during tracking are not the result of the algorithm's
inability to track successfully but are due to the constraints of the model. The
higher error rates that result from letters such as 'g" and 'r' suggest that more
training examples for these letters are required so as to increase the ability to

model unseen shapes.
By analysing the optimum path through shape space and comparing this with the

path taken by the least squares approach, the notion of discontinuity within shape

shape can be confirmed.
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Graph showing the Distance Moved at each Iteration for the Least Squares and
Optimum Trajectory through ASL Shape Space
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Figure 7.3.5 - Graph of Distance Moved at each iteration for Least Squares
Solution and Optimum Solution

Graph showing the Distance from the Mean Shape at each Iteration for the Least
Squares and Optimum Trajectory through ASL Shape Space
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Figure 7.3.6 - Graph of Distance from Mean of Shape Space at each frame for
Least Squares Solution and Optimum Solution

Figure 7.3.5]|shows the distance moved through shape space at each iteration for
both the optimum trajectory and the iterative refinement algorithm. From this it
can clearly be seen that the least squares iterative refinement algorithm makes

small incremental movements at each iteration, whereas the optimum trajectory
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makes large 'jumps' at every frame. During the letters 'e' and 't' the least squares
approach almost stops moving, which demonstrates that the model has converged
upon a stable solution. However, the lack of such trends for other letters shows
that the model is constantly struggling to better refine itself. figure 7.3.6 khows
distance from the centre of shape space for the two trajectories at each iteration.
Again this demonstrates that the optimum path jumps violently within the space
whereas the least squares approach makes small movements. The high values
achieved by the least squares approach for the letters 'u’ to 'e' show that the model
is at the extremity of shape space making small movements. However, the
relative movement of the model in [Figure 7.3.5] for frames 100-150 show that it

is moving considerably at each iteration attempting to find a better solution.

The most interesting aspect of these figures is within The letter ‘e’
occurs twice during the sequence. However, during the first occurrence the least
squares approach is at a distance of around 200 units from the mean whereas

during the second occurrence it is at around 500. This demonstrates two facts:

1. That there are at least two areas of shape space responsible for modeling the
letter ‘e’ and these are distinctly separated in shape space.

2. The least squares approach can only use the local 'e' part of shape space and
Is incapable of jumping between them.

This confirms that not only is the non-linear shape space discontinuous but the
least squares iterative refinement approach is incapable of providing a robust
method for tracking. Instead a new method of applying CSSPDMs must be

devised.

7.3.3 Supporting Multiple Hypotheses
By taking advantage of the Markovian assumption, a similar model of temporal

dynamics can be generated for the ASL model as was constructed for the motion

capture data previously discussed, where the conditional probability P(Cit+1 Cj) IS

calculated. As has been discussed, the major discontinuities of the shape space

occur when landmark points jump around the boundary and hence result in a
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jump in shape space (Figure 7.3.5]and Figure 7.3.6). However, within each patch,

the model still makes small iterative movements. This can be confirmed by

visualising the resulting PDF as a grey scale image.

Figure 7.3.7 - Discrete Probability Density Function for ASL Model

Figure 7.3.7|shows the ASL PDF, which again has a heavy diagonal dominance.
“ict)) and i=j ie. the highest

This dominance is when argmaxi(P(C

probability is that the PDM will usually stay within the present cluster. The
assumption can therefore be made that within any local patch the model can
iterate to a local solution. This confirms the assumption used when calculating

the optimum model shape. This assumption also provides two benefits:
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1. The iteration to convergence of any global optimisation technique can be
enhanced by allowing each hypothesis to iterate to a better solution within the
present cluster.

2. A smaller population is required, as only global differences in hypotheses

need to be supported.

This is a common procedure in speeding up the convergence on solutions for
many optimisation techniques such as in neural networks or clustering [Boyle
95]. By combining a gradient descent method with a global optimisation
approach the speed to convergence is increased and the problem of oscillating

down narrow energy wells to local minima reduced.

From the 'learnt’ probability density function, a sample population can be

generated at each iteration of the model. Given a good initialisation of the model

(see section 3.3.2) and the associated cluster C'=°, which encompasses that

shape, the procedure is summarised thus:

Algorithm 7-1 - Simple CSSPDM Condensation

e From the PDF P(Cf|C}‘1), extract the probability vector P(Cfﬂ), which is the
probability distribution of the first iteration, given C|™ =C'™°.

» Generate a randomly sampled distribution of k hypothoses xp[p =1,...,k],

where X, is the mean shape of cluster C, and P(C,)= P(Citzl)

e While still tracking,
« Fit the k hypothoses to the image frame using the least squares gradient
descent algorithm (section 3.3) and iterate, applying CSSPDM constraints
and assess fitness using error metric (section 7.3.2)
» Sort hypothoses into descending order according to error

» Take lowest error solution and locate closest cluster ¢

e From the PDFP(C}|C}'1), extract the vectorP(Ci‘), which is the

probability distribution of the next iteration, where C}’l =c
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e Generate a new randomly sampled distribution of k hypothoses
xp[p=1,...,k] where X, is the mean shape of cluster C; and
P(Ci): P(Cit)

By repeating this procedure for each frame, iteration allows the model to
converge in the least square sense upon local solutions. However, due to the
generation of a new population of hypotheses gained from the a priori
information about movement contained within the PDF, the models are permitted
to 'Jump' within shape space at each new frame. This allows multiple hypotheses
to be supported simultaneously, where the current lowest cost hypothosis is

deemed to be the correct one. [Figure 7.3.8|demonstrates the error rates produced
by this simplified form of the condensation algorithm (Algorithm 7-1).

Experiments were performed to assess the result of various parameterizations of

the algorithm, where

n is the length of the normal search on either side of the contour
I is the number of least squares iterations used for each hypothosis
k is the size of the population size or the number of hypothosis used

Varying these parameters produces dramatic variations in the resulting error rates
produced and the overall performance of tracking. Many of the higher error
parameterizations fail to track the image sequence completely producing a zero
success rate and hence consistently high error rates. With n=40 (as with least
squares iterative refinement) high failure rates are produced, as do small
populations and low numbers of iterations. It is important to note that a
population size of one (k=1) is effectively least squares iterative refinement due

to the diagonal dominance of the PDF.

The best results were achieved using a normal length of 20 pixels, a population
size of 10 multiple hypotheses and between 5 and 10 iterations per hypothesis
(i.e. n=20, k=10, 1=5/10). These traces are shown in [Figure 7.3.9]along with the
results of both the optimum trajectory and the iterative refinement approach for
comparison. The trend lines give a good indication of the overall performance of

the various approaches.
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shows that both the simple condensation approaches produce
significantly better results than the iterative refinement least squares tracking, but
not as low as the optimum which would be expected. Increasing the number of
iterations performed on each frame from 5 to 10 provides a slight increase in
performance but not significant enough to warrant the additional computational

overhead.

However, with such a low population size (p=10) and only five iterations
required per frame (i=5) a total of (p*i), 50 models are fitted to the image at each
frame. This provides a significant computational saving upon standard
condensation where typically much larger populations (in the order of hundreds

are required) to accurately track objects.

However, this approach, unlike condensation, does not recover well from
failures. As the new population is solely based upon the current best-fit cluster
the approach is highly sensitive to both an accurate PDF representation of the
expected movement and the assumption that the best-fit cluster is actually affixed
upon the object. To help overcome this drawback two factors must be addressed.

1. Less emphasis must be placed upon the current best-fit hypothesis being
the optimum (and hence correct) solution, thus providing more robustness
to failure.

2. The PDF must be an accurate and thorough representation of the expected
object movement and hence the training set from which it is constructed
must be general in both shape and movement. This is more difficult and
will be addressed in the section

Point 1 can be addressed by creating a new population of hypotheses, not from
the current best fit model, but from the weighted sum of the best n hypotheses as
described thus:
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Algorithm 7-2 - Weighted Condensation
« From the PDF P(C}|C}‘1), extract the probability vector P(szl), which is the

probability distribution of the first iteration, given C|™ =C'™°.
» Generate a randomly sampled distribution of k hypothoses xp[p =1,...,k],

where X, is the mean shape of cluster C; and P(C;)= Plc)

e While still tracking,
» Fit k hypotheses, applying CSSPDM constraints and assess fitness using
error metric
« Sort hypotheses into descending order according to error
 lteratively refine first n hypotheses and resort

« Apply the CSSPDM constraints and determine the n clusters C'™, where
n =1,...,n which produce the lowest error
« From the PDF P(C§|C}’l), extract the vector P(Cit)n using the n extracted

clusters. Take the weighted sum using a Gaussian weighting distribution

to form a new distribution P’(Cit ) where

n O-91-n)y O
P'(C/) = ZoonP(Cit),7 and w, =exp[-,9(172n)g
= o 20 O
» Normalise probability distribution P’(Cit).
o Generate a new random population of k hypotheses from the distribution

P'(c).

The results of applying this weighted approach to condensation are shown in

igure 7.3.10] This graph shows that, by using the best 5 models to generate the
new population, lower error rates are achieved. Using the best 6 models produces

less clear benefits but does provide increased ability to recover from failure.
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7.3.4 Conclusion

This section has demonstrated that the nature of shape space need not be
continuous. Under these circumstances it has been shown that the least squares,
iterative refinement approach to PDM tracking fails. It has also been shown how
the Markovian assumption can be applied to the CCSPDM to provide a fast
tracking paradigm, which is less computationally expensive than standard
condensation, while allowing multiple hypotheses to be supported.

7.4 Extending Temporal Dynamics to Classification

7.4.1 Introduction

It has been shown how, with the addition of a first order Markov chain to the
CSSPDM, a hybrid approach to condensation can be used to provide robust

tracking where either:

e The non-linearity of the PDM along with the discrete representation of the
non-linear approximation leads to a discontinuous shape space.
« Rapid movement of the object produces large changes in the model

parameters.

This Markovian model of dynamics can be used to explicitly constrain the
movement of the model within shape space, or implicitly, using the hybrid
condensation approach. However, the use of temporal constraints relies upon one

major assumption, as mentioned earlier:

The training set from which the model is built contains a
thorough representation of all-possible deformation and

movement.
For simple models this is often true. However, for ASL it is not, and it is

important to ask the question,

'‘What exactly is the temporal model representing?'
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The ASL PDF represents two aspects of motion,

1. The non-linear representation of shape space, how the individual clusters
relate and how the model moves throughout the space to form letters.

2. It also contains information about the English language and how letters relate

to form words and sentences.

As the PDF encodes both of these attributes it must be constructed from a
training set which has a good representation of how the model deforms and be
representative of the English language. This is however infeasible.

If the ASL image sequence used previously is considered, it took 165 frames to
record the 7 letter word 'gesture’. Konheim reported a statistical study where the
1-state transition probabilities of the English Language were determined using
67,320 transitions between two successive letters [Konheim 82]. As the 165
frames previously used produced an average of 20 frames per letter, this would
constitute a training set in excess of 1.3 million frames not including transitional
shapes between letters. As each frame produces a training shape this results in a
training set which is of infeasible size. At 12.5 frames per second it would
require almost 30 hours of continuous video capture. Of course smaller numbers
of both transitions and frame sampling could be used but would result in a less
reliable PDF.

The current ASL PDF (see contains valuable information about
how the model moves within shape space, but due to the deficiency in training it
does not contain sufficient information to accurately model the transitions
between the letters of the English language. Fortunately, it is relatively simple to
gain a transition matrix for the English language as it can be constructed in a
similar manner to previously described PDF's by analyzing large samples of
electronic text and calculating the 1-state transitions. What is required is a
method of combining this knowledge of English into the ASL PDF, producing a

more generic and accurate model for tracking and classification.
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7.4.2 The Temporal Model
The ASL PDF P(C§|C}‘1), constructed from the training set, provides the

probability that the model will move to cluster C; given it was at cluster C; at

the last time step. This is illustrated by |[Figure 7.4.1} and provides the necessary
information of how the model moves within shape space. However, as discussed,

this information is incomplete and does not correctly contain the transitional

information about the letters and how they relate to form words.

Shape Space Shape Space

Gesture Space

Plfu)

Figure 7.4.2 - 1¥ Order Markov Chain in Gesture Space

Similarly a 1st order Markov Chain can be constructed for the English language
which provides a new PDF P(L§|Ltj'1) (see [Eigure 7.4 2). Eigure 7.4 3lshows the

PDF gained from this Markov Chain as taken from Konheim and shows the 1-
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state transitions calculated from a sample text of over 67 thousand letters

[Konheim 82].
Lt
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- ™
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Figure 7.4.3 - Discrete Probability Density Function for the English Language

Figure 7.4.3]does not demonstrate a diagonal dominance, unlike previous PDF's.
This is because the English language has few occurrences of repetitive letters in
words whereas previous PDFs resulted from operations involving a high degree
of repetition. The main trend that can be seen are the vertical stripes that occur
for many of the letters. This shows letters which have a high occurrence and are
proceeded by almost any other letter in the alphabet. The highest probabilities
occur for the letter e’ confirming that 'e' is the most commonly used letter in the
English language. Another observation is the single transition from the row 'q' to
the column 'u' as 'q' is always followed by a 'u’ in standard English.

In order to incorporate this additional information learnt from sample text, a new

ASL PDF must be constructed P'(Ci‘|C}‘1). To do this a mapping must be

achieved which allows shape space to relate to gesture space.
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7.4.3 Extending to a Hidden Markov Model

It has already been shown how a mapping can be achieved between the gesture
space and shape space for use in classification (see section 6.5). Here the

conditional probability P(L‘i |Cj) provides a probability of the occurrence of a

letter L given the model is in cluster C in shape space at any time.

Shape Space 7 a

= b

C Gesture Space

P(L[ct)

Figure 7.4.4 - Conditional Probabilities Connecting Cluster Exemplars in

Shape Space to Specific Letters in Gesture Space

This conditional probability provides a mechanism to relate the shape space to
the gesture space where the constraints of the English language (as learnt) can be
applied. However, for this to be of use, a method that allows this information to
be mapped back into the shape space must be provided. This can be done using

the common form of Bayes theorum,

(WPEn) PR
PB) S P(AP(BA)

Therefore, placing this in the context of the ASL CSSPDM

C! “IC!
)

P(AB)= il

However, where P(Cit|L‘j) and P(Ci‘) can both be gained from the training set,

P(Ltj) (the probability of the occurrence of a letter) can only be gained from

analyzing English text. As it is known that the training set does not fully

represent the English Language this equation would lead to biasing of the final
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conditional probabilities. Instead, a variation of Bayes Theorem can be used,

where

Lt

i

o) PEP)
> Plei i)
Using this form, Z P(CJ)P(L‘J. |C§)E P(Ltj) but all probabilities are gained from

the training set, and hence no bias occurs from mixing unrelated probabilities.
This is possible as, although the training set does not contain a thorough
representation of English, it does provide an accurate representation of the

mapping between the two spaces.

7.4.4 Augmenting the Hidden Markov Model to Increase Constraints

All the necessary tools are now available which allow a new ASL PDF to be

constructed which incorporates the 1-state transitions of the English Language.

. P(L‘i |Cj ) is the conditional probability that the model is representing a letter

L at time t, given the CSSPDM is in cluster C and time t.

. P(Cit), is the probability of the occurrence of cluster C.

. P(C}|L‘j)— P(C:)P(ij |Cit) v, is the conditional probability that the

PPl

CSSPDM is in cluster C at time t, given the current letter that is being

represented is L.

. P(L§|L‘j'1), is the 1-state transition that a letter L; will occur given the previous

letter was L;.

A new ASL PDF can therefore be constructed which incorporates the 1-State
transitions of English, by
1. Taking the current cluster of the model
2. Calculating the corresponding letter(s) associated with this cluster
3. Applying the 1-state transition matrix to extract the most likely next letter
4

. Then locating the cluster(s) associated with this transition.
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Where,
Plcieit)=rtlet Pl Pled)

This produces a new ASL PDF which is shown in

Figure 7.4.5 - Discrete Probability Density Function for derived ASL Model

demonstrates the same characteristic vertical strips seen from the
English Language PDF, which it has inherited, and as such differs from the
original ASL PDF in two ways.

1. Each cluster exhibits far more transition to other clusters.

2. The diagonal dominance, which is important to tracking, is missing.
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Diagonal dominance can be forced upon the PDF by imposing diagonal
dominance on either P(L§|Ltj‘1) or P’(Cf|C}‘1). However, this is haphazard and

risks over-biasing the hypothesis generated at each frame. An alternative is to
simply ensure that the population generated at each step always includes at least

one hypothesis from the current cluster.

In order to explore the validity of these assumptions and assess the success of the
derived PDF a new set of tests were performed upon the ‘'gesture’ image

sequence.

The PDF used for each test was the weighted sum of the original PDF gained

from the training set and the derived PDF from English, where

Original PDF Derived PDF
from from English
Training Set Language

v e

Prcilci?)=-a)rlcicit)+arilciici?) for 0<a <1
and hence

Prlcilct?)=-a)Plcilci)+ar(Lic: PlLLs pleil )

Using this method, the performance of both approaches can be assessed.
F.4.6]shows the results of varying a. When a =0 the PDF is that gained from
the training set; but as a increases, the resultant error rate decreases. When
a =0.6 the resulting error rate is only slightly higher than that produced by the
optimum path shown in However, as a approaches 1 an increase in
error rate results. This is attributable to the absence of diagonal dominance for
the derived PDF, and hence lack of support for hypotheses that remain static
within shape space. However, even in light of this fact, the overall error is still

lower than that gained form the original ASL PDF.
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7.5 Conclusions

This chapter has looked at augmenting statistical models with temporal dynamics
gained through the probabilistic analysis of the training set and how this relates
to movement within shape space. It has been shown how the discrete segregation
of shape space used in the CSSPDM directly lends itself to a Markov chain
approach to modeling temporal dynamics. This additional analysis has been used
to reproduce motion indicative of the training sets in the form of key frame
animations and how the motion of the CSSPDM can be further constrained
during tracking. It has been shown that the nature of shape space is often
complex and discontinuous and how, using these additional learnt temporal
constraints, tracking can be improved by supporting a population of multiple
hypotheses. Lastly a method of combining additional constraints into the model
was presented which provides more robust tracking and classification, while
reducing the necessity for large training sets.
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Chapter 3

8 3D Point Distribution Models

8.1 Introduction

It has thus far been demonstrated how a Point Distribution Model can be
constructed for a 2D contour or shape (Chapter 3) and grey scale images (Section
5.5.2). Chapter 7 introduced a simple 3D PDM in the form of a stick human
figure. This chapter will extend upon this to 3D eigensurface models which are
constructed from polygonal surface representations and are the analogous

extension into 3D of the 2D contour.

For a 2D contour, consisting of n points, a training example x is constructed by
concatenating the constituent points of the contour into a single 2n vector
xO0% . As was shown in section 7.2, for 3D the procedure follows a similar
procedure. Each point of the model differs only in its dimensionality. Therefore a
3D model consisting of m points (vertices) will form a vector xOJO. In
chapter 7, where the 32 points consisted of key-points of a simple human skeletal
model, this produced a 96 dimensional vector. However, more realistically the
target data represents a surface, where each vertex of the surface represents a key
point within the model. This results in extremely high dimensional spaces i.e. for

a 3D mesh of 100 x 100 points, x 0 0*°® . Under these conditions it is often the
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case that the number of training examples is less than the dimensionality of X,
and hence technique 2 for PCA (detailed in section 3.2.5) is invaluable in the
construction of 3D PDMs.

Although the construction of 3D PDMs is a simple extension to the 2D case, one
of the major problems associated with their construction is the acquisition of
training data and its alignment. Due to the complexity of constructing 3D
surfaces by hand, automated procedures are essential. As has been discussed in
chapter 8, many techniques such as isosurfacing produce complex discontinues
surfaces which are unsuitable for statistical analysis. These 3D surfaces must be
aligned and resampled in a similar manner to the 2D contour. However, the
problem is compounded by high dimensionality and the resulting computational
complexity of the procedure.

Section 8.2 demonstrates the construction of a 3D PDM using a synthetic
drinking glass example. Sections 8.3 will show how this can be extended to real
data and describe approaches to the resampling and alignment problem in 3D.
This will be demonstrated by a 3D PDM of a human head. Finally conclusions

will be drawn.

8.2 The Eigen Glass Model

8.2.1 Introduction

Point Distribution Models attempt to model the deformation of a class of objects
or shapes with simple statistical analysis. The example shown here is that of a
class of drinking vessels. This synthetic example data provides a data set with
which to explore the construction of 3D PDMs and will be used in chapter 10 as

an example for statistical inference.

8.2.2 Constructing the Training set

The eigen Glass training set consists of 7 types of glass shape (see Figure 8.2.1).
Each example was created by sweeping a 2D contour around a central y-axis.
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This forms a rotationally symmetric glass of varying shape and size. Since each
example was constructed in a similar manner, with the same number of rotational

steps and points along the contour, each example contains the same number of
vertices.
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Figure 8.2.1 - Eigen Glass Training Set

The acquisition of the training set provides examples that have a direct
correspondence of landmark points and therefore no further alignment or

resampling is necessary.

8.2.3 Building the Eigen Model

Each glass example consists of 440 vertices which, when converted to a vector,

produces a training example x 00°" O 0%, As there are only seven examples
in the training set, technique 2 (section 3.2.5) results in a large computation
saving during shape analysis. The use of this technique allows decomposition to
be performed upon a 7x7 matrix. This produces a significant computational

saving over performing a full decomposition upon the 1320 x 1320 covariance
matrix.

Figure 8.2.2|demonstrates the primary 3 modes of variation of the resulting 3D
PDM rendered in wire frame with hidden line removal. The primary mode is also
shown in Gouraud shaded form. The maximum number of modes of deformation

for the model is 6 (ie. 100% of the deformation present within the training set is
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contained within the first 6 eigenvectors). This is because the number of
eigenvectors can never exceed N-1, where N is the number of training examples.
In fact, 99% of the deformation is contained within the primary 4 modes of

variation.

This high reduction of the shape space is similar to that shown in earlier cases.
However, it is important to note that, due to the rotational symmetry of each of
the objects, the training examples contain no additional information after the
contours had been swept into a 3D surface. The model could equally have been
constructed by performing PCA upon the original contours and sweeping the
reconstructed contour, generated from the PDM, around the central axis. This is
demonstrated in where PCA has been performed upon the contours
and the resulting 2D PDM extracted.

If is compared to [Figure 8.2.2| it should be apparent that the

deformation contained in the modes of variation of the 2D PDM are exactly the
same as those of the 3D object. Since both models contain the same information
the resulting PDMs have the same characteristics with a total of 7 modes where
the first 4 encompass 99% of the deformation. The redundant dimensionality
introduced when the contour is swept into a 3D surface does not introduce any
additional information and this additional dimensionality is disregarded by PCA

demonstrating that both models lie upon the same dimensional sub space.
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Figure 8.2.3 - The Primary Modes of the 2D eigenGlass Model

8.3 Resampling Meshes

8.3.1 Mesh Alignment

In the previous synthetic eigenGlass demonstration, the simplicity of
construction was due to the direct correspondence of landmark points throughout
the training set and the artificial way in which it was created. However, this is
seldom the case and to ensure the construction of a PDM is successful, careful
alignment and resampling must be performed to provide a good correspondence

of landmark points between examples.

As with the 2D contour, to ensure a good correspondence between training
examples each must be aligned. Techniques like those presented by Cootes et al
[Cootes 95] for 2D alignment become infeasible due to the high dimensionality
of the models. A similar, but less time consuming, alignment process can be
performed by treating it as an optimisation problem, solved using an approach to
optimisation such as Simulated Annealing or Genetic Algorithms. Such
approaches rely upon a fitness function being formulated which assesses what is
a good (optimum) match.

For two meshes x and y, where
x:(vlfyz,vlgyz,...,vlﬁyz) : y:(vzfyz,vzﬁyz,...,v%ﬂ) and v 00%s the n"

vertex of the mesh, a suitable fitness function to be minimised would be the

mean distance between the vertices of each mesh,
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=23 i -(a,5.0.0, 0. h2 e, )

where s, is a scaling in x, 6, is a rotation around x, and t,,, O 0°is a translation

vector in Euclidean space.

However, this function must be assessed for each pose (s,,.0,,.t,,) of the

Xyz 1 xyz xyz
model in order to find the optimum mapping of one mesh to another and quickly
becomes an unfeasible solution as the size of the mesh increases. In addition to

this complexity, the procedure must be repeated for all meshes in the training set.

If known features exist upon the surface and the position of these features can be
accurately located (such as large planar segments or areas of high curvature),
these features can be used in the fitness function rather than every vertex of the

mesh.

The simplest method of alignment is similar to that suggested in Section 3.2.4
where the mesh is treated as a cloud of points in 0°. The centre of gravity of the
cloud, C¥, can then be calculated and subtracted from each vertex to translate

the mesh to the origin, where

Equation 8.3-1 CY = 1 Z v
né

To normalise the mesh, and hence avoid numerical instability during PCA, each
vertex is then scaled by the mean distance of all the vertices from the origin,

where

] vz — C Xyz n

Vv 1
BETORE ,and (v )_H.Z

By then performing PCA upon the cloud (as done in 3.2.4) principal moments of

Xyz
i

Equation 8.3-2

Xyz _ (Xyz
v -C

the shape and therefore the primary axes can be extracted. Once done, the shape

can be projected onto these axes to align the principal moments of the shape with
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the axes of Euclidean space. Providing the shape does not vary too extensively
this approach provides a fast and simple method for object alignment and

scaling.

8.3.2 Nearest Neighbour Resampling

Once all training examples have been aligned, they must be resampled to provide
a direct correspondence for each vertex, and the associated connectivity across
all training examples. It is also important that each example has the same number

of vertices so that all training examples have the same dimensionality.

. P2 u. P4
PL . P3

. P6 . . P8
P5 . P7 "

Figure 8.3.1 - Nearest Neighbour Resampling

This can be accomplished by taking a known mesh and deforming it to fit to each
example in turn. demonstrates this procedure using a nearest
neighbour approach, a regular mesh (blue) is constructed which has a known
number of vertices and connectivity. The regular mesh is then deformed by

moving each vertex to the closest vertex of a training example (red) in O°. The
resulting mesh has the same basic overall shape of the training example but has
the connectivity and number of vertices of the regular mesh. This procedure can
be repeated for each aligned training example to provide a consistent training set
on which statistical analysis can be performed. However, this procedure results
in the loss of information as the regular mesh may not contain the local density
of vertices required to successfully model high curvature. If the number of
polygons is increased further to accommodate this, then unnecessary
dimensionality is introduced for areas of low curvature. This approach also

introduces problems when mesh elements on the regular mesh are smaller than
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those on the training example mesh. Under these circumstances multiple vertices
of the resampled mesh may be attracted to a single vertex resulting in polygons

of zero area (this will be shown shortly).

Another major disadvantage is that the procedure relies upon the correct
alignment of the training examples. If sufficient difference is present between
examples then it is possible that vertices will be assigned to completely unrelated
features across the training set. This effect can be minimised by utilising the
assumption that training examples do not vary extensively between individual
examples, although the overall variation may be considerable. Using this
assumption a mesh can be deformed to fit a training example and the same mesh
applied to the next example until the whole training set has been processed.
However, this approach requires user intervention to ensure that an optimum

ordering is used for the resampling sequence.

8.3.3 K-nearest Neighbour Resampling

An alternative approach is to use a variation of a clustering algorithm. This
results in a consistent mesh with known connectivity, but provides the advantage
that vertices on the resampled mesh attempt to best mimic the local features of

the surface by averaging the position of the vertices locally.

Ameshy= (vllXyZ , v1;ﬂ,...,v1:ﬂ) of known connectivity and size k is to be fitted
to second mesh x = (v2fyz,v2§yz,...,v2;yz) of variable size m. The vertices of x

are treated as a cloud of points in 0° and the vertices of y as exemplars in a k-
means algorithm (see Appendix 1). Each vertex of x is assigned to an exemplar

of y in a nearest neighbour sense using the crisp membership function

O if v2 —v1p”
otherwise

Equation 8.3-3 u,(v22°)= = min|v2p" - V1"

Each vertex of y is then moved to minimise the distance from its assigned

members where
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m

S0, (2 hr

Equation 8.3-4 vyt = E and j=12,...,k

m

S )

This procedure is repeated until the total displacement of the vertices of x has

dropped below a threshold (i.e. equals zero); at this point the algorithm has

converged upon a solution.

8.3.4 K-cluster Elastic Mesh

Both nearest neighbour and k-nearest neighbour approaches are subject to the
same problem i.e. the incorrect convergence on local minima. This is largely a
problem of model initialisation. Features upon the meshes must be close if a
good correspondence is to be achieved as each vertex is only attracted to the
closest corresponding point in both techniques. Again, this approach places a

large emphasis on the accurate alignment of examples.

This can be overcome to an extent by extending the k-nearest neighbour
approach to an elasticised k-cluster approach, which provides the same
mechanism for local resampling, but allows global constraints to be placed upon

the shape of the mesh.

In addition to the local attraction of the regular mesh to vertices upon the training
mesh, elastic properties are added to the connectivity as described in Section 8.5.
As the mesh is deformed to fit the training data the elasticity of the mesh
attempts to retain as small and as planar a mesh as possible, thus smoothing the

mesh and ensuring that the connectivity is preserved.

If the elastic force from section 8.5.2 (equation 8.5-4) is taken and placed in the
context of the mesh y, the displacement of a node v1; from the elastic force is
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Equation 8.3-5 As; = F Z fj
J:

where a is the stiffness, r, =v2?

; Jt—v2" the vector separation of two

connecting nodes and p is the number of nodes connecting to node vi,.

Combining this force with that of the k-means displacement (Equation 8.3-4) the

total movement of a the node v1; at each iteration is

m

T

Equation 8.3-6 v =15 - s,

m 1

S )

In order to balance the attraction force and the surface tension of the mesh a
weighting parameter which balances the two influences is required. However, the
stiffness parameter a can be used for this purpose as it controls the strength of
surface tension. This weighting parameter determines the influence of the two
forces on the movement of the mesh. When a =0 the mesh operates as the k-
nearest neighbour resampling procedure described earlier. When a - o the
mesh will not converge on any solution, remaining rigid. Upon initialisation the
force is set to allow surface tension to dominate i.e a =2. This parameter and
hence the effect of surface tension is decreased at each iteration of the procedure
allowing the surface to deform to the data while retaining the constraints of

connectivity.

i=0 i=5 i=10 i=15 i=20 i=25

Figure 8.3.2 - Elastic k-cluster mesh
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Figure 8.3.2 demonstrates the use of the elastic k-cluster mesh technique to
resampling a surface of a human head. The shaded surface consists of an
irregular mesh consisting of 3896 vertices, which represent the shape of a face.
The wire frame mesh is a flat regular tri-mesh of known connectivity and 625
vertices. The flat wire frame mesh is located close to the face mesh and is
rendered slightly in front so the shape can be seen as the algorithm iterates. At
each iteration a is decreased by 10% and after 25 iterations (i=25) the wire
frame mesh has deformed to best fit the original face mesh while retaining its
connectivity and smoothness. Without this elastic surface tension which
smoothes the resulting surface, the mesh would instantly crease and deform as
the initial attraction of the k-means algorithm is initially very large. As k-means
will only find a local optimum, this initial creasing of the surface remains
throughout the fitting. The elasticity ensures that the mesh retains its original
shape and connectivity while trying to best deform to resample the mesh.

However, this approach has two major drawbacks

1. The speed of the algorithm is prohibitive, as the computation complexity at
each iteration is considerable for even the simplest of surfaces.

2. The rate at which the weighting parameter is decreased is an unknown. Since
the rate at which the parameter decreases is responsible for the number of
iterations required (and hence the overall speed), an optimum rate must be
determined which provides the best time to convergence while allowing the
correct convergence on the shape. This is similar to the annealing schedule

used in simulated annealing but is beyond the scope of this work.

8.4 3D Head PDM

8.4.1 Constructing the Training set

To illustrate the alignment and construction of a 3D PDM, a model of the human

head was built. The head data set consists of 25 surface meshes of varying size

bl

and structure acquired using a C3D™ scanning device. Each mesh has between

4000 and 5000 vertices and differing local mesh densities modelling local
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curvature. The examples were first aligned using the alignment procedure
outlined in section B.3]such that each lies within a left handed co-ordinate system
with the z-axis is aligned with the direction of the gaze of the face. Once done,
each mesh was translated to ensure that the apex of the nose was at the origin.
The nose can easily be estimated as the point on the mesh which has the greatest

z-value. Each mesh was then normalised to lie within a unit cube as shown in

igure 8.4.1,

(-0.5,0.5.0) (0.5,0.5,0)

(-0.5,-0.5,0) (;,-0.5,0)

Figure 8.4.1 - Aligning the Face Training Set

Once all the example meshes have been transformed in this way, the next step is
to resample each to a uniform mesh structure. A regular triangular faceted mesh
was generated as shown in [Figure 8.4.2 The regular mesh consists of 1849
vertices and is a unit square with its centre at the origin and aligned with the x

and y-axis.

Figure 8.4.2 - Regular tri-mesh

103D Scanner model courtesy of the Turing Institute, all head models are freely available via
the web at http://www.turing.gla.ac.uk
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a) Original

b) Aligned

c) Resampled

Figure 8.4.3 - Resampling a 3D Mesh
(@) The original mesh (b) The aligned mesh (c) The resampled mesh

For each mesh in turn, the regular mesh is deformed to fit using the nearest
neighbour approach described previously. Figure 8.4.2|shows the regular mesh,

Figure 8.4.3](a) the original training example, (b) shows the aligned mesh, and
(c) shows the resampled mesh after each vertex has been deformed to fit the

example. It should be noted that the final resampled wire frame mesh does not
look dissimilar to the original. However, the shaded version shows a step effect

to the mesh. This is due to two reasons
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1. The local surface density of patches is not optimum to model the curvature
hence areas of high curvature have less polygons and consequently a less
smooth appearance i.e. the number of vertices has been reduced from around
5000 to 1849.

2. Many polygons have zero area. Where this occurs normal calculations are ill-
defined and hence Gouraud shading fails and reverts to a flat shading

algorithm.

The problem of zero area polygons, where multiple vertices of the regular mesh
have been assigned to a single vertex on the example mesh, is one of the
disadvantages that were mentioned in section It is not possible to simply
remove these polygons as all training examples must have the same
dimensionality. A polygon could therefore only be removed if it had zero area in
all training examples. However, it will be shown later that the smoothing

properties of PCA will remove some of these inaccuracies (see section §.4.2).

8.4.2 The Face Eigen Model

Upon completion of the resampling procedure a training set is now available on
which statistical analysis can be performed. The results of which can be seen in
However, it is difficult to see the overall effect of these modes of
deformation except at the extremities of the eigenvectors where the greatest
deformation is apparent. shows the primary 21 eigenvectors
corresponding to the 21st largest eigenvalues which encompass 99.998% of the
deformation. Each mode is colour coded to represent the deformation. Red,
Green and Blue coloured areas represent deformation in X,y and z respectively.

The intensity of the image is proportional to the size of the local deformation.

1% mode MEAN

2" mode
Figure 8.4.4 - Primary two modes of the 3D eigenFace model
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10" Mode 11" Mode 12" Mode

13" Mode 14" Mode 15" Mode 16" Mode

17" Mode 18" Mode 19" Mode 20" Mode

21° Mode

Figure 8.4.5 - Colour map showing deformation of primary modes for eigenFace
model
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By examining these colour maps it is far easier to infer specific functions for
various modes. From the shading on the 6th mode it can be deduced that this
mode is responsible for the movement of the eyebrows and cheek areas. The 8th
mode however is clearly responsible for the movement of the eyes and mouth. It
can be seen that the primary mode contains mainly deformation in 'z' along the
top and bottom of the mesh surface. This is due to the large variation in
background depth, hair and neck between individual examples. Indeed, the
primary modes display large areas of blue showing that they mainly contribute to
the depth information of the mesh. As the number of the modes increases a more
speckled effect is observed. These effects are the high frequency oscillations,
which are typically picked-out by the lower modes of variation. However, much
of these high frequency oscillations are due to the nearest neighbour resampling

which resulted in zero area polygons.

The original training example mesh size were of the order of 5000 vertices. With
3 dimensions for each vertex this generates examples in a 15000 dimensional
space. Resampling each example to a mesh with 1849 vertices provides a
consistent dimensionality of 5547 throughout the entire training set. However
90% of the deformation is contained within the primary 10 modes of variation.
So, although the training set was originally in 15000 dimensional space, the data
actually lies upon a subspace of only 10 dimensions. The most important aspect
of the PDM s the predominant z-deformation (blue) in these primary 10 modes.
This demonstrates that the alignment and resampling procedure has been
successful. During resampling the simplicity of the resampling scheme lead to
zero area polygons. After PCA these do not occur as vertices are statistically
smoothed by the model. The perturbations of vertices in the x-y plane, which
were generated by zero area polygons, are expressed within the lower modes of
variation and effectively removed from the model.

8.5 Conclusions

This chapter has demonstrated how the techniques for the assembly of 2D PDMs

can easily be extended to 3D. Approaches to the alignment and resampling
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procedure have been proposed and a 3D PDM of a human face constructed. Due
to the high dimensionality and corresponding complexity of these techniques,
variations on the resampling method have been proposed which can be used
depending upon the extent and complexity of the training data. It has also been
demonstrated that errors introduced during resampling are statistically smoothed
and manifest themselves as high frequency oscillations of the model contained
within the lower modes of deformation. Since these lower modes are typically
discarded it can be deduced that the smoothing effect of the PDM can help
reduce errors introduced during assembly.

Future work is to apply these techniques to volumetric segmentation techniques

detailed in Appendix 2 to construct 3D PDMs from medical imaging data.
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Chapter 9

9 Extending the Point Distribution Model

9.1 Introduction

Thus far, statistical models of deformation have been considered where the
vector X consists of related features such as the co-ordinates of a connected
contour, the vertices of a surface or the grey level intensity of each pixel of an
image. The principle relies upon the variation of elements with regard to others
and attempts to generalise the relative movement of the constituent components.
It therefore holds that similar statistical linkage of features could be achieved
even if they lie within different co-ordinate frames and represent quite different
elements providing that there is still some linear relationship between the various
elements. This chapter will discuss the use of this technique to link together
related information from differing sources. Section 9.2]will discuss combining
shape information with abstract parameters and using this to infer unseen
information from examples of shape. Section P.3]will present the application of
this technique to inferring the shape and position of a human body from an image

sequence. Finally conclusions will be drawn.
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9.2 Combining Features Statistically

9.2.1 A Linear PDM with an Abstract Parameter

The linear 3D PDM of an eigenGlass, as constructed in chapter 9, provides an
ideal example to demonstrate the hypothosis that related information can be
combined into a PDM. It has already been shown that this PDM is essentially the
same as the 2D contour of the glass due to the rotational symmetry of the object.
Thus, the two dimensional vector that describes the glass profile can be used as a
training vector for PCA and the final reconstructed model swept around the
central axis to attain the full 3D model. This training vector x describes the shape
of the glass for each example in the training set. However, additional parameters
can be concatenated to the vector for each example in the hope that some
mapping which links the shape with other features can be achieved. For each
training example an abstract parameter MF was estimated. The parameter
corresponds to the masculinity or femininity of a specific training example. This
provides a rather subjective scale but provides an illustrative demonstration that a
link between shape and aesthetic appearance can be achieved. Figure 9.2.1fhows
each training example with the corresponding MF parameter estimated, 0 < MF

< 1, where 0 corresponds to feminine and 1 to masculine.

SRR ju\W\\N\N\N

SRRRARRRRR
TR

MF=0.6

NANEN| SN
RSN

Figure 9.2.1 - MF Parameter for eigenGlass Training Set
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For each n-dimensional training vector x a new training vector is constructed by
concatenating the MF parameter to the existing vector producing and n+1

dimensional vector x' = (X, MF) = (x1,y1, X2, y2, ..., MF).

After PCA has been performed on the training set the resulting PDM can be used

to reconstruct new drinking vessels of various shapes along with a corresponding

MF value. Figure 9.2.2|shows the primary mode of variation of the eigenGlass
model from the mean shape along with the corresponding MF value.

0.29

041 /

Figure 9.2.2 - Primary mode of variation of Augmented eigenGlass PDM

174



MF=0.43

example (c)

Figure 9.2.3 - Reconstructed glasses and MF value from Augmented
eigenGlass PDM

shows the results of reconstructing various glass types from the
eigenGlass model along with the corresponding MF value. This is achieved by

manipulating the weighting parameters of the model. As the overall shape
changes, so the additional MF parameter changes accordingly. It can be seen that
the pint glass produces a high MF value which corresponds to the training set.
Similarly the wine glass example ¢) produces a low MF value, demonstrating

that the PDM has successful achieved some mapping between the elements. As
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with all PDMs, the ability of the final model to reproduce examples from the
training set is augmented by the ability to generalise the shape information and
produce unseen shapes, not present within the training set. When this is done an
MF value is also produced and by observing this parameter it is possible to draw
some conclusion about what the PDM has encoded.

The model demonstrates a high correlation between the size (volume) of the
glass and the MF value. This is to be expected, as the high MF examples were
the larger types of glass. However, example (b) shows the results of attempting
to make a 'more’ masculine wine glass and results in a thicker stem. So it could
also be concluded that the more delicate the stem of a glass the more feminine its
appearance. This would seem a fair assumption given that in the training
examples the two extremities of MF were a pint Beer glass and a Champagne

glass where the major difference between the examples was the stem thickness

(see Figure 9.2.1).

This is an extremely subjective example but demonstrates how additional

information can be incorporated into a PDM.

9.2.2 Scaling Issues and Eigen Entrophy

One of the important issues when elements are to be combined for statistical
analysis is that of scaling. If an element contains too much variation across the
training set (due to the incorrect scaling of that component) then that element
will bias the PCA and dominate the principal modes of variation. In some cases
this may be desirable, e.g. when it is intended that the primary mode correlates
directly to the variation of a specific feature. However, more often, this is an
undesirable effect.

The premise of the PDM is that the largest variation of the training set should be
represented within the eigenvector corresponding to the largest eigenvalue. By
artificially biasing the PCA with an incorrect scaling the information content of
the PDM is destroyed.
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If the eigenGlass model is considered, the construction of the training vector

should contain a scaling parameter a where
Equation 9.2-1 X' = (X,aMF) = (X, ¥;,%,, Y,,...aMF).

When the training set is assembled this additional parameter can be scaled
appropriately to ensure incorrect dominance does not occur. However, it is
generally not apparent what this scaling value a should be for any particular

example.

Sumpter, Boyle and Tillett [Sumpter 97] proposed a method for estimating the
scaling of parameters by calculating the eigen entropy (E) of the normalised

eigen vectors (p), and estimating the value a which maximises this entropy
E(a),

n+l

Equation 9.2-2 E=E(@a)= —Z p; log, (p, ), where

Equation 9.2-3 p; = A E(a)<log,(n+1),

n+l

2.

andE(a) - 0as a — o

Figure 9.2.4|shows the results of performing this procedure upon the eigen glass
example. From this graph it can be seen that the optimum eigen entropy is

achieved with a scaling of around a =137.
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Eigen Entrophy of eigenGlass with MF Parameter

Figure 9.2.4 - Graph of eigen entropy for varying parameter scaling

If PCA is now repeated upon the eigenGlass example with a =137, a new PDM
Is constructed. It is hoped that the MF parameter presents increased significance
within the primary modes of variation. This hypothesis can be confirmed by
examining the eigenvalues and the variance of MF for models constructed with
a=1and 137.

Figure 9.2.5]shows the histogram of normalised eigenvalues in percentile form
(see chapter 3.2) for the eigenGlass example with the two aforementioned MF
scalings. As would be expected the addition of this parameter and its increased
significance within the primary modes (for a =137) has removed some of the
information content from the primary modes of variation, with a small increase
in the significance of the latter modes. However, the resulting model still retains
99% of the variance within the first four modes so the information content is
preserved, unlike a — o which results in only a single mode of variation (due
to the dominance of MF over the PCA), destroying the information content of the

model.
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Graph Showing the Contribution of eigen Vectors to the
Total Deformation
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Figure 9.2.5 - Graph demonstrating the normalised eigen values for the

eigenGlass example with different parameter scaling

Graph Showing the Variance of the MF Parameter
for PDMs with Different Alpha Scalings
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Figure 9.2.6 - Graph demonstrating the increased variance in eigenGlass

example for correct parameter scaling

Figure 9.2.6]demonstrates this increase in the variance of the MF parameter by
plotting the bounds of the variance for each of the primary modes of the two
PDMs. Both variances are based around the mean MF and regress to this mean as
the contribution of a mode diminishes. It can be seen for a =137 that the
variance of MF is increased within the first two modes, with a significant

reduction of this variance in the latter modes. This demonstrates that the
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increased scaling has forced the statistical correlation into the primary three

modes while more evenly distributing the overall variance of the model.

From Figure 9.2.5]and Figure 9.2.6 fit can be concluded that the parameter scaling

increases the correlation between shape and parameter without destroying the
information content of the resulting PDM. However, another important
consideration is 'how has this affected the primary modes of shape deformation?'.
This can be answered by comparing the deformation of the original eigenGlass

PDM to this new weighted model.

Figure 9.2.7 - Primary modes of eigenGlass PDM with different alpha scalings

It can be seen from that the increased significance of the MF
parameter has done little to effect the overall deformation of the eigenGlass

shape. It has increased the shape deformation to accommodate the MF parameter
which shows that, although a correlation is being achieved, it is not a simple
linear correlation. This could be addressed by using a non-linear model as

previously developed, this will be discussed in more detail in Section

9.2.3 Statistical Inference

It has been shown how additional information can be incorporated into a PDM
which does not necessarily have to lie within the same co-ordinate frame as the
shape deformation. It has also been shown how this information can be
statistically linked to the other features of the model. When a shape is
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reconstructed, so the additional parameters of the model are estimated due to the
statistical linkage that occurs between the elements during PCA. However, what
is desirable is to be able to use this model to estimate the parameters for unseen

objects or even predict shapes that correspond to specific parameter values.

Using the matrix form of a linear PDM the shape x of a model is equal to the

mean shape plus the weighted sum of the eigenvectors

Equation 9.2-4 X =X+Pb

where X is the shape vector, X is the mean shape, P = (v,,V,,...,V,) is a matrix

of the first t eigenvectors and b = (b,,b,,...,b,)" is a vector of weights.

Given a new shape x', the closest allowable shape from the model is constructed
by finding b such that

Equation 9.2-5 b=P™ (X' - 7) and -3/, <b <3/A

The closest allowable shape can then be reconstructed as

Equation 9.2-6 X=X+Pb

If the eigenGlass example is now considered, it is feasible that given a new
‘unseen’ glass example (x') the PDM could be used to estimate a value for MF.
As the PDM has encoded a statistical link between the shape and parameter this
model can be used to predict this estimate. However, the two elements have
different dimensionality. The unseen example has dimensionality of 2n, where
the PDM has a dimensionality of 2n+1. The new example X' could be converted
to a 2n+1 vector by the addition of a zero, and the vector then reconstrcuted
using the procedure above. However, in finding the closest allowable shape from
the PDM, weighting parameters would be extracted that best fit the shape and
provide an MF of zero. For non-linear mappings where the correlation between

these elements is complex and the linear formulation of the PDM is over
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generalising, this mapping will lead to unreliable results, i.e. the zero parameter
will bias the reconstruction. As the number of unknown parameters increases
this zero bias will begin to dominate the reconstruction and the resulting
reconstructed vector will begin to degrade. Instead the model must be reduced to
the dimensionality of the vector.

This is achieved by taking the matrix P which is a 2n+1x j matrix of eigen

vectors and extracting a smaller matrix P* which isa 2nx j matrix.

E| VO,O VO,l V0,2 cos VO,j H

] Vlyo Vl,l V1,2 e Vl,j ] P’
P = [] - . . . . ﬁ/

HE 0

EVZn,o N E

[j/2n+1,0 V2n+1,1 V2n+1'2 e V2n+1,j B

MF element of each eigen vector
is discarded to construct P’

This is done by discarding the elements of each eigen vector which correspond to

the unknown elements of the model (in this case the MF parameter). A similar
procedure must be performed on the mean shape X0 O™ by discarding the

unknown parameter to obtain X' 0O *". The weightings which produce the shape
can then be calculated in a similar manner with the reduced dimensional model,

where

Equation 9.2-7 b' =P (X' _7) and -3,/A, <b, <3,/A

However, as only the dimensionality of the eigen vectors was changed and not

the number of eigen vectors, b' has the same dimensionality as b00'. The

weighting vector b* can therefore be placed directly into Equation 9.2-4| to

reproduce the shape X, by

Equation 9.2-8 X =X+PDb’
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The closest allowable shape vector xOO° to x'00%"has now been
reconstructed. However, the additional information in X', contains the missing
MF information which has been estimated from the available shape information
and the a priori information contained within the model of about shape and how

this relates to the MF parameter.

9.3 Extending the Model to Inferring Human Motion

9.3.1 Introduction

The human vision system is adept at recognising the position and pose of an
object, even when presented with a monoscopic view. In situations with low
lighting conditions in which only a silhouette is visible, it is still possible for a
human to deduce the pose of an object. This is through structural knowledge of

the human body and its articulation.

A similar internal model can be constructed mathematically which represents a
human body and the possible ways in which it can deform. This is the premise of
model based vision, and as has been previously shown, this deformation can be
learnt using a Point Distribution Model. By introducing additional information to
the PDM that relates to the anatomical structure of the body, a direct mapping

between skeletal structure and projected shape can be achieved.

This section uses the previously presented techniques to statistically combine the
2D silhouette of a human body projected onto the image frame with the 3D pose
of the body. To further aid the tracking and reconstruction process, additional
information about the location of both the head and hands is combined into the
model. This helps disambiguate the model and provides useful information for

both its initialisation and tracking.
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9.3.2 Constructing a Combined Non-linear Point Distribution Model for a

Human

The point distribution model is constructed from three components: the position
of the head and hands within the image frame; the 2D contour which represents
the shape of the body silhouette; and the 3D structure of the body (see
. Each of these components are generated separately from the training
image sequence and then concatenated to provide a training vector representing

all these attributes.

The relative position of the head and hands is represented as the location of these
features in the image frame. When concatenated, this generates a six dimensional
feature vector Vy=(X1,y1,...X3,y3). The body contour, once extracted from the
image, is resampled to a list of 400 connected points. These are concatenated into
an 800 dimensional feature vector Vc=(X1,Y1,...-Xa00,Ya00)- Lastly the skeletal
structure of the 3D model is represented by 10 3D points which produce a 30
dimensional feature vector Vs. The relative location of the hands and head helps
to disambiguate the contour during tracking. It can also be used to estimate an

initial location and shape for the body contour.

)

Figure 9.3.1 Composite elements of human body PDM

(a) Position of head and hands Vy (b) Body Contour V¢
(c) Corresponding 3D model Vs

The position of the head and hands is extracted from the training image
sequences using the Hue-Saturation colour thresholding technique described in
Chapter 4.
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For the purpose of simple contour extraction from the training set, shape
extraction is facilitated through the use of a blue screen and chroma keying. This
allows the background to be simply keyed out to produce a binary image of the
body silhouette. As the figure always intersects the base of the image at the
torso, an initial contour point is easily located. Once found, this is used as the
starting point for a contour tracing algorithm which follows the external
boundary of the silhouette and stores this contour as a list of connected points. In
order to perform any statistical analysis on the contour, it must first be resampled
to a fixed length. To ensure some consistency throughout the training set,
landmark points are set at the beginning and end of the contour. A further
landmark point is allocated at the highest point along the contour within 10
degrees of a vertical line drawn from the centroid of the shape. Two further
points are positioned at the leftmost and rightmost points of the contour. This
simple landmark point identification results in non-linearity within the model.
The problems associated with this are discussed in Section

The 3D skeletal structure of the human is generated manually. Co-ordinates in
the xy (image) plane are derived directly from the image sequence by hand
labelling. The position in the third dimension is then estimated for each key

frame.

9.3.3 Scaling the Model

When combining information for statistical analysis via PCA it is important that
constituent features (Vi Ve Vs) are scaled to ensure that any particular feature
does not dominate the principal axes. This can be done by calculating the eigen
entropy as discussed earlier (section . However, as all three components
exist within the same co-ordinate frame and are directly linked, such a scaling

should be unnecessary.

This assumption can easily be tested by formulating the vector x as the weighted

combination of the components where x=(\/c,aVH,,B’VS). Using the same

procedure as described earlier, the eigen entropy is calculated for
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0<a, B <wand suitable scaling values determined by maximising the entropy

of the resulting PDM.

Eigen Entrophy of Hand Element Scaling
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Figure 9.3.2 - Graph showing eigen entropy of hand element in composite
body PDM
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Figure 9.3.3 - Graph showing eigen entropy of skeletal element in composite
body PDM

From it can be seen that the optimum scaling for Vy is around 4.
igure 9.3.3[shows that the skeletal element does not need scaling as the greatest
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entropy is achieved when B =1. This confirms the assumption that scaling is

unnecessary as all the elements lie within the same (image) co-ordinate frame.

9.3.4 The Linear PDM

Once these separate feature vectors are assembled, they are concatenated to form
an 836 dimensional vector which represents the total pose of the model. A
training set of these vectors is assembled which represents the likely movement

of the model. shows a sample of training images along with the
corresponding contour and skeletal models in 2D.

Figure 9.3.4 - Sample training images and corresponding contour and skeletal
models

A linear PDM is now constructed from the training set and its primary modes of

variation are shown in Figure 9.3.5.

After PCA is performed, it is calculated that the first 84 eigenvectors, which
correspond to the 84 largest eigenvalues, encompass 99.99% of the deformation
contained in the training set.

Figure 9.3.5|demonstrates the deformation of the composite PDM. The crosses
are the locations of the hands and head. It can be seen that although the

movement of the three elements are closely related, the model does not
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accurately represent the natural deformation of the body. The shapes generated
by the primary modes of variation are not indicative of the training set due to its
inherent non-linearity. In order to produce a model that is accurate/robust enough

for practical applications, a more constrained representation is required.

Figure 9.3.5 - Primary modes of variation on the linear PDM

9.3.5 Non-Linear Estimation

As described in chapter 6, to perform non-linear estimation upon the dataset the
linear model is first used to reduce the dimensionality. 99.99% of the
deformation is contained within the first 84 eigenvectors. However, the primary
40 modes of deformation encompass 99.8% of the deformation. Projecting the
entire training set down into this lower dimensional space achieves a dimensional
reduction of 836 to 40, which significantly reduces the computation time

required for further analysis.

Performing cluster analysis upon the dimensionally-reduced dataset, the natural
number of clusters is estimated to be 25. By performing further PCA on each of
the 25 clusters, the shape of the model can be constrained by restricting the shape
vector to remain within this volume. These constraints upon shape space are

applied in the same manner as described in earlier chapters.
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Figure 9.3.6|shows the training set after dimensional reduction gained from the
initial linear PDM, projected into 2 dimensions. The bounding boxes represent
the 25 clusters that best estimate the curvature. These bounding boxes are the
bounds of the first and second modes of deformation for each linear patch
(cluster). The number of modes for each cluster varies according to the
complexity of the training set at that point within the space. All clusters are

constructed to encompass 99.9% of the deformation within that cluster.

Figure 9.3.6 - Clusters in reduced shape space

9.3.6 Initialising the PDM

Upon initialisation the first step is to locate the position of the head and hands.
This can be done by colour thresholding the entire image which, although
computationally expensive, does not need to be repeated on every iteration. Once
done these positions can be used to initialise the PDM and give an initial guess as
to the shape of the contour to be found. As is it not clear which blobs correspond
to which features, three possible contours are produced. The contour that iterates

to the best solution provides the final state from which tracking proceeds.
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9.3.7 Tracking with the PDM

Once initialised the two components must be fitted to the image separately. The
contour is attracted to high intensity gradients within the image using local edge
detection (chapter 3). The hand and head positions are used as centres in a single
iteration of a kmeans-clustering algorithm on the segmented binary skin image.
This is possible due to the assumption that the model will not change

significantly from the last image frame.

9.3.8 Reconstruction of 3D Shape and Pose

As the shape deforms to fit with the image so the third element of the model, the
skeleton, also deforms. By plotting this 3D skeleton, its movements mimic the

motion of the human in the image frame.
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Figure 10.3.7 demonstrates the correspondence between the body contour and
skeletal structure. Each contour image (a) is generated from a different sub
cluster of shape space. The deformation corresponds to the largest mode of
deformation for that cluster. The 3D skeletal diagrams (b) correspond to the
relevant contour (a), and demonstrate the movement of the skeleton. The
orientation of these skeletal models has been changed in order to better visualise
the movement in 3D. Skeleton (1b) demonstrates the arms moving in the z
direction corresponding to the change in contour (1a) around the elbow region.
Contour (4a) represents a body leant toward the camera with moving arms.
Skeleton 4b shows the corresponding change in the skeleton with the shoulders
twisting as the arms move. The Skeleton 5b is a plan view showing the

movement of the hands.

All model points move along straight lines due to the linear clusters used to
approximate the non-linear shape space. However, all poses of the models are
lifelike human silhouettes, demonstrating the CSSPDM’s ability at modelling the

non-linearity.

Figure 9.3.8— Reconstructed poses from the model

Figure 9.3.8]shows the original model pose from the training set in red with the
reconstructed skeletal model in black. It can be seen that the original and
reconstructed models are similar in pose and position with the length of limbs
preserved, further demonstrating the absence of non-linear effects. However, as
the constraints on shape space are increased, so the performance degrades.

Inconsistencies in the original and reconstructed models and the deterioration
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under heavy constraints can be attributed to the hand labelling of the training set.
During hand labelling it is impossible to provide consistent models of the
skeletal structure throughout the training set. This factor leads to the final model
producing mean skeletal ‘smoothed’ shapes which have been ‘learnt’ from the
original training set and hence produces the inconsistencies observed in figure
1.3.8.

9.4 Conclusion

This section has shown how information can be statistically linked through PCA
to produce point distribution models which contain multiple perspectives of data.
These perspectives do not have to lie in the same co-ordinate frame and may be
related but abstract in nature. By concatenating features, ensuring that incorrect
biases do not occur, models can be constructed which not only learn about shape
and deformation and how this relates to other aspects of an object, but also to
predict these aspects or other missing information from that which is available.

It has been shown how these techniques for statistical inference can be applied to
the extraction of 3D structure of an object, given only a monoscopic view of its
outline. The technique uses computationally inexpensive techniques for real time
tracking and reconstruction of objects. It has also been shown how two sources
of information can be combined to provide a direct mapping between them.
Being able to reconstruct 3D pose of a human from a simple contour has
applications in surveillance, virtual reality and smart room technology and could
possibly provide an inexpensive solution to more complex motion capture

modalities such as electromagnetic sensors and marker based vision systems.
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Chapter 10

10 Closing Discussion

10.1 Summary
This thesis has attempted to address the problems associated with the

construction and application of deformable contour models for real-time tracking
and interpretation of scenes. Deformable models were chosen as a research
subject due to their power and speed at segmenting objects under normal
environmental conditions where few constraints can be placed upon applications
to simplify segmentation. By taking deformable models as a starting point, the
work has attempted to push current approaches into new domains where existing
techniques would fail. In doing so, a fundamental understanding of the associated

problems has been gained and these problems addressed.

After reviewing related literature in Chapter 2, Chapter 3 introduced linear Point
Distribution Models and discussed their construction and use in object tracking.
It was shown that one of the most important aspects of the PDM is the inherent

dimensional reduction of the model.

Chapter 4 discussed the use of colour in object tracking and demonstrated how

simple colour techniques could be used to enhance object segmentation. This
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chapter also demonstrated how object colour could be used in its own right as a

powerful feature for tracking.

In Chapter 5 non-linear datasets were introduced and their effects upon linear
PDMs discussed. The Cluster Based non-linear PDM (CBNLPDM) was
introduced which modelled non-linearity by breaking a dataset down into a
piecewise linear approximation to the non-linear data set. It was shown how
models could be constructed which better represented non-linearity while
retaining the simplicity and speed of the linear PDM. It was also shown that the
technique produced superior performance for model representation than other

related approaches.

Chapter 6 extended this work and introduced a vital adaptation to the
CBNLPDM. By projecting the training set down into a lower dimensional space
before non-linear analysis, large computational savings could be made. This
approach called Constrained Shape Space PDMs (CSSPDM) allows non-linear
analysis to be performed on high dimensional data such as images or 3D
structures. It was also shown that the data smoothing effect of this dimensional
reduction produces advantages for both model building and reconstructive
accuracy. Furthermore the natural segregation of the CSSPDM combined with
the low dimensionality provides a mechanism for the static pose recognition of
objects. This was demonstrated by using a CSSPDM of the hand to classify

letters from the American Sign Language finger spelt alphabet.

In Chapter 7 the important consideration of how objects move with time was
introduced. It was shown that this natural segmentation of shape space could be
used for discrete time dependent analysis by augmenting the CSSPDM with a
markov chain. This was illustrated with 3D motion capture data, where not only
the deformation of the model was learnt, but also the motion contained within the
training set. Using this motion model plausible mean trajectories of human
motion were reproduced which were learnt from recorded motion data and
visualised graphically. The temporal CSSPDM was then applied to object
tracking and it was demonstrated how it could be used in a simplified
CONDENSATION algorithm, which outperformed standard ASM tracking. It
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was also shown how the PDF used in the Markov chain could be constructed
from sources other than the training data, providing superior results. This is
especially important in applications such as gesture recognition where it is not

feasible to learn this information by example.

In Chapter 8 the extension of Point Distribution Models to the 3D domain was
discussed. Techniques for the construction and alignment of such models were
presented and results shown for the automatic construction of large 3D eigen
models of the human head.

Finally Chapter 9 took many of the techniques and approaches discussed in this
work and applied them to the subject of markerless human motion capture. By
linking elements together before PCA is performed, a statistical linkage is
achieved which allows unseen information to be inferred from available visual
queues. This was demonstrated by tracking a human body in a monoscopic
image sequence and extracting a corresponding 3D skeletal model which

mimicked the motion of the human.

In order to extend the Point Distribution Models to more complex applications it
was necessary to address the problems associated with automated model
construction. Namely, the complexities that automated procedures introduce to
training sets. Unlike many earlier authors who tackled this problem by trying to
attempt to devise complex techniques which would minimise these non-linear
effects. This work has tackled the problem by attempting to produce models
which can cope with these complexities. In doing so, the resulting developed
models have become more reliable and accurate while retaining the simplicity
and speed of the original formulation. These accurate, fast non-linear models not
only produce superior results, but also allow automated models to be constructed
which can have any dimensionality or complexity with almost no user

intervention.
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10.2 Future Work
This thesis has attempted to address the problems associated with the

construction of deformable models. In doing so, it has established a set of generic
tools and techniques for the construction and application of complex non-linear
models of deformation. By addressing the problems of non-linearity, the
approaches provide a solution which, has few constraints upon model assembly

and hence opens the application base of the work.

Future work is therefore varied and current work is concerned with further
developing the construction and application of models with computer vision and

graphics.

Current work into the colour distribution of objects and scenes is extending the
work of Chapter 4 to provide an accurate method of locating human motion
within complex environments. This work will incorporate models of deformation

to address the applications of visual surveillance and monitoring.

The work of Chapter 7 is supporting research into two areas, namely computer
animation and gesture recognition. In the field of animation the ability to be able
to model the motion of complex surfaces in lower dimensional spaces allows
smooth key-frame animations to be achieved. It is also intended that these
techniques could be combined with the work in Section 9.2 to allow the abstract
parameterisation of human motion in simulation. To fully investigate the
applications to gesture recognition, a two handed system must be constructed

which allows temporal gestures to be both tracked and classified.

A new model of human motion is currently being constructed, extending the
work of chapter 9. This model consists of a tri-camera view of the human subject
with the corresponding optical motion capture ground truth. This new model will
provide the means to assess the accuracy of the inferred human structure and

investigate the associated accuracy of mono, stereo and tri camera reconstruction.
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It is also intended that the work described in Appendix 2 on volumetric
segmentation be combined with that of the construction of 3D PDMs for medical
analysis and diagnosis. In doing so the shape and size of internal organs can be
compared with a statistical model to gain an indication of variation from the
population mean. It is intended to investigate the use of such approaches in the

diagnosis of medical conditions such as hydrocephalus.
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Appendix A — K-means and Fuzzy K-means Clustering

11.1 K-Means Clustering

Clustering algorithms attempts to segregate a dataset into distinct regions of
membership, this is widely performed by a gradient descent based iterative
algorithm that is known as k-means (or c-means) algorithm or the Generalised
Lloyd algorithm {Karayiannis 95]. The k-means algorithm begins with a set of k
initial exemplars, where the data is to be segregated into k distinct regions. Each
region is evaluated with the exemplar as the centeroid of the region. Data points
are assigned to the exemplar in a nearest neighbour fashion and the exemplars
moved to minimise the distance between the exemplar and its members. This
membership is reassessed at each iteration and repeated until the algorithm

converges upon a solution i.e. the movement of the exemplars approaches zero.

Figure 11.1.1 - K-means clustering

For the clustering of a training set X = (X,,X,,...,X,, ) where x, 00" is an n
dimensional vector in Euclidean space and i =1,2,...,M . The segregation of the

training set into k clusters using the exemplars (cluster centres)
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Y =(y,.Y,....¥y) Where y, 00" and j=12..,k is performed by

minimising the cost function D where,

M

min(d(x,,y,)

1
M & vy

The K-means algorithm assigns each training vector to a certain cluster on the

basis of the nearest neighbour condition. According to this strategy, the training

vector X; is assigned to the j" cluster if d(x;,y ;)= dy, () =min, , d(x.y;),
where d(xi,y j) is the squared Euclidean distance between the training vector X;

and the exemplar y;, defined as d (xi Y ): I, ,yj||2 [Karayiannis 95].

The nearest neighbour description can be described by the membership function
u,

u.(x.)=[n‘ If d(xi’yj):dmin(xi)
e otherwise

The algorithm minimises this cost function D through the iterative refinement of

cluster centres where the exemplar y; is the mean of the vectors assigned to it,

Zuj(xi)xi
y, =————and j=12,..k

;uj(xi)

Although the k-means algorithm is simple and relatively fast to iterate it is a
gradient descent method and therefore only capable of finding local energy
minima. It will always converge on a low cost solution, but because the energy
surface that it traverses is full of local minima, it will not necessarily find the
global solution As such, it is extremely sensitive to the initial placement of
exemplars. Exemplars are commonly placed randomly within the data space or

randomly allocated from the data points themselves. It is therefore necessary to
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run the algorithm a number of times with different random initialisations to try

and find the best local minima possible.

11.2 Selecting the Natural Number of Clusters k

Often during clustering the natural number of distinct clusters is known. Under
these circumstances cluster analysis can be performed using k=5. However, more
often, little is known about the nature of the data and a method of estimating k is
required. Furthermore, the nature of the energy minimisation within the k-means
algorithm makes the assumption that clusters are hyper-spherical. Where
elongated hyper-elliptical clusters are present these may be better modelled using
multiple adjoining spherical clusters as demonstrated in chapter 5.2.

The cost function D is commonly used as a metric with which to assess the
performance of clustering. As the number of clusters is increased, so the resulting

overall cost diminishes in a characteristic way.

Number of Clusters against Resulting Total Cost Function
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Figure 11.2.1 - Characteristic Cost Graph for k-means for 1 <k <M

igure 11.2.1|shows the characteristic graph produced for a training set by
plotting the resulting overall cost of a converged solution against the number of
clusters k, where 1<k<M. The overall cost of a solution decreases as the number

of clusters increases, where k=1 produces the highest cost and k=M (the number
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of training examples) produces a cost of zero. However, as the number of k is
increased there becomes a point where increasing k further does not produce a
significant decrease in the resulting cost. This is said to be the natural number of

clusters of the data and is a simple but effective method for estimating k.

11.3 The Fuzzy K-means Algorithm (FCM)

Fuzzy set theory is a method of representing vagueness in every day life.
Bezdeck, Ehrlich and Full proposed a family of fuzzy k-means algorithms
[Bezdeck 84]. Fuzzy clustering algorithms consider each cluster as a fuzzy set,
while a membership function measures the possibility that each training vector
belongs to a cluster. As a result, each training vector may be assigned to multiple
clusters with some degree of certainty measured by the membership function.
Thus, the partition of the training set is based upon soft decisions [Karayiannis
95].

The fuzzy k-means algorithm uses a fuzzy membership rule where [Bezdeck84]

u; ()=~ . ;

The new cluster position y; is therefore calculated as

M m
uj(Xi) X;

y; = y————and j=12,...k

iuj(xi)m

The "fuzziness" of the clustering produced by these algorithms is controlled by
the parameter m, which is greater than 1 [Bezdeck84]. As this parameter
approaches 1, the partition of the data is nearly the binary decision used in the k-
means algorithm. However, as the parameter m is increased the membership

degrades towards a fuzzy state [Bezdeck84].
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Results comparing the partition of space using the k-means algorithm and the

FCM algorithm can be found in section 5.2,
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Appendix B — Volumetric Segmentation

12.1 Introduction

The availability and clinical requirements of medical imaging as a source of 3D
data set has generated a significant interest in the processing and segmentation of
volumetric data. The problems of understanding 3D structure from a discretely
sampled volume have shown the benefit of visualisation techniques. Surface
approximations, such as isosurfacing, allow surfaces to be extracted that when,
rendered and shaded, provide an invaluable insight into a volume’s internal

structure.

The reconstruction of multi-modal data sets from different sources of volumetric
data is greatly simplified by the successful segmentation of surface topology.
Surfaces that directly correspond to a volume can be matched far more simply

than the original volumes [Moshfeghi 94].

In addition to structural insight, surface approximations are invaluable in
reducing the processing time needed for traditional image processing techniques,
as processing can be localised to a contour boundary. Furthermore, these surfaces
can provide a mathematical representation of shape which can then be used
statistically to model and classify shape and deformation [Cootes 95] [Bowden
96].

If a statistical model is to be constructed which represents 3D surfaces or features
extracted from medical or other volumetric datasets, a method of extracting
surfaces from these datasets is required in order to produce the training examples

necessary for statistical analysis.

A common technique for surface extraction is isosurfacing. Isosurfaces are

structures that represent surfaces of equal value, normally made out of graphical
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primitives such as triangles connected together and rendered using standard

graphical techniques.

There are five basic algorithms for Isosurfacing:
1. Opaque cubes or the Cuberille algorithm [Herman 79]
2. Contour connecting [Barequet 96][Fuchs 77][Keppel 75]
3. Marching Cubes [Mullick 95][Cline 88][Lorenson 91]
4. Dividing Cubes [Cline 88]
5. Marching Tetrahedra [Shirley 90].

The Marching Cubes algorithm is by far the most popularly implemented
algorithm for iso-intensity surface extraction, efficiently generating isosurfaces
with low memory requirements. The Contour Connecting method requires
localisation of the contour in each slice of the data and, like the Cuberille
algorithm, is prone to artefacts when handling small features and branches in the
data. Though the Marching Tetrahedra approach reduces ambiguous topological
connections, it generates many more graphical primitives than the Marching
Cubes algorithm. Finally, the Dividing Cubes algorithm creates points and
corresponding normals requiring special purpose hardware/software for

visualisation, making it inappropriate for many applications [Mullick 95].

Barequet et al [Barequet 96] propose a technique for piecewise-linear surface
reconstruction from a series of parallel polygonal cross sections. As well as the
applications of such algorithms in visualisation (isosurfacing) it is an important
problem in medical imaging, where contours are often detected in single layers
of the volume. By reducing the problem to the piecewise linear interpolation
between each pair of successive slices, they use a partial curve matching
technique for matching parts of the contours. The major advantage with this over
such a scheme as marching cubes is that the size of the resulting polygons
compared those produced by marching cudes, where each voxel can produce

multiple polygons.

Since the original formulation of Active Contour Models (Snakes) [Kass 88] a

significant interest has been shown in extending the technique to dynamic 3D
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models. Snakes have been shown to be useful in contour reconstruction, but
require large amounts of user intervention to successfully segment complex
objects. As has been shown, Point Distribution Models [Cootes 95] can simplify
the problem of object recognition and segmentation by statistically constraining
the shape of the model within suitable bounds, through the analysis of a training
set of shapes. However, in 3D, where models become too large to manufacture
by hand, another means of generating training sets for statistical analysis must be

found.

Terzopolous and Vasilescu [Terzopoulos 91] extended the snake model to
include an inflation force that helps remove the need for initial contour
placement and thus avoid convergence on local minima. The inflation force
drives the snake model outwards towards the object boundary like an inflating
balloon. Terzopolous and Vasilescu formulated the model as a finite element
mesh and later extended the model to a thin plate spline, demonstrating
successful results in the reconstruction of range data and volumetric CT data
surface representations [Mclnery 93].

This chapter presents an iterative, dynamic mesh model which uses simulated
physical forces to segment desired surface approximations from volumetric
datasets. The work is based on the work of Chen and Medioni [Chen 95] which
is itself a continuation of the work on dynamic balloon models by Terzopoulos
and Vasilescu [Terzopoulos 91]. Chen and Medioni applied the work to the

constrained problem of reconstruction from pre-registered range images.

It will be shown how simplifications can be made to the model which increases
the iterative speed of converging on segmented features. It is also shown how
balloon models can be reformulated to remove explicit data attraction forces to
image features. The process hence behaves like a region growing technique
which locates isointensity boundaries within the image. This removes the need
for parameter selection which must be balanced against the internal parameters
for standard snake [Kass 88] and balloon [Terzopoulos 91] models and further

reduces suseptibility to initial placement and image noise.
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The remainder of this chapter is organised as follows, Section [[2.2]provides an
overview of the dynamic mesh balloon model. Section f2.3]discusses mesh
structure and connectivity while Section [L2.4] covers dataset scaling and
interpolation issues. Section [[2.5]then formulates the dynamic mesh structure
and subdivision mechanisms. Section [L2.6] shows the resulting model applied to

sample volumetric data sets. Finally conclusions and further work are discussed.

12.2 Overview of the Dynamic Mesh Model

The mesh structure consists of a triangular mesh which can vary in size, shape
and connectivity. Each vertex is connected to other vertices in the model by the
edges of the polygonal facets. These interconnections are used to simulate
springs that connect the mesh mathematically. The force of these springs gives a
resulting surface tension to the model which attempts to keep the surface as
smooth as possible. An inflation force is used at each vertex to inflate the overall
model, while surface tension attempts to keep the mesh spherical. A simple local
feature detection scheme is used at each vertex to remove the inflation force as
nodes reach the boundaries of desired structures. A dynamic mesh subdivision
scheme is used to subdivide polygons locally if they exceed set size or curvature
criteria. This allows the mesh to inflate and grow until a boundary is located.
Once the mesh has converged on a solution, a good local edge detection scheme
can be used to lock vertex points to the boundary. The process starts with a small
polygon object which is inflated from within a volumetric image with the
inflation force driving the surface towards the object boundary. The mesh grows
in size and complexity to fill the object like an inflating balloon until the mesh
vertices lie close to the true object boundary (See Figure 12.2.1). This technique
requires no user intervention after the initial placement and provides a simple,
fast method for object segmentation, which produces surfaces with a low

polygon count.
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Figure 12.2.1 - Simple 2D Contour Inflating Towards the Object Boundary

12.3 Mesh Structure

To provide the successful extension of the balloon model into 3D, the mesh
structure must fulfil a number of criteria:
1. It should allow the dynamic manipulation of a surface and its local
properties.
2. It should be structured to ensure render times and processing times are
kept to a minimum
3. It should have the ability to represent features accurately by ensuring
planar facets and hence reducing mathematical inaccuracies.
4. It must maintain knowledge of its connectivity, to provide a simulated
physical model like snakes [Kass 88].
5. It must provide a faithful render of the volume providing accurate

visualisation of complex features within a given dataset.

The addition of this final constraint also ensures that the surface will look
continuous when rendered with a suitable shading routine such as
Gouraud/Phong shading. Perhaps the simplest of mesh structures is that of the
simplex mesh, proposed by [Delingette 94]. A simplex mesh is an interconnected
set of nodes, where each node is connected to exactly three other nodes (Figure |

L2.3.13).
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Figure 12.3.1 - Mesh structures
(a) The Simplex Mesh Structure (b) A Planar Mesh Structure

Each node (N1) always connects to exactly 3 other nodes producing a simple
interconnected surface model from which mathematical simulations of physical
properties can easily be implemented. However the polygons bounded by these
nodes are non-planar. The calculation of a vertex normal is produced by
averaging the normals from the connecting polygons surrounding that vertex.
Since non-planar polygons produce inaccurate normal calculations, this mesh
formulation will produce inaccuracies in rendering or physical simulation
calculations. Inaccuracies in normals will result in non-uniform shading as
lighting equations depend upon normals and planar polygons. Surface features

will also suffer from the use of non-planar polygons.

A better solution is to use a mesh that has planar facets. Three points always
ensure a unique plane and it is simple to subdivide a triangle into multiple
triangles. This does, however introduces problems with the connectivity, as any
node must be able to connect to any other number of nodes to ensure a complete

and evenly spaced surface. In Figure 12.3.1p the node (N2) connects to five

other nodes.
This provides a mechanism that represents how each vertex connects to other

vertices allowing simple physical properties to be represented, i.e. elasticity can

be manifested as the force that each of the connected vertices applies on a
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specific vertex by the direction and length of the connections. However other
operations such as rendering and normal calculations require polygons to be
expressed as the connection of vertices that constitute a surface facet and it is

therefore necessary to retain a dual representation of the surface.

12.4 Volume scaling and Interpolation

Volumetric data is commonly stored as a 3D array of discrete values for each
voxel (Volumetric Element) of a volume. The resolution of these volumes tends
to be far lower than standard images due to the size and memory requirements. A
typical 256x256 grey scale image would occupy 64KB of memory, however a
256x256x256 volume using 256 grey levels would occupy 16MB of memory.
Due to the low resolution of volumes and non-cubic voxels it is necessary to
smoothly interpolate intensities and attempt to estimate missing information. Tri-
linear interpolation is used to reconstruct missing data from the discrete data set
and allows a value to be estimated for any position within the volume. Higher
order interpolation schemes can be used but introduce additional computational

complexity for little gain.
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Figure 12.4.1 - Tri-linear Interpolation

igure 12.4.1|demonstrates the principal behind tri-linear interpolation. The

normalised point within the unit cube is first converted to the discrete volume
and its eight discrete corner values determined along with the normalised
position within this new sub-unit cube. Placing these values within the equation
fyz gives a linearly-interpolated value for the required point. The equation,

although not complex, can quickly become a computational overhead where a
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large number of interpolated values are required. This technique does not
therefore lend itself well to normal image processing techniques where many
samples are required for each iteration of an algorithm. However in the case of
meshes/3D-surfaces where the presence of the surface greatly reduces the
number of interpolations per iteration, the technique enables the dataset to be

treated as a continuous volume, smoothing edges and noise.

Higher order interpolation schemes can be used (e.g. tri-cubic interpolation)
however, the additional computational cost involved with such schemes
outweighs the benefits gained. It should be pointed out that no matter which
interpolation scheme is used it is never possible to reconstruct missing data, the

values are merely estimated from the available information.

Volumetric data from the medical imaging field tends to have non-cubic voxels
where the in-slice resolution is much smaller than that of the depth resolution,
and for this reason the volume should be scaleable. This artefact of acquisition
can be overcome by translating and rescaling the volume to a cube of 2 unit size.
A scaling in x, y and z can then be applied to rescale the volume and associated
voxels in to a cuberville (a volume with cubic voxels). Tri-linear interpolation

will then attempt to fill-in this missing inter-slice resolution.
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Figure 12.4.2 - The working volume of the 3Dinterpolator

igure 12.4.2shows this cube centred about the object, this enables meshes to be
built that are of the same scale. For a given dataset the scale is set such that the
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largest dimension of the volume occupies the full size of the unit cube centred
about the origin. As the same scale applies to all dimensions a non cubic volume
(eg 200x200,100 voxels) would produce a scaling demonstrated in
[L2.4.2h, any attempt to access part of the volume outside the volumetric data as
outside the cube results in a value of zero. This allows the dataset to easily be

rescaled to suit applications.

12.5 The Balloon Model

The balloon model consists of a mesh of triangular facets or patches. The initial
triangulated surface can be any shape or size allowing the re-application of a
segmented surface to a new data set. Each node (vertex) has two forces acting
upon it. The spring force derived from the sum of the vectors of the
interconnections of the mesh, and the inflation force, derived from the weighted

normal direction of the surface at each node.

The operation of the inflating balloon model can be encapsulated by the

following algorithm.

Algorithm 12.1.
for a given closed form polygonal model do,

build a connected mesh of vertices
while number of polygons is not constant do
compute the normal at each node
for each node do,
compute the elastic force using Equation 12.5-4](See Section [12.5.2),
test node position in dataset using feature detection scheme,
if feature not found calculate the inflation force using
[L2.5-5](See Section and add to the elastic force
compute the new node position v** using Equation 12.5-3|(Section

and update node
perform dynamic subdivision using Algorithm |(See Section
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12.5.1 A Simple Dynamic Model.

The motion of any element i on a finite element mesh model can be described by

the set of coupled second order differential equations [Terzopoulos 91]

deX‘+ %+g:f i =1,...,n
IO

Equation 12.5-1

Here, x is the location of the element i, m is its mass, g is the surface tension,
generated by the interconnections of the elastic mesh, f is the inflation force and

y is the velocity-dependent damping coefficient that controls the rate of

dissipation of Kkinetic energy. Giving the mesh these simulated physical
properties provide a robust model that performs well but at a computational cost.

d?x,

dt?

. . ] . . -
The main rationale for the momentum term Hni H is its ability to reduce the

mesh's susceptibility to noise. Due to the momentum of nodes the damping

termy is necessary to bring the model to rest. The mesh reaches an equilibrium

state when ifw%:o which can take some time [Chen 95]. Chen and

dt dt

Medioni simplify this model by making m=0 and y =1 for all i reducing|

Equation 12.5-1to

Equation 12.5-2 dt

Due to this simplification the equation (2) has a very simple explicit integration
[Chen 95]

t+At _ (gt t t
Equation 12.5-3 X - (f, —0; )At + X

213



Unlike the work of Terzopoulos, the approach described here does not use an
explicit data force that attracts the balloon surface to image features. Instead the
inflation force is used to inflate the surface until the desired feature is located. In
order to overcome the noise inherent in medical imaging datasets, the surface is
not anchored to positive data features. When a feature is detected at a node
position, the inflation force is removed for that node. The surface is then free to

oscillate around features until it converges on a solution.

12.5.2 Simplified Spring Force

The spring force exerted on node i by the spring linking node i and j of natural

length 1; can be expressed as [Terzopoulos 91],

where c; is the stiffness, r; =x; —x; the vector separation of the nodes, [r;|| is

the length of the spring and e; = ||rij || —I;; is the deformation of the spring.
In order to generate a generic technique for the segmentation of objects, and due

to the large nature of 3D objects it is not feasible to assign values to ¢; and I;

for each node. Further simplifications can therefore be made by setting all

stiffness coefficients to a constant value with a minimum spring length of zero,

c; =¢ and l; =

The total elastic force on a node i is therefore,

Equation 12.5-4 9i = H Z B
J:
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12.5.3 Inflation Force

The inflation force applied to each node i is
Equation 12.5-5 f =kn,

where A, is the normal at node i and k is the amplitude of the inflation force.

The value of k can be selected to be a constant for a specific data set or
dynamically generated as k = %”g,” which ensures that the inflation force for

each node always exceeds the surface tension of the model. Although this
removes the parameter selection of k, it produces a slower convergence on

solutions as non optimum parameter selection results.

Node normals are calculated as the average normal of the surrounding polygons
sharing the node i, gained from the cross product of polygonal edges between
vertices. Other, more complicated schemes as used by Chen and Medioni [Chen
95], give little benefit as errors in this normal estimation technique are reduced
by the surface smoothing properties of the surface tension (elastic force). This
also gives a significant performance increase as normals must be recalculated at

least once every iteration of the algorithm.

12.5.4 Dynamic Subdivision

As the inflation force increases the surface area of the mesh, individual polygons
grow in size. Since the elastic force is directly proportional to the size of
polygons, there comes a point where the elastic force will not allow the mesh to
increase in size further, unless the inflation amplitude is increased accordingly.
Dynamic subdivision can be used to subdivide polygons which exceed set size
criteria and keep polygons within a suitable limit. Each edge of the mesh is

checked in turn at each iteration to see if it exceeds the subdivision threshold.

igure 12.5.1 [demonstrates how the process works.
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When the length of a node connection AB exceeds set criteria, distance or
curvature, the two triangles that contain this edge are located (ABC, ADB) and
removed from the polygon list. The midpoint m of AB is calculated and four
new triangles constructed AMC, CMB, ADM, and MDB. The internal
connectivity of the mesh is also altered to reflect this new local structure. Long
thin triangles are undesirable, as they do not model local surface properties well.
This technique ensures that they never occur, as any edge that exceeds a distance

threshold is immediately subdivided. This procedure allows the mesh to grow

Before Subdivision After Subdivision

A A

B B

Figure 12.5.1 - Dynamic Subdivision

asymmetrically to fit any feature located within the data set.

The dynamic subdivision procedure can be encapsulated by the following

algorithm.

Algorithm 12.2.
e for each node (V1) do

 for each connection to another node (V2) do

e if the connection (V1V2) matches the subdivision criteria do

remove connection (V1V2)

remove the two polygons that share this edge

find the mid point m of V1V2

construct four polygons using m as a common node

update the connections of the mesh

e recalculate the normal at each node
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12.5.5 Subdivision Criteria

Using a distance threshold for subdivision produces an evenly spaced mesh
which can alter its structure locally to fit any dataset. It is also possible to use
other criteria to provide a more flexible approach. As the normal at each node is
known for use with the inflation force, the dot product of two adjacent vertices'
normals represents local surface curvature. This can be used to further subdivide
the mesh if the dot product drops below a certain threshold value, i.e. the area has
a high degree of curvature, allowing more vertices to be placed in these areas of
high curvature. This is useful where long narrow features are present in the

dataset.

e

Figure 12.5.2- Curvature Based Subdivision

igure 12.5.2|demonstrates an image boundary and an inflating balloon front.
The boundary shown has found an equilibrium state in the narrow feature. By

subdividing the mesh on a curvature basis, in addition to distance, extra vertices
are added to the front of the model providing the inflation force needed to

successfully segment the long narrow feature.

Both subdivision criteria can be used in conjunction to minimise the polygon
count of a mesh, removing the need for post-processing techniques such as
Delaunay Triangulation [Soucy 96]. An edge is subdivided only if it exceeds
both a distance and a curvature threshold. Polygons on parts of the surface with
low curvature grow beyond the threshold keeping polygon counts to a minimum.
Therefore, areas of high curvature have larger numbers of small polygons that

better model the surface features.
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12.5.6 Feature Detection
Edge features within an image are typically identified as a change in intensity
from one range to another via an isointensity which depicts the boundary of these

two regions.

b

mumnmusf ,

0 X
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Figure 12.5.3 - The Boundary between Light and Dark

Figure 12.5.3shows a cross section through an image depicting a sharp boundary
between light and dark. The intensity x; depicts the threshold that would generate
an isointensity boundary for this feature within an image. Providing scanning
starts within the model boundary, it can be said the boundary (x;) has been passed

when either

| < or |.>1 where 1=01,...,n

X Xi X Xi

depending on the direction of the intensity gradient along the isosurface

boundary normal.

This simple thresholding mechanism can be used to detect when the balloon has
just passed through a possible isosurface boundary, at which point the inflation
force can be removed for that node. Due to the simplicity of this mechanism,
many false boundary points are detected and hence results in a noisy
segmentation. However, elasticity is a constant force and as such provides the
function of a simple momentum term which pulls the nodes away from false

boundary points.
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Where complicated internal structures are required this approach may not
provide adequate results. In this situation, other more sophisticated feature
detection schemes can be employed. However as the feature of primary
concerned is the external boundary of the model, where a distinct boundary is

present, this approach provides an efficient and simple solution.

12.5.7 Robustness to Noise

-

Figure 12.5.4 - Balloon Boundary,
(a) Contour is pulled away from noise (b) Contour oscillates at real edge

Figure 12.5.4| demonstrates this invulnerability to noise spikes. In
12.5.4(a) the boundary moves towards the true boundary through the influence of
the inflationary force. Points X and Y are located on noisy areas of the image.

Where these false edges are located the inflation force is removed. However, as
the remainder of the contour progresses forward under the inflation force the
elasticity pulls these points away from the noise. Once a sufficient distance from
the noise has been reached the edge detection criteria no longer apply and the
inflation force is reapplied. Elasticity then helps smooth these features as the
process iterates. demonstrates what happens when the contour
approaches the true boundary. As points are inflated beyond the boundary their
inflation force is removed and elasticity pulls the point back within the model,
where the inflation force is then re-applied. This causes the contour to oscillate
around the true edge. As points oscillate back and forth chaotically their overall
movement is at a minimum and therefore mesh subdivision approaches zero. At

this point a local edge detection scheme can be used to clamp nodes onto their

219



closest edge. This creates an evenly spaced mesh that is a good surface

approximation to the desired object.

12.6 Results

12.6.1 Synthetic Dataset

A synthetic data set of a 3D-horseshoe shape was constructed. The volume
consisted of 20x20x6 cubic voxels where each 20x20 slice is identical
throughout the volume. Figure 12.6.1] shows one slice from this volume. An
initial diamond-shaped seed balloon consisting of 8 vertices is placed inside the
object and the model grown to fill the volume. The resulting surface
segmentation is shown in As the model expands to fill the volume,
vertices that reach the outer boundary oscillate as their inflation force is turned
on and off. The resulting segmentation has almost a circular cross section
although the original data had very distinct straight edges. This is due to the tri-
linear interpolation which smoothes the data, and is very apparent due to the low
number of constituent voxels within the volume. The ends of the model continue
to grow under the inflation force and as the distances between vertices increases
the dynamic subdivision introduces addition polygons allowing the model to

locally deform to fit the dataset.

X -
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Figure 12.6.1 - Single slice of Synthetic Dataset
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Figure 12.6.2 - Balloon Growing to fill Synthetic Dataset

12.6.2 MRI Dataset

To demonstrate the ability of the balloon model segment a real volumetric
dataset the model was applied to a raw MRI scan of a human hancjﬂ. This is also
compared to the results of segmentation gained from a standard isosurface and an
3D elastic mesh model (3D snake). The volume is 256x256x20 voxels in size.
This is rescaled by 1x1x2 to reconstruct a cuberville and tri-linear interpolation
used to estimate values within the volume. shows an insosurface
generated from the dataset. Although it clearly shows the shape of the hand
within the volume the surface is discontinuous and noisy. The background noise
in the image is perhaps the most prominent feature and is the cause of the
speckled effect of the surface. Another disadvantage of the technique (as
mentioned earlier) is that for each voxel, a number of polygons are produced.
The isosurface shown in was generated from a super-sampled
volume of 128x128x20 to allow the resulting model to be rendered as a surface

generated from the original volume would result in some 235,000 polygons.

' MRI data of the hand model was provided by the Centre for Medical Imaging
Research (CoMIR) at the University of Leeds
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Figure 12.6.4 - 3D Surface Snake Applied to MRI Hand Dataset

igure 12.6.4 |shows the results of applying a 3D elastic surface to the dataset.
This produces a poor segmentation for two reasons
1. The large amount of background noise in the volume means that the

snake easily gets stuck as it shrinks to fit around the hand.
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2. The long narrow features of the fingers make it difficult for the

surface to succesfully segment their structure.

By increasing the data attraction force of the snake, the ability to locate and
segment the fingers is increased. However, if this attraction force is increased the

suseptibility to background noise is also increased and segmentation fails.

igure 12.6.5 |shows the development of the balloon mesh when applied to this
dataset. Initially, a seed balloon is placed within the volumetric dataset.

The Balloon Model Inflating to fill a MRI
Image of a Human Hand 30 Iterations
2479 Polygons

40 lterations
3439 Polygons

20 lterations
1229 Polygons

10 lterations,

O Iterations
8 Polygons

60 Iterations 80 Iterations 100 Iterations
3945 Polygons 4151 Polygons 4237 Polygons

Figure 12.6.5 - Segmentation of an MRI dataset of the Human Hand

The seed consists of a simple diamond shape with 8 polygons and 6 vertices.
Forces are applied to the model and after 10 iterations it has grown to 307
polygons. The almost spherical shape is due to the surface tension of the model.

Its non-spherical symmetry shows that positive features have been detected early
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on in the process and thus the inflation force has not been applied evenly. This

demonstrates the algorithm’s robustness to false boundaries and noise.

As the process iterates further the final shape very quickly starts to take form.
Although mesh subdivision continues we can see that it is starting to decrease in
rate considerably after 40 iterations. Figure 12.6.6 shows the rate of growth of

the mesh.

4500
4000 +
3500 +
3000 +
2500 +
2000 +
1500 +
1000

500

Polygon count

0 10 20 30 40 60 80 100

Iterations

Figure 12.6.6 - Graph Showing the Rate of Polygonal Increase.

Although the model will finally converge on a stable solution, it is sufficiently
complete at around 70 iterations which takes approximately 35 seconds on a
single MIPS R4400 200MHz processor, including render time. This is
significantly faster than previous researchers’ techniques, the most comparable
being the work of Chen and Medioni [Chen 95], where a comparable complexity
model takes approximately 30 mins to iterate on a SUN Sparc-10 machine. This
can also be compared with a standard isosurface of the external hand boundary
that generated a surface of 235000 polygons as compared to the balloon model of

4000 polygons.
The hand dataset is a good example of the effectiveness of the technique,

demonstrating its ability to work with complex noisy images which contain an

object with convex, concave and long narrow features.
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12.7 Conclusions

This chapter has presented a surface segmentation method which uses a
simulated inflating balloon model to estimate structure from volumetric data
using a triangular mesh. The model uses simulated surface tension and an
inflationary force to grow from within an object and find its boundary.
Mechanisms have been described that allow either evenly spaced or minimal
polygonal count surfaces to be generated. Unlike previous work by researchers,
the technique uses no explicit attraction to data features and as such is less
dependent on the initialisation of parameters and local minima. Instead, the
model grows under its own forces, never anchored to boundaries but constrained
to remain inside the desired object. Results have been presented that demonstrate
the technique’s ability and speed at the segmentation of a complex, concave
object with narrow features, while keeping model complexity within acceptable

limits.

12.8 Future Work

This work is ongoing, the primary rationale being the ability to produce low level
polygonal surface approximations to allow 3D Point Distribution Models to be
built for automatic recognition, segmentation and analysis of volumetric data.
Work has also been done in the area of mesh self-intersection. A set of criteria
have been developed which allow the detection of mesh self-intersection. Future
work includes allowing this criteria to be used to detect intersections, and re-join
the mesh at these points to allow more complex torus like shapes to be

successfully extracted.
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