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Abstract

Deformable models have been an active area of research in computer vision for a

number of years. Their ability to model non-ridgid objects through the

combination of geometry and physics has proven a valuable tool in image

processing. More recently a class of deformable objects known as Point

Distribution Models or Eigen Models have been introduced. These statistical

models of deformation overcome some of the shortfalls of earlier deformable

models by learning what is 'allowable' deformation, for an object class, from a

training set of examples. This semi-automated learning procedure provides a

more generic approach to object recognition, tracking and classification. Their

strength lies in their simplicity and speed of operation, allowing the robust ability

to model complex deformations in cluttered environments. However, the

automated construction of such models leads to a breakdown of the fundamental

assumptions upon which they are based. Primarily, that the underlying

mathematical model is linear in nature. Furthermore, as more complex objects

are considered, these assumptions fail completely and what is produced is an

unreliable model.

This work addresses these problems and presents novel techniques for the

automated construction and application of non-linear deformable models, which

retain the speed, and simplicity of the linear Point Distribution Model. It is

further shown how these non-linear models can be augmented with probabilistic

temporal constraints, which are essential in object tracking and classification.

This work presents, in essence, three developments to the field. Firstly, a

piecewise linear approach to modelling non-linearity is proposed and results

demonstrated that show its accuracy in modelling both low and high dimensional

datasets with heavy non-linearity. The technique is then extended to the

automated construction of models. Secondly, it is shown how the piecewise

approach can be augmented with temporal constraints and used in both model

prediction, animation and for the support of multiple hypotheses during tracking.

It is further shown how these temporal models can be extended to incorporate
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information from other sources, providing more reliable tracking in the absence

of complete training data. Thirdly, it is shown how elements can be combined

statistically and used to infer information about an object from its shape alone.

Using human motion capture as an example, it is demonstrated that models can

be assembled which allow 3D structural information about body pose and motion

to be inferred from a monoscopic image sequence using only natural features of

the body as markers.
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1 Introduction

The term Computer Vision covers a broad field of research encompassing many

techniques, applications and disciplines but is commonly summarised as

"the science of making a computer see...."

However, the goal is often to allow the computer to understand what it sees to

some extent, and it is here that the science embraces aspects of artificial

intelligence. This artificial understanding, or interpretation, of a scene stems

from human perception and our attempt to mimic the functionality of the human

visual system. It is natural to attempt to emulate the way in which humans

perceive or interpret the world and this approach has been instrumental

throughout the course of vision research, with developments such as foveal

vision systems and stereoscopic depth reconstruction. The most fundamental of

such approaches is that of model based vision.

The image plane of a camera is akin to the retina of the eye, and images

projected onto it are the 2D projection of the 3D world. This loss of information

presents no obstacle for the human brain which interprets the image seamlessly,

constantly updating its model of the world. The ability to judge depth through the
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disparity of objects falling upon the retinas provides essential clues to the brain

about the structure of the real world. However, even when this stereoscopic

information is unavailable, the human brain can still interpret the scene and

accurately estimate the position and orientation of objects. This is due to the huge

knowledge base the brain accumulates about the 3D world, its laws, and the

shape and structure of objects and how they project onto the retina.

If the human brain can achieve such feats for millions of objects, then the

rationale of providing a similar knowledge of a small subset of objects to a

computer is an obvious solution. This is the premise of model based vision,

where an internal representation of the world or object is provided to a computer

allowing it to locate, recognise, track or interact with real world objects. This a

priori knowledge about objects can be encapsulated and represented in numerous

ways.

Probably the simplest form of model based vision is that of template matching

[Ballard 82]. Given a known object or feature to be located in an image, a

template, representing object features, is applied to the image at every location.

By formulating template matching with a scoring mechanism, the fit of the

model at any location can be assessed and the probable position of objects or

features estimated. Although a relatively time consuming approach, template

matching algorithms can provide effective object location for constrained

applications and have proven invaluable in areas such as industrial inspection.

Hardware implementations are commonplace allowing large numbers of

templates to be matched in real time.

Industrial inspection has proven a successful application of real time vision

systems as the nature of the problems is typically heavily constrained. If the

application of biscuits on a conveyor belt is considered, the problem of object

location is greatly simplified by the process and nature of the object. The

production line produces only biscuits, so the variability of shape is heavily

reduced. Biscuits are typically flat and as such can be assumed to be 2D objects,

which adhere to ground plane constraints. In addition, lighting inconsistencies

and background clutter can be controlled and modelled accurately.  Given a
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ridgid internal model of an object, probable locations can be identified within the

image by matching the features of the object with the extracted features of an

image (such as edges or corners). This is often applied as a hypothesise and test

procedure, where possible locations of an object are generated and compared to

the image. Each hypothesis is then assessed using some metric where the highest

scoring hypotheses correspond to the likely location of objects. As more complex

objects are considered, techniques such as geometric hashing [Wolfson 92] can

be used to allow affine object transformations. However, when real world objects

and less constrained environments are considered these tools are insufficient at

modelling object variability.

The problems of recognition are compounded when everyday, unconstrained

objects are considered. In addition to the variability of lighting, shading and

complex scenes containing cluttered backgrounds, even ridgid 3D objects will

produce considerably differing views depending upon their position and

orientation. Consider a book. The shape of the book projected onto the image

frame will vary immensely as its orientation changes. More complex still is the

goal of building a generic model of a book where the 3D shape parameters of the

object vary immensely between examples. A common solution to this problem is

to represent the object in terms of its 3D structure and use the 2D projection of

the internal model to match with the 2D projection of the real world object.

Models that bend or articulate introduce further complexity to the task of object

recognition and tracking. In addition to the object variation described above,

articulated objects also produce variability of shape and structure in the image.

Many researchers have tackled this by extending the 3D internal model to that of

articulated geometric primitives with tight joint constraints, which closely mimic

the movement of the real world object. However, as these types of models are

typically hand-coded they do not offer a generic solution that can be applied to

all objects.

Deformable objects which can alter their shape to fit an object under some global

shape constraints overcome these problems by encapsulating a large amount of

an object’s variability into a constrained deformation of a contour or object. By
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learning this deformation from a training set of example shapes, they produce a

set of tools which allow models to be easily constructed for any number of

objects under a multitude of situations.

This thesis is concerned with the construction of generic models of deformation

and their application to the recognition and tracking of complex 3D objects.

Chapter 2 will present a review of relevant literature to the work and discuss the

shortfalls of current formulations. Chapter 3 will introduce linear Point

Distribution Models and describe the Active Shape Model approach to object

tracking. Chapter 4 will discuss the use of colour in image segmentation and

feature extraction. Chapter 5 will present a non-linear approximation technique

based upon a piecewise linear model. Chapter 6 will extend the piecewise linear

approach to more complex, high dimensional training sets and demonstrate the

use of such models in the classification of American Sign Language. Chapter 7

will discuss the addition of temporal constraints. Using motion capture as an

example it is shown how time dependent deformation can be both learnt and

reproduced from a model. Its is further shown how these temporal constraints

can be used to support multiple hypotheses during tracking. Chapter 8 discusses

the extension of PDMs into the 3D domain. Chapter 9 presents a new approach

to markerless based motion capture which incorporates many of the previously

discussed elements to allow the 3D pose and motion of a human body to be

extracted from a monoscopic image sequence. Finally a discussion and

conclusions are presented.

This manuscript also contains two appendices. Appendix 1 presents the k-means

and fuzzy k-means (FCM) algorithms along with associated techniques.

Appendix 2 presents a new approach to the surface segmentation of volumetric

data. Although this work is extremely relevant to 3D PDM construction it stands

as an individual piece of research and hence is consigned to the appendices.
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2 Literature Review

2.1 Introduction

An initial literature review was performed which surveyed the field of 3D

computer vision. The review covered types of image data from 2D images, range

data and depth maps to volumetric segmentation. Acquisition methods,

reconstruction and image segmentation were also covered and conclusions drawn

to support the remainder of the research. This initial survey was too general for

inclusion within this manuscript and hence is available as a separate technical

report [Bowden 96].

The conclusions of the report were that contour or surface based approximations

(specifically statistical contour models) are important for the following reasons:

• Image searching is localised along contour boundaries and hence

provides significant computational savings over more traditional low

level image processing techniques. This benefit is more apparent where

real-time processing of image sequences or large volumetric datasets

are considered.

• The ability to introduce a priori knowledge about object shape and

deformation into a contour provides a robust deformable template

Chapter 2
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which can be applied to an image where the absence or occlusion of

object features and cluttered/complex backgrounds would result in the

failure of other techniques.

• The ability to accurately segment objects from images or sequences

provides smoothed object boundaries.

• The ability to aid in the classification of objects under affine

transformation.

The remainder of this chapter will present a more specific review of related

literature, namely in the area of statistical models of deformation and associated

approaches.

2.2 Contour Models

The seminal work of Kass et al on Snakes or the Active Contour Model (ACM)

presented a class of semi-automatic methods for segmentation using energy

minimising curves [Kass, 1988; Kass, 1987]. In these methods, a user draws the

approximate boundary of the region of interest in an image. Then, an elastic

contour is fitted to the boundary points and the curve is iteratively refined until

its internal energy defined by its curvature is minimised while responding to

external forces derived by image edges. Many researchers have shown how these

active contour models can be used to locate and track an object in an image

[Etoh, 1992; Ueda, 1992; Cipolla, 1992].

Zhou and Pycock segment cells from 2D images using statistical models applied

like snakes [Zhou, 1995; Zhou, 1995]. Models are built up for different forms of

cells; the interpretation process optimises the match between models and the data

using a Bayesian distance measure.  Lobregt and Viergever extend upon this

model, presenting solutions to the problems of unwanted deformation like

shrinking and vertex clustering [Lobregt, 1995]. There is a wealth of published

work on variations on the basic model proposed by Kass et al, all use the same

basic model with small constraints added to allow a priori knowledge of shape to

be imposed upon the model and hence provide better performance.
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Terzopolous and Vasilescu [Terzopoulos 91] extended the snake model to

include an inflation force that helps remove the need for initial contour

placement and thus avoid convergence on local minima. The inflation force

drives the snake model outwards towards the object boundary like an inflating

balloon. Terzopolous and Vasilescu formulated the model as a finite element

mesh and later extended the model to a thin plate spline, demonstrating

successful results in the reconstruction of range data and volumetric CT data

surface representations [McInery 93]. Bowden et al extended this work further

and is discussed in more detail in Appendix 2 [Bowden 97].

Several researchers have proposed B-Spline variations of the active contour

model [Rueckert, 1995; Schnabel, 1995; Blake 1998]. Schnabel and Arridge

looked at the problems associated with high curvature in active contour models,

proposing a curvature matching technique for isophoto curvature matching. They

look at the applications of using this approach to segment high curvature

contours of the brain from medical images. Blake and Isard have combined many

of their publications on the subject in the text ‘Active Contours’ which covers the

construction, tracking and applications of B-spline contour approximations

[Blake 1998].

It has been shown that these 2D models can be used to reconstruct 3D surfaces

from volumetric data by applying snakes to individual slices to extract contours

that can then be reconstructed into a 3D model [Carlbom, 1994; Goshtasby,

1995]. A typical implementation of such a system uses the final model from one

slice as an initial estimate for the next to reduce user intervention.

Ivins and Porrill presented Active Region Models [Ivins 98], an adaptation to

Kass's Active Contour Models where colour regions within an image are used to

locate and track the boundarires of regions within the image.

A Neural network approach was proposed by Chiou et al called the neural

network based stochastic active contour model  (NNS-SNAKE) which integrates

a neural network classifier for systematic knowledge building, and an active



8

contour model for automated contour location, using energy functions to

stochastically locate the most probable contour.

2.3 Statistical Models of Deformation

A Point Distribution Model (PDM)[Cootes 95] gets its nickname of ‘Smart

Snake’ from its obvious similarity to elastic snakes (Active Contour Models,

ACM [Kass, 1987]). The major difference is that while snakes retain shape

information in the elasticity and rigidity of their constituent points, a PDM uses a

statistical model to specify allowable deformations. This not only makes the

PDM less computationally expensive than the ACM but deformation is easier to

build into the model.

Since they were proposed by Cootes et al, a wealth of research has been

undertaken into Point Distribution Models. A PDM (the underlying mathematical

model) or Active Shape Model (the model’s applied name) is a statistical model

which can be constructed from a training set of correctly labelled images. A

PDM represents an object as a set of labelled points, giving their mean positions

and a small set of modes of variation which describe how the object’s shape can

change. These modes of variation are gained from Principal Component Analysis

(PCA) on the training set and represent the largest eigenvectors of the covariance

matrix. An Active Shape Model exploits the linear formulation of PDMs in an

iterative search procedure capable of rapidly locating the modelled structures in

noisy, cluttered images, even when partially occluded [Cootes, 1995].

Turk  and Pentland [Turk 91] present a method for extracting only the number of

eigenvectors equal to the number of training examples and not the dimensionality

of the set, in a similar manner to that of Cootes et al [Cootes 95] and this is

discussed in more detail in Chapter 3.

It has been shown by Bowden et al that the PDM provides sufficient dimensional

reduction inherent to the model to enable the simple classification of static shape

[Bowden, 1995; Bowden, 1996]. These authors outline a simple method for

using this dimensional reduction to classify shape deformation from the variation
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weights from the mean. They show how static gestures can be recognised in real-

time for a PDM of the human hand.

Lantis, Taylor and Cootes have also extended their initial work from contour

models to shape and grey-level models [Lantis, 1994]. They use a combined

PDM that uses both shape and a grey scale maps to locate and identify human

faces.

Turk and Pentland use principal component analysis to describe face images in

terms of a set of basis functions or ‘eigenfaces’. Though valid modes of variation

are learnt from a training set, and are more likely to be more appropriate than a

‘physical’ model, the eigenface is not robust to shape changes, and does not deal

well with variability in pose and expression. However, the model can be matched

to an image easily using correlation-based methods [Turk 91].

Magee and Bole presented Vector Distribution Models, where points around a

connected contour are converted into a vector, and these vectors are concatenated

into a final training vector on which PCA is performed [Magee 98]. These

authors went on to discuss the use of Canonical Analysis, a similar procedure to

PCA where two co-variance matrices are formed, one describing Intra class

variation and one Inter class variation.  After extraction of a generalised eigen

system a new eigen space is extracted. Although this space may not necessarily

be optimised for dimensional reduction, it is useful for data classification as the

first components of the model represent inter-class variation [Magee 99].

Swets and Weng [Swets 96] presented a technique called a combined eigen-

canonical transform which combined canonical analysis with PCA to give data

reduction and improved classification. Canonical analysis was performed on data

after it had been projected down into the lower eigen space gained from PCA

similar to that outlined in section 6.

Initial work of extending the PDM (Active Shape Model) to 3D has already been

proposed by [Hill, 1995].
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Ferryman et al use PCA on 3D rigid models to build a deformable model for

various different car shapes which is used to locate and track moving traffic

[Ferryman, 1995]. The process is very similar to that of the PDM. However,

instead of modelling the object as points that make up the boundaries of the

object, points are chosen at landmarks such as corners, and the model built up

from the known interconnection of these points.

O’Toole et al presented work for 3D models of faces represented as a mean face

with weightings that can be used to deform the model [O’Toole 96]. Faces were

built up as 3D surfaces from a set of 65 male and 65 female heads. PCA analysis

was performed to provide a compact model. They show that the primary mode of

variation of the eigenface data set provides the mapping from a male head to a

female head.

2.4 Non Linear PDMs

The linear formulation of the PDM relies on the assumption that similar shapes

will produce similar vectors. This being the case, it is a fair assumption that the

training set will generate a cluster in some shape space. However, it is unfair to

assume that this cluster will be uniform in shape and size. As more complex

models are considered the training set may even generate multiple, separate

clusters in the shape space.

Under these circumstances the linear PDM will begin to fail as non-linear

training sets produce complex high dimensional shapes which, when modelled

through the linear mathematics of PCA, produce unreliable models. The nature

of non-linear shape spaces will be discussed in depth in later chapters but a

number of authors have addressed the problems associated with the construction

of non-linear PDMs.

Where rotational non-linearity is known to be present within a model this can be

removed/reduced by mapping the model into an alternative linear space. Heap

and Hogg suggested using a log polar mapping to remove non-linearity from the

training set [Heap 95]. This allows a non-linear training set to be projected into a
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linear space where PCA can be used to represent deformation. The model is then

projected back into the original space. Although a useful suggestion for

applications where the only non-linearity is pivotal and represented in the paths

of the landmark points in the original model, it does not provide a solution for

the high non-linearity generated from other sources.

Higher order non-linearity is often the result of incorrect labelling of training

examples. By carefully selecting landmark points by hand, a near optimum

labelling can be achieved which will minimise the non-linearity of a training set.

However, for all but the most simple of cases this is not a feasible solution. Often

semi-automated procedures are used where a user can speed up the process of

labelling example shapes for analysis. Fully automated procedures are rarely

used due to the problems of correctly assigning landmarks and the highly non-

linear models that this produces.

Work done by Baumberg and Hogg goes some of the way to solving non-

linearity in deformable models by using a B-Spline representation. Landmark

points for the Spline are represented as a PDM [Baumberg, 1995]. The curvature

of the B-Spline takes on some of the non-linearity of the model and therefore

reduces the problems presented with linear PDM representing non-linear models.

It has been proposed by Kotcheff and Taylor that non-linearity introduced during

assembly of a training set could be eliminated by automatically assigning

landmark points in order to minimise the non-linearity of the corresponding

training cluster [Kotcheff 97]. This can be estimated by analysing the size of the

linear PDM that represents the training set. The more non-linear a proposed

formulation of a training set, the larger the PDM needed to encompass the

deformation. The procedure was demonstrated using a small test shape and

scoring a particular assignment of landmark points according to the size of the

training set (gained from analysis of the principal modes and the extent to which

the model deforms along these modes, i.e. the eigenvalues of the covariance

matrix). This was formulated as a minimisation problem, using a genetic

algorithm. The approach performed well but at a heavy computation cost

[Kotcheff 97].
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As the move to larger, more complex models or 3D models is considered, where

dimensionality of the training set is high, this approach becomes unfeasible. A

more generic solution is to use accurate non-linear representations. As linear

PCA is used for linear PDMs, so, non-linear PCA can be used to model non-

linear PDMs and many researchers have proposed approaches to this end.

Sozou et al first proposed using polynomial regression to fit high order

polynomials to the non-linear axis of the training set [Sozou 94]. Although this

compensates for some of the curvature represented within the training set, it does

not adequately compensate for higher order non-linearity, which manifests itself

in the smaller modes of variation as high frequency oscillations. In addition, the

order of the polynomial to be used must be selected and the fitting process is

time consuming.

Sozou et al further proposed modelling the non-linearity of the training set using

a backpropagation neural network to perform non-linear principal component

analysis [Sozou 95]. This performs well, however the architecture of the network

is application specific; also, training times and the optimisation of network

structure are time consuming. What is required is a means of modelling the non-

linearity accurately, but with the simplicity and speed of the linear model.

Several researchers have proposed alternatives, which utilise non-linear

approximations, estimating non-linearity through the combination of multiple

smaller linear models [Bowden 97; Bregler 94; Cootes 97; Heap 97]. These

approaches have been shown to be powerful at modelling complex non-linearity

in extremely high dimensional feature spaces [Bowden 97].

The basic principle behind all these approaches is to break up any curvature into

piecewise linear patches, which estimate the non-linearity rather than modelling

it explicitly. This is akin to the polygonal representation of a surface. A smooth

curved surface can be estimated by breaking it down into small linear patches. In

the field of computer graphics this technique is performed to reduce render time.

There exists, of course, a trade off between visual accuracy and computation
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speed (where the minimum numbers of polygons are used to achieve the desired

appearance). The same problem is present in non-linear PDM estimation, where

the minimum number of linear patches that accurately represent the model must

be determined.

Bregler and Omohundro suggested modelling non-linear data sets of human lips

using a Shape Space Constraint Surface [Bregler 94]. The surface constraints are

introduced to the model by separating the space surface into linear patches using

cluster analysis. However the dimensionality of these 'lip' shape spaces is low as

is the non-linearity due to the simplified application of the work.

Cootes and Taylor suggested modelling non-linear data sets using a Gaussian

mixture model, which is fitted to the data using Expectation Maximisation

[Cootes 97]. Multiple Gaussian clusters are fitted to the training set. This

provides a more reliable model as constraints are placed upon the bounds of each

piecewise patch of the shape space, which is modelled by the position, and size

of each Gaussian.

Both of these estimation techniques become unfeasible as dimensionality and

training set size increase. However by projecting the training set down into the

linear subspace as derived from PCA the dimensionality and therefore

computation complexity of the non-linear analysis can be reduced significantly to

facilitate statistical and probabilistic analysis of the training set. This projection

relies upon the dimensional reduction of PCA while retaining the preservation of

the important information, the shape of the training set [Bowden 97; Bowden 98]

and will be discussed fully in the following Chapters.

2.5 Tracking

By treating the problem of model fitting and tracking as an optimization

technique the problems of discontinuity can be overcome. Hill et al proposed

using genetic algorithms to model the discontinuous changes in shape

space/model parameters [Hill 91][Hill 92]. Cootes et al present the use of genetic

algorithms for initial image search and initialisation of PDMs within the image
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frame [Cootes 95]. The use of genetic algorithms to overcome the complexities

of tracking with the piecewise non-linear model has been investigated. However,

the performance of such an approach relies largely on the formulation and

structure of the genetic algorithm itself.

Blake et al emphasised the advantage of using low-parameter descriptions of

deformable models in terms of B-Splines [Blake 93]. In this method, a

deformable model is regarded as a linear combination of basis templates, and the

state of the model is specified by a vector of coefficients for these templates. The

mode leads naturally to a Kalman filter formulation in which the model is driven

by an explicit local search for edges lying perpendicular to its boundary. These

suggested movements are then used to update the model via the Kalman filter.

Ivinns and Porrill suggested a similar approach but propsed an alternative to the

Kalman filter using an explicit least-squares approximation [Ivins 98].

Numerous approaches and variations exist on the subject of object tracking but a

recent development is that of CONDENSATION [Blake 98][Isard 98]. Blake and

Isard presented the Stochastic Conditional Density Propagation

(CONDENSATION) algorithm in which the location of a contour or object is

probabilistically tracked over time using a model of the object’s dynamics to

predict movement.  Objects are not represented by a single parameterisation but

instead by a probability density function (PDF) which represents all possible

parameterisations of the model. By generating multiple hypotheses from this

distribution at each iteration, and checking each hypothesis against the image for

supporting information, CONDENSATION allows objects to be tracked which

exhibit discontinues movement in complex noisy scenes.
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3 Linear Point Distribution Models

3.1 Introduction

The principle behind the Point Distribution Model (PDM) [Cootes 95] is that the

shape and deformation of an object can be expressed statistically by formulating

the shape as a vector representing a set of points that describe the object. This

shape and its deformation (expressed with a training set, indicative of the object

deformation) can then be learnt through statistical analysis. The same technique

can be applied to more complex models of grey scale appearance or

combinations of these techniques [Cootes 93][Lantis 95][Cootes 98]; however,

the underlying linear mathematics for model representation remains the same.

This chapter will introduce the principle, construction and application of Point

Distribution Models. Section 3.2 will provide an overview of PDM construction.

Section 3.3 will discuss the use of PDMs in tracking deformable objects and

section 3.4 will briefly discuss the reconstructive ability of models. Lastly

conclusions will be drawn.

Chapter 3
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3.2 Constructing a Point Distribution Model

3.2.1 Overview

To construct a point distribution model the shape of an object is expressed

mathematically as a vector. For a simple 2D contour, each pose of the model is

described by a vector xi
n2ℜ∈  = (x1, y1, . . . ,xn ,yn), representing the set of points

specifying the path of the contour (see Figure 3.2.1). A training set E of N

vectors is then assembled for a particular model class. In each example, the

points which specify the shape of the contour are selected such that there is a

correspondence of features between examples, e.g. in the hand example, if the jth

point (xj,yj) is the tip of the middle finger, it should remain so throughout all

training examples. In order to achieve this it is often necessary to align the

examples with each other and resample the contour by identifying landmark

points to provide consistency throughout the training set.

Figure 3.2.1 - 2D Contour of a hand

As the vector, xi, is effectively a point in a 2n dimensional space (xi 
n2ℜ∈ ) and

each vector is similar in shape, each example will produce a similar point in this

2n dimensional shape space. In fact, it would be expected that the training set

will form a relatively tight cluster. By analysing the shape of this cluster, the

deformation contained within the training set can be learnt and generalised. This

is done by making the assumption that the shape of the cluster is hyper-elliptical

(x1,y1)

(x2,y2)

(x3,y3)

(x4,y4)

(xn-1,yn-1)

(xn,yn)
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and performing Principal Component Analysis (PCA) upon the mean zeroed

training set to discover the position and parameters of the ellipsoid in shape

space.

PCA projects the data into a linear subspace with a minimum loss of information

by multiplying the data by the eigenvectors of the covariance matrix constructed

from the training set. By analysing the magnitude of the corresponding

eigenvalues, the minimum dimensionality of the space on which the data lies can

be calculated and the information loss estimated.

The principle is demonstrated in Figure 3.2.2, where the primary orthogonal axis

and its bounds are determined which describe the 3D elliptical cluster. The

centeroid of the cluster (i.e. the mean vector) is the mean shape of the training

set. The vector v1 is the primary axis of the cluster with v2 the secondary

orthogonal axis and v3 the third. Once this analysis has been performed the shape

can be restricted to lie within this cluster so constraining the shape of the model.

From this learnt model of deformation, all shapes that were present in the

training set E can be reconstructed. In addition, many other shapes (hopefully

viable) not present within the original training set can also be constructed i.e. the

PDM generalises the shape space contained in E.

Figure 3.2.2 - Hyper-elipsoid in n Dimensional Space

x

v1

v3

v2z

y

v = eigenvectors

Hyper-elliptical
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Unfortunately, for all but the most simple of PDMs this hyper-elliptical

assumption does not hold true and the linear mathematics behind the process

generates a weak/un-robust model. This will be discussed in more detail in

Chapter 5.

The construction of a Point Distribution Model can be summarised with the

following algorithm,

1. Assemble a training set of shapes that represent an object class and its

indicative deformation.

2. Resample each example to provide a consistent dimensionality

throughout the training set.

3. Minimise the difference between examples by aligning each training

example using rotation, scaling and translation.

4. Normalise the training set to provide numerical stability

5. Learn the shape space by performing Principal Component Analysis

(PCA)

N.B. Steps 2 and 3 can be reversed depending upon the schemes used.

The remainder of this section will consider each of these steps in turn.

3.2.2 Obtaining Training Examples

In order to learn the natural deformation of an object class, a training set is first

assembled. This training set must be indicative of the object deformation that is

to be learnt.

Typically, training examples are extracted by hand (as in [Cootes 95][Ferryman

95][Heap 95]) to ensure that a uniform and well-labelled training set is obtained.

However, for all but the most simple of objects this is an unfeasible approach.

Other approaches to the automatic and semiautomatic generation of training

examples are the use of snakes [Kass 88] to segment simple deformable objects
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from image sequences. In a temporal image sequence the pose of a converged

snake can be used as an initial estimate for the next frame reducing the

susceptibility of snakes to their initial location. Cootes et al have also proposed

using the PDM itself to locate new objects by bootstrapping the procedure and

using a partially 'learnt' PDM to constrain segmentation of future models.

Other researchers have shown how incremental eigen models can be used to

recalculate the deformation of a model in light of new training examples without

the need for a full decomposition on the co-variance matrix [Hall 98]. Although

it has not been demonstrated that this could be used in the construction of

examples, it is evident that this type of procedure could be invaluable in the

automated construction of deformable models. An initial PDM could be used to

locate and extract further examples which could then be added to the model,

without the need for a full recomputation of the model.

A simple but effective approach can be achieved by tracing by hand a 2D contour

representing features from an image and recording the path taken as the shape is

traced. Although this aids in the assembly of a model, producing a chain code

representation of the contour, it must be correctly labelled and resampled to put

training examples within a mathematical framework on which PCA can be

performed.

Automated methods produce similar results and can easily be achieved where

only external boundaries are required. Throughout this work a common

technique used to automatically extract contours is a simple boundary-tracing

algorithm on binary blobs to extract the external contour of objects. This is

facilitated through the use of a blue screen techniques to aid binary segmentation

and will be seen in later chapters.

3.2.3 Landmark Point Assignment

In order to perform statistical analysis on a training set the procedure assumes a

single cluster is formed in shape space by the training set. This assumption works

on the principle that common points along the contour boundary do not change
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between examples. Similar shapes therefore produce similar vectors which

occupy a tight cluster in shape space. However, in order for this assumption to

hold true, consistent points along the contour must be located.

The acquisition method for training data, as previously discussed, depicts the

extent of this problem. Where a simple chain code representation is generated,

there is no guarantee of consistency between examples. In fact, examples will

generally differ in length due the size, shape and orientation of the object and

how it projects onto the image plane. As the shape deforms, the number of pixels

constituting the contour varies. As PCA relies on learning a hyper-ellipsoid in n

dimensions, all examples must be n dimensional.

A simple form of resampling can be performed by equally spacing the new n

dimensional vector along the original point contour using linear interpolation.

However, this simple resampling scheme leads to a break down of the single

cluster assumption (see Chapter 6.5.5). To provide a better sampling scheme

landmark points are identified which correspond to specific features of the

contour and resampling performed between them. These landmarks could be

high curvature areas, corners or the physical features of an object. Whether

extracted manually or automatically, the number of successfully located

landmark points will increase the correspondence between training examples.

Techniques such as snakes and the bootstrap PDM methods mentioned in the

previous section help alleviate this problem as they produce examples which are

naturally within the PCA co-ordinate frame.

Other labelling techniques have been proposed such as Genetic Algorithms (see

Chapter 2).

3.2.4 Training Set Alignment

Cootes et al suggested aligning training examples by calculating the scaling,

translation and rotation of each model to minimise the sum of the squares of

distances between equivalent points for all examples. This exhaustive process
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although suitable for simple 2D contours of low dimensionality does not provide

a suitable approach for more complex high dimensional objects.

In order to reduce the computational complexity of the approach it is possible to

locate specific features of the object such as high points in curvature, or the

moments of the object, and minimise according to these features. This can be

done by analysing the constituent points of the contour and extracting specific

features. Figure 3.2.3 demonstrates an approach to alignment by calculating the

primary axis of the 2D contour: (a) The contour is first translated so the centroid

of the object is at the origin; (b) By performing PCA on the contour points, the

principal axis of the shape can be determined; (c) Finally the contour is rotated so

the moments of the shape are aligned with the axis of the co-ordinate system.

Figure 3.2.3 - Aligning the training set

(a) Move centeroid to origin, (b) Find Principal axis of shape
(c) Rotate to align object

It is necessary to rescale the training set to provide numerical stability during the

learning process. However, if each shape is simply normalised, important

information about the relative size of examples is lost. A suitable scaling for the

contour can be extracted by calculating the mean distance of contour points from

the origin (centroid) over the entire training set and scaling each accordingly,

where

Equation 3.2-1
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This gives a pseudo normalisation where all training examples are approximately

unit length while retaining the subtle size variation between examples. As this

procedure uses the moments of the contour as features, this alignment can be

performed prior to resampling and used to aid landmark point assignment.

3.2.5 Learning Shape Space

Once a resampled training set E of N examples, xi (i=1, ..., N), is assembled. The

training set E is aligned (using translation, rotation and scaling) and the mean

shape calculated by finding the average vector. To represent the deviation within

the shape of the training set Principal Component Analysis is performed on the

deviation of the example vectors from the mean using eigenvector decomposition

on the covariance matrix S of E where,

Equation 3.2-2 ∑
=

−−=
N

i

T
iiN 1

))((
1

xxxxS

The t unit eigenvectors of S (corresponding to the t largest eigenvalues) supply

the variation modes; t will generally be much smaller than 2n, thus giving a very

compact model. A deformed shape x is generated by adding weighted

combinations of vj to the mean shape:

Equation 3.2-3 ∑
=

+=
t

j
jjb

1

vxx

where bj is the weighting for the jth variation vector.

The formulation of the PDM can also be expressed in matrix form [Cootes 95]

Equation 3.2-4 Pbxx +=

where ),,,( 21 tvvvP !=  is a matrix of the first t eigenvectors where

n
i

2ℜ∈v and T
tbbb ),,,( 21 !=b  is a vector of weights.
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Chebyshev's theorem [Walpole 98] links the probability of the occurrence of data

lying within the area of a normal distribution from the mean. This theorem is

summarised by Table 3.2-1 [Elsayed 96] and demonstrates that there is a

probability of .998 that the data will lie within three standard deviations of the

mean. Principal Component Analysis makes the assumption that the training set

is a multivariate Gaussian. As 
jj σλ ≈  (the standard deviation of the variance

along vj), suitable limits for bj are between λ j
5.2±  and λ j

3± , where
jλ  is the

jth largest eigenvalue of S. Hence the multivariate Gaussian is bounded such that

it encompass in excess of 98% of the deformation.

u
uxxP +,

0 0
σ5.0 0.192

σ 0.341
σ5.1 0.433
σ645.1 0.450
σ96.1 0.475

σ2 0.477
σ5.2 0.494
σ575.2 0.495

σ3 0.499

Table 3.2-1 - The area probability under a normalised Gaussian distribution

When high dimensional data sets are considered, eigenvector decomposition

becomes a time consuming process, as the co-variance matrix is a square nn 22 ×

matrix for a 2n dimensional data set. The memory requirements needed to store

this matrix also become prohibitive as the size of the matrix approaches the size

of a computer’s physical memory. However, it is not always necessary to solve a

matrix for all eigenvectors. If the number of training examples, N, is less than the

dimensionality 2n, the number of eigenvectors that can be extracted from the co-

variance matrix cannot exceed the number training examples (N-1). For high

dimensional problems, this is often the case and significant computational

uxx +,P

x ux +

σ
399.0

( )xp

x
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benefits can be gained by solving for a smaller NN ×  matrix derived from the

same data. If the covariance matrix,

∑
=

−−=
N

i

T
iiN 1

))((
1

xxxxS

is rewritten as

T

N
DDS

1=

where D is a Nn×2  matrix with the examples as columns.

Cootes et al demonstrated that if a new matrix T is a smaller NN ×  matrix

DDT T

N

1=

and ei (i=1, ..., N) are the unit, orthogonal eigenvectors of T with the

corresponding eigenvalues iγ :

iii eTe γ=  (i=1, ..., N)

then

iii
T

N
eDeD γ=1

premultiplying by D yields

iii
T

N
DeDeDD γ=1

and therefore

( ) ( )iii DeDeS γ=

Thus if ei is an eigenvector of T, then Dei is an eigenvector of S and has the same

eigenvalue. The N unit orthogonal eigenvectors of S are then vi (i=1, ..., N),

where

Equation 3.2-5 i

i

i
N

Dev
γ
1=

with corresponding eigenvalues ii γλ = .
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3.2.6 Human Head Example

To demonstrate the construction of a 2D PDM a model of a human head was

constructed. Figure 3.2.4 shows the training set used to generate the model along

with the source image from which the contour was extracted. The contour is

selected such that it follows the high intensity edges of the face.

Figure 3.2.4 - Training Examples for 2D Head PDM

Figure 3.2.5 - Landmark points of the 2D Head PDM

Each 2D contour consists of 66 points (i.e. n=66), 40 for the external contour of

the face, 6 for the mouth and 10 for each eyebrow. As each point is a 2D point in

the image frame this generates an example 1322 ℜ⇒ℜ∈ nx . After the training

set has been aligned, PCA is performed to extract the primary modes of

deformation i.e. the eigenvectors. The eigenvalues provide bounds for the

deformation along any mode or eigenvector as previously discussed, but by

analysing the eigenvalues further the true dimensionality of the model can be

determined.
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Figure 3.2.6 shows the normalised eigenvalues sorted into descending order. As

there are 9 training examples, this results in 8 eigenvectors (i.e. N-1 modes,

where N=9). The larger the eigenvalue the more significant the corresponding

eigenvector or mode of variation. As the number of the mode increases, so the

significance of the mode decreases. By analysing these eigenvalues, the linear

subspace on which the data lies can be determined and the information loss

estimated.  The use of this technique is discussed further in section 5.3.

Graph showing Normalised Eigenvalues for 2D Head PDM
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Figure 3.2.6 - Graph showing Normalised Eigenvalues for the 2D Head PDM

Figure 3.2.6 also shows the sum of the normalised eigenvalues. As the number of

modes increase this sum of the normalised eigenvalues approaches 1. If this is

converted into a percentile, it provides an indication of the amount of

deformation contained within the accumulated modes. The combination of all 8

modes results in a sum of 1 or 100%. Therefore using all 8 modes of

deformation, the model is capable of representing 100% of the deformation in the

training set. It can be seen that the primary mode alone accounts for 40% of the

deformation represented within the training set. It can further be seen that the

90% of the deformation is contained within the first 6 modes. If the loss of 10%

of deformation is tolerable then the data can be said to lie upon a six dimensional

space and not 122 as originally formulated. This provides a dimensional

reduction of 122 to 6 and will be discussed further in section 5.3.
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Figure 3.2.7 - Primary mode of the 2D Head PDM

Figure 3.2.7 shows the primary mode of variation drawn at intervals along the

primary axis from λ 1
2±  from the mean. This primary mode has clearly picked

out the turning motion of the head. The model has generalised the training set and

learnt what is typical deformation for the object. By applying different weighting

combinations of bj to Equation 3.2-3 new examples of the face under deformation

can be generated.

3.3 Active Shape Models

3.3.1 Overview

The Point Distribution Model contains the constraints on deformation for a

model class that has been learnt from a training set of examples. Cootes et al

describe Active Shape Models (ASMs) as the application of this deformable

model (PDM) to tracking objects within the image frame. In order to facilitate

this, the object must be able to 'move' in addition to deform within the image. For

a 2D contour, this movement consists of a translation, scale and rotation.

Assuming a constant scaling in x and y this generates four parameters which

position and orient the model within the image frame, where an instance X of the

model is given by

( )[ ] csM XxX += θ, , where

T
ccccccc yxyxyx ),,,,,,( !=X

( )θ,sM  is a rotation by θ  and a scaling by s, and (xc,yc) is the position of the

centre of the model in the image frame.

−2
1λ +2

1λMean Shape
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The ASM assumes that the next pose of the model X', will be a small variation

on X (the initial pose) and requires that X be close to the desired feature. The

model is then iteratively refined by calculating a new pose for the model X' by

adjusting s, θ , xc, yc and the deformation parameters b in order to find the closest

pose to the desired model in a least squares sense.

Throughout the course of this text the term least squares gradient descent

tracking will be used to describe the common ASM tracking algorithm.

The ASM tracking algorithm can be summarised as

1. Initialise a model X, close to a desired feature in the image frame.

2. While still tracking,

3. Using a local feature detection scheme assesses the next best

movement of the model X'.

4. Update the parameters s, θ , xc, yc  to minimise the distance

between X and X'.

5. Update the shape parameter weightings b to mimise the distance

within the constraints of the model.

Each of these steps will now be considered in turn.

3.3.2 ASM Initialisation

Due to the local search method used when deforming the contour (see next

section) and the least squares parameter approximation, it is important that the

initial contour is placed close to the desired feature. Hill et al described how a

Genetic Algorithm (GA) search can be used to facilitate this [Hill 92a][Hill 92b].

Cootes et al have also demonstrated how multi-scale approaches to image

searching can be used to reduce this susceptibility to model initialisation and

providing more robust tracking [Cootes 98]. However, given an object of a

specific class, other indicative features can be used to initialise the model. As

these features are only required for initialisation or re-initialisation when the

contour is lost, the computational complexity of such strategies is less important.



In chapter 9 it will be demonstrated how colour features, such as those discussed

in chapter 4, can be used to initialise a model within the image frame.

3.3.3 Feature Detection

A PDM which consist of a 2D contour, typically represents the edges of an

object within an image. An edge is a high rate of change in pixel intensity and

edge detection algorithms are commonplace in image processing [Ballard 92;

Russ 94]. However, as only a local search of the image is necessary and edges

must be perpendicular to the contour, hence normal convolution methods are not

necessary.
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( )2
)()(

2
)()( 1111 , −+−+ −+−−+− − mmmmmmmm xxxxyyyy

mn
#

 which can be rewritten as

( )2
)(

2
)( 1111 , −+−+ −− − mmmm xxyy

mn
#

The unit vector normal 
m

m
m n

n
n #

#
" =  is therefore a one pixel length vector

perpendicular to the contour at point m. Using this locally estimated normal, the

intensity of pixels either side of the contour can be examined and any high

intensity gradients (edges) located.

As the contour is designed to lie tangential to the high intensity edges within the

image a 2D convolution is not necessary. Therefore, only the contour normal

need be searched. This localised search provides a large computational saving

over other convolution based methods such as the original formulation of the

snake where an entire gradient image is pre-computed [Kass 87]. This also

demonstrates the applicability of the colour enhancement approaches described

in chapter 4, as they can be used without a significant computational overhead.

A pixel's intensity gradient along a 1D line can be estimated using a number of

schemes. The simplest is possibly the local difference in intensity 1−−= iii IIdI ,

where I is the intensity of a pixel. A 2nd derivative 1D Laplacian function

111
2 2 −++ +−=−= iiiiii IIIdIdIId  (which has a zero crossing value) provides an

indication of a strong edge when 02 =iId , or more realistically

when [ ]( )22min i
i

Id . However, these methods are susceptible to noise and best

results have been achieved using a 1D Gaussian derivative kernal which both

smooths (blurs) in addition to detecting edges where

321121 4554 +++−−− −−−++= iiiiiii IIIIIIGaussian

The best edge along a normal, and hence the movement for a point Pm upon a

contour can therefore be estimated as

wnPP mmm ×+=′ ˆ , where ( )inP

l

li
mm

Gaussianw ×+
−=

= ˆmaxarg
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Once a new position P'm has been located for each point m along the contour, a

new vector representing the model X' is constructed by concatenating the points

into a vector as done earlier. This provides a new (noisy) shape vector where

each contour point has been moved to its best match edge location where

XXX d+='

In order to calculate the constraints on the shape of the object, the contour must

be transformed into the PCA co-ordinate space. In doing this the parameters (s,

θ , xc, yc) which provide the mapping from the model space to image space are

derived.

3.3.4 Iterative Refinement

Once a model has been initialised in the image frame, the model need only make

small iterative refinements to its shape and position between frames. Providing a

high frame rate can be achieved (and hence this assumption holding true), local

search techniques can be used to reduce the computational complexity of model

tracking.

The parameters xc, yc are first calculated by finding the centeroid of the new

contour X',

∑
=

′==
n

i
ic x

n
xx

1

1

∑
=

′==
n

i
ic y

n
yy

1

1
, where ),,,,,,(' 2211 nn yxyxyx ′′′′′′= !X

therefore the mean point of the contour is equivalent to the contour position in

the image frame where

Equation 3.3-1 T
ccccccc yxyxyx ),,,,,,( !=X
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The rotational parameter θd  is calculated by taking the average dot product of

contour points ( )iii yxP ,′ with the model contour points ( )jjj yxP , .

Using  2121 cos vvvv •=θ

Equation 3.3-2 ( ) ( ) 




 ⋅= ∑

=
′−′
′−′

−
−−

n

i
PP
PP

PP
PP

ci

ci

ci

ci

n
d

1

1 1
cosθ

The scaling parameter ds  is calculated by taking the average difference of the

length of the contour from the centeroid between iterations.

Equation 3.3-3 ( )∑
=

′−′−−=
n

i
cici PPPP

n
ds

1

1

This can be performed in both x and y separately to allow shearing of the

contour.

This 'noisy' contour is then transformed into the PCA space and the residual

movements of the contour points, xd , calculated where

Equation 3.3-4
xXXxx −−++−+= − ]])[,())[(,))1((( 1

cddsMddssMd θθθ

As all rotation, scaling and translation has now been removed, the residual

movements, xd , can only be resolved by deforming the model. This is done by

projecting the residuals into the PDM and finding the set of weightings which

provide the closest 'allowable' point in space to xd .

From Equation 3.2-4

)( bbPxxx dd ++≈+

therefore

xPb dd 1−=

 or xPb dd T=  since 1−≡ PPT , as the columns of P are mutually orthogonal and

of unit length [Cootes 95].
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The weighting vector is then adjusted to ensure that each parameter lies within

the range learnt during PCA where

bbb d+=′ , and iii b λλ 33 ≤≤−

The procedure then repeats using these new parameters for the next iteration.

3.4 Reconstructive Ability

The PDM learns shape space and in doing so generalises what is valid

deformation, allowing valid unseen data to be reproduced in addition to the

original training examples. Figure 3.4.1 shows a PDM of the hand tracking a real

hand within the image. In this figure the first finger has been bent, however, the

model remains with the finger extended. This is due to the fact that during

construction no examples were provided in the training set that represented this

type of deformation of the model. As no deformation is learnt the model is

constrained to the extended pose. These constraints on shape provide a robust

model for tracking where occlusion or clutter is present. If part of the hand is

obscured the model will fill in the missing contour as the deformation of all

points are statistically linked together.

Figure 3.4.1 - Constrained PDM tracking hand
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To illustrate the reconstructive ability of the PDM a sample training set was

constructed which consisted of examples of leaf. Each leaf was segmented from

images using a colour threshold and boundary-tracing algorithm. The contour

was aligned as described in section 3.2.4 and four landmark points identified at

the horizontal and vertical extremities of the boundary. Further points were then

introduced at regular intervals between the landmarks. Before PCA is performed

all shape vectors are normalised to provide numerical stability. The resulting

PDM is shown in Figure 3.4.2. After PCA, 99.9% of the deformation contained

in the training set is encompassed by the 44 eigenvectors corresponding to the 44

largest eigenvalues. Figure 3.4.2 show the primary 5 modes of variation, which

corresponds to the 5 largest eigenvalues after PCA. The centre shape shows the

mean, and the deformation from left to right shows the effect of each mode of

variation.

It can be seen that the 1st mode of deformation encompasses the horizontal size

of the shape, i.e. how elongated the leaf is. The 2nd mode is partly responsible for

the curvature and size of the sample at its extremities, through their combination

all training leaf samples can be reconstructed.

Figure 3.4.2 - First Five Modes of variation of the leaf PDM

1ST MODE

2ND MODE

3RD MODE

4TH MODE

5TH MODE
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Using the primary 44 modes of variation the accurate reconstruction of shape is

possible. However, this is more information than is required for the purposes of

the investigation. By reducing the number of modes further, two objectives are

achieved. Firstly, the size of the model is reduced. Secondly, only the major

deformations of shape are modelled and the finer deformation disregarded, i.e.

the shape is smoothed while retaining the important information.

Figure 3.4.3 shows the results of using only the first nine modes of variation to

reconstruct the shape. Notice that although the overall shape of the leaf is

preserved the model is considerably smoothed.

Figure 3.4.3 - Training examples and the reconstructed shape using 9 modes
of variation

Although this smoothing is a lossy compression technique, the information that

is discarded is of little use. This is due to small leaf samples where their

extraction resulted in blobs of the order of tens of pixels rather than hundreds.

The resulting boundary is heavily ‘step-like’ due to the pixelisation of the shape.

During re-sampling, bilinear interpolation results in the boundary being
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smoothed into unrepresentative shapes which are indicative of the modality used,

and not the actual leaf sample. By using the minimum number of modes to

reconstruct the shape, the errors introduced into the shape by the image size are

discarded and a better estimation of shape provided. Figure 3.4.4 shows a small

leaf sample, with the interpolated/resampled boundary and the resulting

smoothing which comes from PDM reconstruction. It should be noted that the

smoothed boundary produced by the PDM goes some way to reconstructing the

information lost during acquisition. This is due to the statistical nature of the

PDM and its knowledge of what a leaf ‘should look like’.

(a) (b)        (c)

Figure 3.4.4 - Training examples and the reconstructed shape using 9 modes

(a) Original Image of leaf (b) resampled boundary of leaf  (c) reconstructed

boundary of leaf

3.5 Conclusions

The statistical constraints of the PDM provide several benefits over other model-

based approaches. Firstly, the model is taught to fit known objects and

deformations even when slightly different from those present within the training

set. However, it does not allow deformation for unseen/unfamiliar objects i.e. it

generalises shape. Secondly, the mean distance of constrained contour points to

detected/desired edges can be used as a valuable error metric for model fitting.

The constraints provide robustness to noisy, partially occluded object boundaries

as well as background clutter and lastly the constraints allow the contour to

statistically infer contour shape in the absence of local information from other

available information.
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4 Enhancing Tracking Using Colour

4.1 Introduction

The colour content of an image is an important attribute, which is often

discarded. Common practice in the processing of PDMs and snakes is to merely

assess the intensity of pixels, processing as if grey scale i.e. calculating the mean

intensity of the red, green and blue colour channels.

This chapter will discuss how colour can be used to enhance the appearance of

objects in tracking algorithms. It will also be demonstrated how colour alone can

provide a reliable feature for locating and tracking moving objects. Section 4.2

will demonstrate how the simple weighting of colour channels can be used to

enhance specific features within an image. Section 4.3 will discuss the use of

perceptual colour representations (alternative colour spaces to red-green-blue,

RGB). Section 4.4 will discuss the advantage of colour in delineating regions.

Section 4.5 shows how more complex colour models can be constructed and used

to locate and track a humans. Section 4.6 demonstrates how these ideas can be

extended to provide a reliable, computationally inexpensive solution to head and

hand tracking, although these techniques extend to any colour object. Finally

conclusions are presented.

Chapter 4
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4.2 Weighted Greyscale Images

In the previous chapter it was shown how high intensity edges could be located

locally along a boundary. These high rates of change in pixel intensity were

located by assessing the first or second derivative of the intensity along a normal

to a boundary. This calculation is normally performed upon the grey scale values

of pixels. However, as has already been mentioned, the ready availability of

colour provides a far more distinguishable difference between foreground and

background objects within an image. By performing processing upon a grey scale

representation, calculated from the colour channels (typically the average

intensity of the three colour channels) a considerable amount of information

about object boundaries is lost.

Figure 4.2.1- RGB image of iso-intensity

Figure 4.2.1 shows an image consisting of three colour regions. Each region has

the same intensity in its colour channel: the red area has r=255, g=0, and b=0; the

green area has r=0, g=255 and b=0; etc. By taking the average of the three colour

channels at each pixel, the resulting image would have a constant intensity of 85

and no distinction would be possible between the various areas. However, in the

colour image, it is visually apparent that such a distinction does exist and very

clear boundaries are defined.

It is clear that reducing the colour information to one channel literally 'throws'

information away, information which may be invaluable to the application at

hand. One solution to this would be to process each colour channel individually.

This can be done by assessing normals for each colour in turn, calculating three

second order derivatives, and taking the average, where
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3
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 However, this is still an averaging approach and as such will smooth edges. In

addition, the approach effectively requires each normal to be assessed three times

and hence results in a significant decrease in speed.

If an object of interest is sufficiently prominent within one of the colour

channels, then the intensity of that channel can be used instead of the mean

intensity.

Figure 4.2.2 - The Separate Channels of a Colour Image

Figure 4.2.2 shows a colour image of a person in front of a blue backdrop, along

with the grey scale version of the image and the three separate colour channels

shown as grey scale intensity images. The grey scale image retains much of the

distinctions between regions seen in the colour image due to the small number of

highly distinct regions and the uniform background. The individual colour

channels, however, each emphasise certain aspects of the image. The blue

channel has a lighter background than red or green with a lower contrast figure.

This is to be expected, as the blue background will generate high intensities in

the blue channel. The red channel emphasises the skin regions of the subject, due

to the high red component in skin tones. If the object to be located or tracked

within the image were hands or head then using the red channel for image

processing would produce far superior results than tracking on the mean intensity

COLOUR IMAGE GREY SCALE IMAGE

RED CHANNEL GREEN CHANNEL BLUE CHANNEL



(as the mean intensity effectively smoothes out this distinction). However,

simply processing upon the red channel may disregard other important features.

In addition, other channels could potentially be used to subdue features that are

not desirable, i.e. the background. As it is known that the background is depicted

best in the blue channel, subtracting this from the red channel will further

increase the distinction between regions.
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1,0,1 −=== χβα
by tailoring these colour coefficients for specific applications, features can be

enhanced or subdued as required. Figure 4.2.4 shows the results of further

enhancing the skin regions by applying the coefficients 2,0,2 ==−= χβα .

Figure 4.2.4 - Enhancing features Using Colour Channels

4.3 Perceptual Colour Spaces

The RGB-colour space (typically used in computer applications) allows three

primary colour channels to be used to specify up to 16.7 million colours by

representing the colour space as a 3D-colour cube (each channel having 256

discrete intervals). This provides a simple mechanism for constructing and

representing a broad spectrum of colours. However, this is not an intuitive

representation in terms of human perception, where similar colours (as judged by

the eye) may occupy completely different areas of rgb-space. This is confirmed

by the initial observations made from Figure 4.2.1. It has already been noted that

the intensity of each colour region has the same value, even through the

distinction between the areas is visually apparent. Furthermore, the central green

region looks brighter to the human eye than either the red or blue regions. The

notion of a perceptual colour space is to model the colour volume so to better

correspond with how the human eye perceives colour and relative intensities.
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Discussions of colour perception usually involve three quantities, known as hue,

saturation and lightness. Hue distinguishes among colours such as red, green and

purple. Saturation refers to how far colour is from a grey of equal intensity, i.e.

red is highly saturated, pink is not, although both have similar hue/red-

component. Lightness embodies the achromatic notion of the perceived intensity

of an object. These perceptual colour spaces include Hue, Saturation, Value

(HSV) (or HSB for Brightness); Hue, Lightness and Saturation, (HLS) (or HSL

for Luminosity); and Hue, Value, Chroma, HVC [Foley 1990].

Figure 4.3.1 - HSV and HLS Colour Spaces

Hue Saturation Value (HSV or HSB) colour space is a hexcone or six sided

pyramid where Hue is the angle around the vertical axis, S is the distance from

the central axis and V is the distance along the vertical axis. Colours along the

vertical axis have zero saturation and are therefore grey scale values. Hue,

Lightness Saturation (HLS or HSL) colour space is a double hexcone and can be

thought of as a deformation of the HSV space.

The notion of separating colour from intensity provides a more robust method for

colour feature extraction. Where colours change from shading or lighting

differences, it would be expected that this would result in changes in intensity

but not in colour.
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Figure 4.3.2 – Separate Channels of HSL Image

Figure 4.3.2 shows the same colour image from section 4.2 converted in hue,

saturation and luminosity with each channel shown as an intensity image. It can

clearly be seen that the difference between the areas of the image is far more

distinct in both hue and saturation than in any of the rgb colour channels (Figure

4.2.2). The saturation image provides excellent segmentation between the skin

and other areas of the image frame, producing a distinct boundary between the

skin and background elements.

Some devices provide colour space conversions in hardware. However, for the

most part this must be implemented in software. For real-time systems where

each pixel must be transformed independently, this overhead can become a

significant speed-limiting factor. However, with contour based approaches this

conversion does not produce a significant overhead, as only pixels along normals

to the contour are assessed and hence need conversion.

A similar coefficient weighted expression to that demonstrated for rgb space can

be used in HSL space, where

( )lsh

lsh

yx
yxyxyxI ++

++=
,1max,

,,, χβα

Provided hsl values are normalised to the range 10 → .

Further extensions can be made by combining both RGB and HSL weighted

techniques. However, coefficient selection becomes a complex task. Instead, a

more generic, automated method of enhancing/extracting features is required.

Hue Saturation Luminosity
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4.4 Colour Thresholding

As was demonstrated in the previous section, areas of skin produce high values

in the saturation channel of the HSL colour image (Figure 4.3.2). These high

areas can be used to threshold the areas of skin from the image in a similar

manner to grey level thresholding. This technique is not dissimilar to

chroma/luma keying.

Figure 4.4.1 – Thresholded HSL Image

Figure 4.4.1 shows the saturation channel of the colour image. As the areas of

skin produce high values of saturation, these areas can be extracted simply by

thresholding the colour saturation channel into a binary image mask. The white-

segmented areas correspond to the location of skin within the mask. Figure 4.4.1

shows the results of taking the logical AND of the binary image with the

luminosity channel and demonstrates how the head and hands can be extracted

using colour saturation instead of intensity to delineate colour regions of the

image while retaining the internal features of objects or regions.

It should be noted that although the head and hands consist of various colour

changes due to the features such as eyes, nose and the effects of non-diffused

lighting, few of these features are apparent (to the eye) in hue or saturation. This

is due to the separation of the colour information from the brightness or

luminosity. The luminosity contains the information of how bright a pixel is and

the hue-saturation h-s pair provides the information about colour. Rather than

performing thresholding in 3ℜ of rgb, it can be performed in 2ℜ  of h-s space.

This provides a slight computational saving but has the added advantage that

with the intensity component removed, much of the lighting/shading differences

are absent. This provides a more uniform colour space in which to work.

Saturation Thresholded Binary
Binary  AND’ed  with

Luminosity
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Discarding the luminosity component of the colour effectively compresses the hsl

colour space down onto a two-dimensional hexagon. In this space, consistent

colours of varying luminance will produce clusters on the h-s hexagon. By

discarding the luminosity for HLS and the value component of HSV spaces, both

spaces become compressed onto the two-dimensional hexagon and the

distinction between the two spaces is lost.

4.5 Gaussian Colour Models

For a number of years, research at the School of Computer Science, Carnegie

Mellon University has used normalised rgb colour spaces to probabilistically

label and segment regions of skin from image sequences for the location and

tracking of the human face [Waibel 94] [Hunke 94] [Yang 98]. They have

demonstrated that human skin clusters in a small region of colour space: Human

skin colours differ more in intensity than actual colour, and under certain lighting

conditions, a skin colour distribution can be characterised by a multivariate

normal distribution in a normalised colour space [Yang 95]. Rainer, Stiefelhagen

and Yang use this colour labelling to provide a rough estimate of the location of

a head within the image frame to initialise a model based gaze tracking system

[Stiefelhagen 97] [Stiefelhagen 98]. The normalisation of the colour space

removes much of the variability in skin colour between individuals and lighting

inconsistencies such as shadows [Yang 98]. Ivins and Porril used a normalised

rgb colour space to label and track, in real-time, various colour regions of an

industrial robot arm [Ivins 98].

McKenna, Gong and Raja have extended this work on colour labelling into the

HSV colour space [McKenna 97]. Using a Gaussian mixture model to represent

the colour space, they have shown how multiple models for individuals can be

used to probabilistically label an image and determine the most likely person

present. Azarbayejani and Pentland have used similar methods in HSV colour

space to automatically segment both the hands and head from stereo image pairs,

and using this, calculate the position and trajectory in 3D space [Azarbayejani

96].



46

Work by these authors has shown that human skin naturally clusters in a small

region in colour space. Hunke and Waibel show that in a normalised rgb colour

space, statistical bounds can be approximated for colour clusters and used to

segment the human head from an image [Hunke 94]. Using colour as a feature

for tracking has several problems: firstly, the colour representation of a face

obtained by a camera is influenced by many factors such as ambient light, object

movement, and the effect of diffused and specular reflections of an object

moving relative to a light source. Secondly, different cameras produce

significantly different intensity responses for the same wavelength of light.

Thirdly, video signal encoding standards, such as PAL or NTSC, do not respond

to the full colour space and effectively flatten the resulting colour spectrums of

objects. Finally, human skin colours differ in rgb space from person to person

[Yang 98]. McKenna et al demonstrated how these problems could be partially

overcome by performing probabilistic classification in HS space, where

variations in intensity have been removed [McKenna 97].

Human skin actually occupies a small cluster in HS space regardless of race or

skin pigmentation. Differences in skin tone are primarily expressed by variation

in the intensity of the colour: once the intensity has been removed the h-s colour

space that they occupy is remarkably similar.

In order to verify this fact, four subjects were taken from different ethnic origins.

For each subject, pixels were sampled in rgb from the skin tones on the palm of

the hand. The results can be seen in the two graphs shown in Figure 4.5.1 and

Figure 4.5.2. These two graphs allow the visualisation of the volume of the rgb

colour cube in which the samples lie. It is clear that a fairly distinct single cluster

is generated by the samples. However, this sample occupies a relatively large

sub-volume of the total colour space. This is due to the difference in intensity of

the samples along its major axis i.e. the variation in intensity of the pixels across

any one sample.

Each sample pixel was then converted into HSL space, the luminosity discarded

and the results shown in Figure 4.5.3. The Hue-Saturation space shows a far

'tighter' cluster with little variation in either hue or saturation. It is also important
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to note that this colour 'fingerprint' of human skin is now 2 dimensional rather

than the original 3D-rgb space.

The large number of sampled pixels and similarity in each of the four ethnic skin

types makes the comparison of each difficult. To simplify, the mean and standard

deviations in each colour channel can be calculated by

∑
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=
n
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r
0

1
 and  ∑
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Figure 4.5.4 demonstrates the colours generated for the skin of four subjects with

varying racial origin and pigmentation.
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Red Green Plot of Human Skin Samples
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Figure 4.5.4 - Colour distributions of four skin types in r-g and r-b colour

spaces

Figure 4.5.4 shows the mean value for each subject plotted with the error bars

representing σ2± . It can be seen in the Red/Green and Red/Blue plots that the

various skin tones represent relatively small, overlapping clusters in RGB space,

with subtle differences between subjects as would be expected. The darkest mean

intensities are produced by the Chinese sample which would seem to contradict



52

any stereotypical observations about skin type. However, this is attributable to

the distance of the hand from the camera during sampling. The Chinese sample

was taken at a much closer distance than the other skin samples and hence

produced darker results. However, this variation in lighting makes little

difference to the results of the Hue Saturation plot.

Mean and Std Deviations of HS Skin Samples

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-180 -135 -90 -45 0 45 90 135 180

Hue

S
at

u
ra

ti
o

n

African Chinese Caucasian Sri'Lankan

Figure 4.5.5 – Colour distributions of four skin types in HS space

The Hue Saturation plot shows the same statistical representation of the various

skin types in h-s space. It can clearly be seen that this results in a far tighter

colour cluster, which seems to vary little between skin types. Even the Chinese

sample that produces dark results due to lighting is indistinguishable in the HS

plot.

By using this single extracted cluster in HS space and fitting a multivariate

Gaussian to it, a probabilistic measure that any pixel is human skin can be

determined. A more accurate Gaussian PDF can be constructed by performing

PCA on the colour cluster, and approximating its primary axis in addition to its

bounds, or using the sum of Gaussians as used in chapter 5. If a sample pixel
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from a new image is within the Hue-Saturation bounds of the Gaussian cluster

then that pixel is marked as a probable location. Selecting a threshold for which

probabilities of lower values are set to FALSE, and higher TRUE produces a

binary image. By performing erosion then dilation, noisy points are removed and

clusters of probable skin location consolidated into blobs. A simple blobbing

algorithm can then be used to calculate approximate locations of skin artefacts

within the image.

Figure 4.5.6 – Extracting Blobs of Skin

Figure 4.5.6 shows a sample image frame after processing. The results from the

blobbing algorithm are used to calculate the centre of objects by finding the

mean pixel of the blob and the approximate size by assuming circular blobs and

calculating the radius of a blob from the area (i.e. the number of points in the

blob). This is used to place a cross over the segmented features for demonstration

purposes. In this instance the three largest blobs found within the image are

deemed to constitute the head and the hands. The largest connected blob

extracted from the colour labelled image can be used as a rough initial estimate

for the position of the head.
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4.6 Tracking Colour Features

Using a single Gaussian cluster to probabilistically segment skin tones from an

image leads to noisy segmentations for two reasons:

1. The assumption that a single bivariate Gaussian is a good representation of

the colour cluster is not completely valid.

2. Background clutter can be misclassified.

Specular reflections are particularly vulnerable to misclassification. Another

draw back with the technique is that all the pixels of the image must be

transformed into HSL space and colour classification applied. This process

quickly becomes a computational overhead and when real-time applications are

considered (25Hz or more) the approach becomes unfeasible.

One alternative is to locally search for skin using a Region of Interest (ROI) or

window. Only pixels that fall within the ROI need to be converted and classified

which significantly speeds up the procedure. In addition, background clutter,

outside the ROI, cannot be misclassified. This produces a much cleaner

segmentation without the need for erosion/dilation as previously described.

In order to limit processing to within the window (ROI), a mechanism for

moving the window must be devised. This is itself a colour tracker, as the

window must track the object in order to successfully segment the skin tones.

If the assumption is made that the binary-segmented object has a central white

mass surrounded by black background, then the centre of gravity of the blob

should be at the centre of the window.

Using a binary image window of size sx, sy where, Ix,y is zero for the background

and one for segmented skin, the centre of gravity for the segmented feature can

be calculated by
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A simple translation can then be calculated to position the centre of the window

at the centre of gravity for the next iteration of the algorithm.

This assumption about the shape of an object within the window can also be used

to calculate a new window size for the next iteration. Figure 4.6.1 shows a

window of size 45x77 pixels with a binary segmentation of a hand achieved

using the Gaussian probabilistic threshold described earlier. The figure also

shows the horizontal and vertical histograms of the image. If the earlier

assumption about the location of an object within the window holds true, then it

can be assumed that these histograms will be approximately Gaussian, with their

peaks at the centre of gravity previously calculated. By making this Gaussian

assumption, the standard deviation in both x and y can be calculated and the

bounds of the window for the next iteration estimated.  Figure 4.6.1 also shows

this fitted Gaussian curve superimposed upon both the x and y histograms. The

Gaussian curve is estimated by calculating the standard deviation of the

histogram in both x and y. Once done it is known that one standard deviation

from the mean (σ ) represents 34.1% of the information, 2σ  represent 47.7% of

the information and 3σ  represents 49.9% (See Chebyshev's theorem, Section

3.2). It is therefore known that σ2±  from the mean encompasses 95.4%. This

simple calculation can be used to resize the window ensuring that over 95% of

the information is encompassed by the ROI. In the Figure 4.6.1 the window is

resized to σ2.2±  where,
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Figure 4.6.1 – Approximating the bounds on an object using a Gaussian

Assumption

This simple procedure is iterated for each new image frame of a real-time image

sequence. It relies upon a good initial location of the window. However, this can

be achieved by performing the full image segmentation as described in section

4.5.
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An Algorithmic overview is:

1. Construct PDF for colour thresholding model

2. Assign probability to each colour pixel from PDF

3. If probability is greater than some threshold  mark pixel as TRUE else

FALSE

4. Search image for largest blob

5. Calculate centre of blob and initialise window to this position

6. Calculate the approximate size of the blob and use to initialise window size

π
areablob

yx ss 2==

7. While window size is greater than some threshold,

8. Capture new image

9. Segment window using PDF and threshold

10. Calculate mean white pixel in x and y

11. Move window to x,y

12. Calculate the standard deviation in x and y, yx σσ ,

13. Resize window to yx σσ 2.2,2.2

14.  Return to 1

If the object is much larger than the window, then the Gaussian that is fitted will

be far larger and hence the window will grow in size until equilibrium is

achieved. Conversely, if the window is too large, the resulting Gaussian will be

far smaller than the window and hence the window will reduce in size until

equilibrium has been achieved. This approach allows colour objects to be

segmented and tracked quickly as the minimum amount of processing is

necessary on each frame.

Figure 4.6.2 (a) and (b) shows the progress of applying this active sampling

window to a live image sequence. As the hand is moved and rotated in the image

frame, the window dynamically recalculates its parameters to retain the hand

within its ROI. Figure 4.6.2 (c) shows the same procedure applied to the head

with no change in parameters. Although the model is trained upon a single

human, it has proved a generic skin tracker for all subjects regardless of skin type

and without the need for relearning the colour space of skin. If however, the
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lighting is changed, this requires that a new skin model be learnt due to the large

variations in frequency for different sources of light (i.e. fluorescent tube or

daylight). This provides a generic tracking approach for applications with

consistent illumination.

Figure 4.6.2 – Tracking head and hand in the image frame using colour

4.7 Conclusion

This chapter has demonstrated how colour can be used without high

computational cost to enhance vision algorithms. Several colour spaces have

been discussed and the benefits of 'perceptual' colour spaces demonstrated. It has

been shown that object colour is a powerful feature capable of facilitating the

robust tracking of objects in its own right. It has also been shown that with

simple techniques, colour features can provide a fast, robust approach to tracking

any generic colour object.

Throughout the remainder of this work, many of the simple techniques presented

here will be used to enhance techniques in general. Chapter 10 will actively use

the colour tracker approach presented in Section 4.6 but throughout the

remainder of this work the use of colour in PDM tracking and boundary

segmentation is implicit.

(a) (b) (c)
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5 Cluster Based Non Linear Point Distribution Models

5.1 Introduction

As was already mentioned in chapter 2, the major drawback with models which

rely upon principal component analysis to model deformation is the non-linearity

which is introduced either as natural curvature, inherent to the model, or

introduced during the alignment and construction process of the PDM. This non-

linearity within shape space (or PCA space) results in poor performance due to

the linear nature of the underlying mathematics.

Bregler and Omohundro proposed estimating non-linearity by breaking PCA

space down into piecewise linear clusters which could then be modelled with

multiple hyperplanes [Bregler 94]. More details on this technique are discussed

section 5.4. However, these Constraint Surfaces do not place any limits upon the

local linear patches within the model and hence the surface extends to infinity

producing un-specific models. The work of Bregler also concentrates on

extremely low dimensional shape spaces with minimum non-linearity, where

little concern is given to the application of computationally expensive

techniques. In practice, the technique does not perform well in high dimensional

spaces (as will be shown) due to both the computational complexity of cluster

Chapter 5
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analysis and PCA, in addition to the problems associated with discontinuous

shape spaces1.

The remainder of this chapter will propose an alternative approach, which,

although similar in nature, produces a more specific model. The construction of

such models along with the parameter selection will also be discussed. Section

5.3 will present the use of dimensional reduction techniques to disregard

redundancy in high dimensional data, allowing analysis to be performed in lower

dimensional spaces. Section 5.4 will discuss the method behind piecewise linear

approximations. Section 5.5 will then demonstrate the use of the technique with

example data sets. Section 5.6 will discuss the application of the model. Finally

the technique will be evaluated and compared to other approaches in section 5.7

and conclusions drawn.

5.2 An Example of non-linearity

One of the classic examples within the field of neural networks is that of a helical

data set. Helical datasets are often used to assess a neural network's ability at

creating a non-linear mapping. Figure 5.2.1 shows a helix in three dimensions

from a front and plan view. Although the helix exists in 3D, it is actually a one-

dimensional data set, and can be smoothly paramertised by a single value if the

primary non-linear axis, which follows the path of the helix, can be extracted.

                                                          
1 see Figure 5.4.5 and associated text for details
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.2.1 - Linear PCA, three-dimensional helical data set
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Figure 5.2.1(b) shows the helix parameterised by a single non-linear axis which

closely follows the path of the helix. Any point on the helix can be represented

by a single parameter which indicates the distance along this primary axis from

some origin. In order to accurately represent the non-linear data set, a means of

extracting the non-linenear axis is required. Unfortunately the data set is seldom

parameterised by a single axis and the problem of extraction is compounded by

the high dimensional nature of computer vision applications.

Figure 5.2.2– Non-linear PCA, three dimensional helical dataset

(a) non-linear modes of variation (b) segmenting shape space with multiple

planes

Figure 5.2.2(a) shows a secondary axis fitted to the data set. Here, the secondary

mode changes dependent upon the position along the primary axis. The fitting,

therefore, becomes a computationally expensive process in even the lowest of
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dimensional spaces. Figure 5.2.2(b) shows how the space can be segregated

through the use of multiple hyper-planes. This is akin to the procedure used by a

neural network when fitting to a data set. Although faster than attempting to fit

true curved axis to the data, it is essentially estimating the curvature to a

specified degree and hence has a loss in accuracy. This procedure also becomes

an infeasible approach as the dimensionality of the space increases. In order to

find a suitable technique for performing non-linear PCA, two considerations

must be addressed: the dimensionality of the data set must be reduced to a

managable level; a means of estimating the non-linearity (while retaining a low

computational complexity in both analysis and run time implementation) of the

final model is required.

5.3 Reducing Dimensionality

It is often important to decide what is the actual dimensionality of a data set, as

the true dimensionality is often lower than the dimensionality of the space in

which the data lies. This statement is more accurate when large dimensional

spaces are considered. For example a data set may exist in two dimensions, but if

it lies along a straight line then the true dimensionality is 1D. If, in general, the

position Nx ℜ∈  of a point in N-dimensional space were representable by a

relationship of the form )(uxx = , where u  is a point in Mℜ , then the data is said

to be M-dimensional. The transformation NMx ℜ→ℜ: provides the mapping

between the two spaces and allows any point Nx ℜ∈ to be dimensionally reduced

to Mℜ  [Waite, 1992]

Using PCA, the value of M can be determined and the information loss

estimated. This procedure also provides the transformation matrix that facilitates

the projection NM ℜ→ℜ .

The process of principal component analysis realigns the axis to fit the major

deviation of the data set. These extracted axes can be used to describe the data in

a new co-ordinate frame, which is the principle behind the PDM. As is typically

the case, training data can be represented using fewer eigenvectors than the
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original dimensionality (see Chapter 2). This is itself a lossy dimensional

reduction technique and relies on transforming the shape space into a lower

dimensional space. In this reduced dimensional space the original data and its

deformation from the mean can be expressed using the fewest number of

parameters possible as determined from the eigenvectors of the covariance

matrix.

By transforming the eigenvectors into percentiles it can be quickly seen how the

dimensionality of the reduced space relates to the information loss of the

reduction technique. By using the same analysis of this information as is used in

the construction of the PDM (see section 3.2) a suitable mapping can be

determined which provides minimal loss of information, typically less than 1%.
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Figure 5.3.1- Table showing eigenvalues of co-variance matrix extracted via

PCA

Figure 5.3.1 shows an example bar chart of eigenvalues extracted from a co-

variance matrix, converted into percentiles and sorted into order. It can be seen

that the 1st mode contains the majority of the deformation within the data set

with the subsequent eigenvectors contributing in diminishing amounts. By

summing the percentage contribution of each of the eigenvectors, a suitable

dimensionality for the reduction can be determined (see section 3.2). For this

example 99% of the deformation is encompassed within the first 6 eigenvalues

with the last three contributing little to the information. These smaller 3 modes

can therefore safely be discarded without adversely affecting the information

content of the data set. It is also useful to note that these smaller modes are often
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largely attributable to noise within the data set and hence discarding this

information can have benefits in smoothing the data.

Once the dimensionality, M, of the reduced space Mℜ  has been determined, the

M primary eigenvectors can be used to project the original data set into this lower

dimensionality. This is achieved by projecting the training examples onto each of

the eigenvectors in turn, and recording the distance from the mean. The resulting

transformed training set will therefore be represented in the lower dimensional

space (using the co-ordinate frame of the eigenvectors), while the important

information about the shape and size of the data remains preserved.

The dimensionally reduced vector is calculated as xr 
Mℜ∈ = (d1, d2, ....., dM),

where the jth component,

( )xxvd jj −•= Equation 5-1

or alternatively in matrix form where T
t ),,,( 21 vvvP !=  is a matrix of the first

t eigenvectors

( )xxPx −= T
r Equation 5-2

To reconstruct the original vector x, from the dj component of the reduced vector
xr,

∑
=

+=
nr

j
jj vxx d

1
Equation 5-3

Note that equation 5-2 is the formulation for the linear PDM, where each

component of the reduced vector is effectively the weighting parameter of the

final shape.

This does not provide a true dimensional reduction, as M eigenvectors Mv →1

must be stored for use in the transformation between the reduced and original

dimensional spaces. However, the primary concern, which is perfectly satisfied

by this technique, is to reduce the dimensionality of the training set for non-linear

analysis.
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5.4 Estimating Non-linearity

It has already been shown how non-linearity can be estimated by breaking the

shape space down through the use of multiple planes (Figure 5.2.2). A similar

procedure can be performed by breaking the curvature of the space up into

piecewise linear patches which estimate any curvature present. This is similar to

the polygonal representation of a parameterised surface. As the number of

polygons increase, so the visual accuracy of the resultant surface increases.

However, as in most graphical (polygonal) representations there is a trade-off

between the number of polygons (and hence render speed) and the accuracy of

the representation. This optimum number of polygons is easily selected for

graphical representation dependent upon simple visual criteria. For high

dimensional data sets this number is more difficult to determine.

Figure 5.4.1 - Cluster Based Approximation

y

x

z



Figure 5.4.1 shows the helical data set broken down into smaller clusters which

themselves can be treated as linear patches. The centres of each of these clusters

when connected allow the estimation of the primary mode of the helix. Each

cluster contains local information on how the data set varies, and must be

analysed further in order to provide an accurate representation of the space.

However, providing the space is segregated into a sufficient number of clusters,

each can be treated as piecewise linear patches which encompass the major

curvature of the space. The assumption that each cluster is approximately linear

allows a local linear mathematical model to be used, such as principal component

analysis. To provide a smooth transition between these linear patches it is

important that there is a good overlap between them. This is important where a

gradient descent approach is to be used in tracking, as a single iteration of the

model may not be sufficient to allow the model to make the transition between

two adjacent, non-connecting clusters.
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far more of the space than is inhabited by the data points. The blue lines show the

ideal primary and secondary non-linear axis of the data set.

Using this piecewise linear approximation to model the non-linear data set results

in a more constrained model which better represents the original shape space.

Figure 5.4.3 demonstrates the use of (a) cluster analysis to break down the

original space into linear patches, and (b) the resulting bounds of these patches

after linear PCA have been performed upon them for increasing number of

clusters. (c) shows the results of the fuzzy k-means algorithm.

2 CLUSTERS

3 CLUSTERS

4 CLUSTERS

5 CLUSTERS

6 CLUSTERS

(a) (b) (c)

(a) (b) (c)

(a) (b) (c)

(a) (b) (c)

(a) (b) (c)

(a) (b) (c)
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7 CLUSTERS

8 CLUSTERS

9 CLUSTERS

10 CLUSTERS

15 CLUSTERS

20 CLUSTERS

100 CLUSTERS

Figure 5.4.3 - Cluster analysis on shape space

(a) Cluster centres and bounds, (b) k-means (c) Fuzzy k-means

Figure 5.4.3(a) shows the results of running a k-means clustering (see Appendix

1) algorithm on the synthetic data set with curvature. The red points depict the

centres of the final extracted clusters and the circles show the approximate

bounds of these clusters. Using cluster analysis to segregate the space, PCA is

then performed upon each cluster and the results are shown in Figure 5.4.3(b).

(a) (b) (c)

(a) (b) (c)

(a) (b) (c)

(a) (b) (c)

(a) (b) (c)

(a) (b) (c)
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Each bounding box shows the extent of each linear patch, modelled as iλ5.2±

(as described earlier). It should be noted that as the number of clusters is

increased the resulting model better encompasses the curvature, although the rate

of increase in accuracy diminishes as more patches are used.

It is clear from the 2-cluster example that it performs significantly better than the

single linear PCA model and greatly reduces the redundant space, which is

incorporated into the final model. When the number is increased to 3 or 4

clusters there remains a visible benefit in the accuracy of the model. However, as

the number of clusters is increased further it becomes increasingly hard to

determine if the benefits in model specificity can be justified against the increase

in computational complexity. In the analysis of true data, where it becomes

impossible to visualise the high dimensionality of the space, such visual

assessment is not possible. An alternative method of assessment for choosing the

number of clusters can be provided through normal cluster analysis as described

in Appendix 1. From Figure 5.4.4 the natural number of clusters can be estimated

to be 5 which ties in with the visual observations discussed earlier.
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Figure 5.4.4 - Cost graph for synthetic curved data set

Figure 5.4.3(c) shows the results of using a fuzzy k-means clustering algorithm

(see Appendix 1) on the same data set. It can be clearly seen that using the fuzzy

algorithm significantly increases the overlap between adjacent clusters and

provides a smoother composite model for estimating non-linearity. This is

5 Clusters
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important during tracking, especially when using a gradient descent approach

(iterative refinement approach). This ensures there exists a smooth path between

the composite elements of the model.

Bregler and Omohundro [Bregler 94] made no provision for this problem when

separating the shape space into sub-clusters and hence this adds to the observed

model error which will be shown during comparison in section 5.7.

This technique also allows discontinuous surfaces to be modelled accurately,

which is an important consideration when attempting to model non-linearities for

computer vision applications. If a test example were to be considered in which a

break exists in the training set (see Figure 5.4.5), then existing techniques would

attempt to model this discontinuity by a single model. The resulting linear PDM

would be similar in nature to that shown in Figure 5.4.2(a).

 

 

Figure 5.4.5 - Modelling Discontinues Data Sets - Types of Model

(a) Linear PDM, (b) Polynomial Regression PDM,
(c) Constraint Surface (d) Composite NLPDM

Figure 5.4.5 shows an example discontinuous data set with various forms of

PDM model fitted: (a) shows the linear PDM which models the entire space as a

single rectangle, the mean within the central null space; (b) shows the non-linear

axis of a polynomial model smoothly parameterising the curvature, still with a

mean shape within the null space; (c) shows the constraint surface approach of

a b

c d
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Bregler which models the space as two finite thickness infinite hyperplanes; and

(d) shows the composite NLPDM technique proposed here.

If new points are considered and the closest valid shape found within the model,

the performance of each approach can be assessed.

 

 

Figure 5.4.6 - Modelling Discontinues Data Sets - Nearest Valid Shape

(a) Linear PDM, (b) Polynomial Regression PDM,
(c) Constraint Surface (d) Composite NLPDM

It can be seen from Figure 5.4.6 that the linear PDM performs poorly for both the

modelling of curvature and the discontinuity of the data set: many points remain

unconstrained within the central null area. The polynomial model works well at

modelling curvature; however, it performs poorly at modelling discontinuity.

Although points on the extremities are drawn closer to the original training set

shape, points within the null area remain unchanged. The constraint surface

models curvature to an extent, but draws all model points to lie along the

hyperplanes and does not work well for the discontinuity. In addition, the

unlimited extent of the hyperplanes introduces further errors at boundaries,

allowing points to be misclassified to the wrong hyperplane. The composite

NLPDM seems to be able to model both types of non-linearity correctly, and

misclassified
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only introduces boundary errors due to the rectangular assumption of linear

patches.

An example of complex discontinuous surfaces can be found in Section 7.3.

5.5 Composite NLPDM

This section presents two test cases to demonstrate the validity of the approach at
modelling non-linear data sets. The examples were chosen to represent both high
non-linearity and high dimensionality.  The construction of the composite non-
linear PDM is outlined below.

An algorithmic overview is given below.

1. Perform PCA on training set

2. For each training example do

Project training example onto eigenvectors, recording distance from

mean.

Concatenate these distances into a reduced dimensional vector.

3. Perform cluster analysis on dimensionally reduced data set to determine

natural number of clusters

4. Use this natural number to segregate the data set into multiple clusters using

fuzzy k-means

5. Perform PCA on each cluster of training set

5.5.1 Robot Arm

The first example that will be considered is of a relatively low dimensionality,

but with high non-linearity present. The robot arm example meets these criteria

as the nature of its hierarchical, pivotal construction guarantees a non-linear data

set. The training data for the robot arm example was constructed automatically

from a synthetic model used to generate examples that encompassed the total

possible movement of the arm. Figure 5.5.1 shows the construction of the arm

model. The 2D representation of a robot arm consists of four rectangles, each

rectangle described by four key points at its corners. This gives a total of 16 2D

key points which, when concatenated together, provide a 32 dimensional vector
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that describes the shape of the arm at any time. The model also incorporates 3

pivotal joints, which allow the constituent sections of the arm to rotate about

each other. Examples were generated for the arm in all its various positions by

taking examples of the model as the joints were rotated from °± 45 in °10

intervals. This resulted in a 32 dimensional training set containing 918 examples.

Figure 5.5.1 - The construction of a non linear robot arm data set

Figure 5.5.2 shows examples taken from the synthetic training set.

Figure 5.5.2 - A selection of training examples from the robot arm data set

As the dimensionality of the model is already low (i.e. 32D) it is not necessary to

perform dimensional reduction on the model and therefore k-means analysis can

be carried out on the raw data set. Performing standard cluster analysis (see

Appendix 1) the graph in Figure 5.5.3 is produced and indicates the natural

number of clusters to be approximately 20. Using this number of fixed clusters



75

the fuzzy k-means algorithm is applied in order to segregate the data set into its

constituent linear patches.
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Figure 5.5.3 - Cluster analysis on raw robot arm data set

Figure 5.5.4 shows the resulting boundaries on the data set after PCA has been

performed on the extracted clusters projected into 2-dimensions. Note that

rectangles are skewed due to the projection of each model (m0-31) down from 32

to 2 dimensions. This figure clearly shows the non-linearity of the model and

how the linear patches estimate this curvature.

Figure 5.5.4 - Linear patches of the robot arm data set

m0

m1

m2
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In order to validate the hypothesis that reducing the dimensionality of the data set

before analysis does not affect the information content of the resulting model, the

procedure was repeated upon the data set after dimensional reduction.

PCA was first performed upon the raw data set and from the eigenvalues a

suitable reduction was determined. 99% of the deformation is contained within

the first 4 eigenvectors, corresponding to the four largest eigenvalues. The data

set was then projected down into this 4 dimensional space using equation 5-1

(page 65). Cluster analysis was then performed to extract the natural number of

clusters and the fuzzy k-means algorithm performed to extract the membership of

each cluster. The results of cluster analysis can be seen in Figure 5.5.5. Apart

from the difference in the scale of cost, the graph is almost identical to that

previously produced and, as in Figure 5.5.4, provides a natural number of

clusters equal to approximately 20.
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Figure 5.5.5 - Cluster analysis on the reduced robot arm data set

Once the cluster membership has been extracted, each element of the clusters is

transformed back into the original space using the equation 5-2 (page 65) before

PCA is performed. This procedure leads to the loss of up to 1% information due

to the lossy compression technique used. As an alternative, the reduced vectors
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can be used merely as pointers to the original data set, since the 1st element of

the reduced data corresponds to the 1st element of the original data. Once this

reverse mapping has been completed, PCA is performed on each of the fuzzy

clusters to produce the composite model as done previously.

The lower cost solutions for the reduced dimensional data results from the

disregarded data no longer contributing to the overall cost of the k-means

function. However, although this makes little difference to the selection of the

natural number, it provides a huge computational saving as the analysis is

performed in a 4 dimensional space rather than one of 32. In fact, if the

assumption is made that the primary modes contain the largest contribution to the

separation of shape space (which is known), then this cluster analysis could

feasibly be performed with even higher dimensional reductions. However, it is

not obvious how this number would be selected.

Figure 5.5.6 - Primary modes of the linear robot arm PDM

Figure 5.5.6 shows the primary and secondary modes of variation of the linear

PDM. The non-linearity of the model is clear in the distortion of the dimensions

of the robot arm. The primary mode encompasses movement along the

horizontal, but also has distortion in the size of the arm, which must be rectified

15.2 b−
15.2 b+

25.2 b− 25.2 b+

Primary Mode

Secondary Mode

MEAN

MEAN
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by other higher modes of variation. The second mode encompasses movement in

the vertical, with more extreme size distortions, especially at the head of the

model.  Below the mean on the second axis, the model takes on shapes which

were not present within the training set by inverting the arm back upon its self.

Figure 5.5.7 shows examples from the final composite non-linear model. It

demonstrates that much of the non-linearity has been removed except in the end

of the model where small abnormal deformations can still be seen. By increasing

the number of clusters this can be reduced further, but at a computational cost at

run-time.

Figure 5.5.7 - Examples from the non-linear robot arm PDM

5.5.2 Image Space

An image training set was constructed from a sequence of 200 images of a head

turning in the image frame. No alignment was performed so as to produce as

non-linear a problem as possible. Each frame is 80 by 60 pixels in size,

producing a 4800 dimensional training vector. PCA is first performed and the 33

eigenvectors corresponding to the 33 largest eigenvalues extracted. These vectors

account for 99.9% of the deformation in the training set. Figure 5.5.8 shows the

first and second modes of variation after linear PCA
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Figure 5.5.8 - Primary modes of the image PDM

 Each vector is then projected into this PCA space (using equation 5-1 page 65)

giving a new dimensionally reduced training set on which cluster analysis can be

performed. This generates a dimensional reduction of 4800 to 33.

Cluster analysis results in an estimate for the natural number of clusters, k=15.

PCA is performed on each of the 15 clusters in turn to generate the composite

non-linear model. Selected shapes reconstructed from the composite model are

shown in Figure 5.5.9. Notice that each model has reduced blurring, due to the

original data set being subdivided into smaller clusters. Each cluster now has less

information to encode and hence linear PCA can better estimate the deformation.

Figure 5.5.9 - Examples from the composite non-linear image PDM

As mentioned earlier the technique also has the advantage that the hyper surface,

or volume, on which the data lies need not be contiguous. For example, given an

image sequence of two people, one with glasses and one with a beard, both linear

PCA and the high order non-linear approaches will model the data set with a

principal mode which interpolates between the two. However, there is no

example in the training set where both glasses and a beard are present. The

cluster-based technique will separate these two distinct clusters, allowing the
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model to ‘jump’ between the two, better representing the training set. This issue

and its implications will be discussed in the following chapters.

5.6 Application of the Model

To apply the model to an image, a similar procedure to the linear PDM (see

section 2.3) can be used. After making an iterative refinement to the model

within the image frame, the closest possible shape within the learnt bounds of

the model is calculated. This constrained shape is then used as the model pose for

the next iteration.

In the case of the linear PDM, this constrained shape is found by projecting the

model into the PCA space and reconstructing the closest allowable model (point

in shape space) that is within the bounds of the linear model. The same procedure

can be used in the composite model. However, the closest allowable point may

exist in any of the clusters which constitute the non-linear model. The centre of

each cluster can be used to check for closest cluster in Euclidean distance from

the model point. However, using a Euclidean distance metric makes the

assumption that all clusters are of the same size. Figure 5.6.1 illustrates this

problem. Assuming a point p in shape space, it should be apparent that the point

belongs to the cluster C1. Using a Euclidean distance metric will result in the

point being assigned to the cluster C2 due to the size difference in the clusters.

However, the point p is actually closer to the cluster C1 even though in

Euclidean space the point is further from the centre C1 due to the standard

deviation of the clusters.

Figure 5.6.1 - Distance Metrics in Shape Space

p

Original point p

Desired point p

Reconstructed point p C1

C2
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To overcome this problem a Mahalnobis distance metric can be used. However,

due to the simplicity of the k-means-clustering algorithm, it is a fair assumption

that if the selected natural number is correct then clusters will be similar in size.

It is important to bear this consideration in mind, especially when discontinuous

surfaces are considered. In these situations, many clusters may be of different

sizes and therefore the Mahalnobis approach should be used.

An algorithmic overview for model application is:

For a new shape S,

1. Transform S from image frame to PDM model basis eg. Normalise and align

(as in alignment of training set)

2. Locate closest cluster centre and hence linear patch Pi using either Euclidean

or Mahalnobis distance metric

3. Project S down onto linear patch Pi

4. Project back up to reconstruct closest allowable shape S'

5. Transform S' back into image frame co-ordinates

5.7 Evaluation and Performance

To asses the performance of the approach to the modelling of non-linear data sets

an error metric must be defined which provides a measure of the accuracy of an

approach. As has already been demonstrated, a common problem with the linear

representation of non-linear data is the tendency to over-generalise shape and to

incorporate non-valid deformations into the model. These non-valid

deformations often manifest themselves as the distortion in scaling of the model

as observed in the robot arm example (section 5.5.1). In this example, the robot

arm should remain constant in size and area as it rotates around its pivotal joints.

Since this size is the major artefact of the linear representation, it provides a

suitable error metric with which to assess non-linear performance.

Random points chosen from within the linear PCA space are selected and then

projected into the composite model. The constraints of the model are applied and

the resulting (supposedly valid shape) assessed by calculating the length of the

model perimeter (projected onto the image plane). Since the ideal length of a
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valid shape should remain constant (in this case 66 pixels), any deviation from

this constant can be used as a measure of the model's inability to reproduce valid

shapes.

A number of random shapes were generated and passed through the model, the

absolute difference from the ideal length recorded and the mean calculated over

the test set. This procedure was then repeated for the constraint surface, a nearest

neighbour approach and the cluster based NLPDM proposed here for varying

numbers of clusters between 1 to n (where n equals the number of training

examples). The procedure is outlined thus,

1. Take n random shapes rand
iX

2. Project each rand
iX into non-linear model and find closest reconstructed point

recon
iX

3. Calculate length in image plane of projected model recon
iX , recon

iL

4. Calculate length in image plane of any valid model X , 
validL

Calculate deformation error metric ∑
=

−=
n

i

validrecon
in LLe

1

1 Equation 5-4

This error metric provides a zero error if the resulting reconstructed model is

valid in shape. Therefore, the higher the error, the worse the performance of the

constraints and hence the worse the performance of the model. By repeating this

procedure for varying number of clusters between 1 (which is effectively a linear

PDM) and 912 clusters (the number of training examples and therefore nearest

neighbour), we can assess the advantage on model specificity as the number of

clusters increases. Figure 5.7.1 shows the resulting graph from this analysis.
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A Comparison of non-linear Models at Constraining Invalid Shapes
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Figure 5.7.1 - Graph showing error rates of non-linear approximation
techniques

The single hyper plane constraint surface, the nearest neighbour approach and the

cluster based NLPDM all perform comparably and provide far lower error rates

than either the multi-plane constraint surface or the linear PDM. However, the

cluster based NLPDM (CB-NLPDM) provides lower errors until 5 patches are

reached. With only a single linear patch the CB-NLPDM is effectively a linear

PDM and as such does not produce errors that exceed the linear PDM. However,

the other approaches produce significantly higher errors than even the linear

model until sufficient patches have been introduced. As the number of clusters

increases, so the error rate decreases, showing that the procedure does indeed

increase the model's ability at representing non-linearity. The yellow trace on the

graph shows the error results of the unconstrained surface approach of Bregler

[Bregler 94] which, although performing slightly better between 25 and 70

patches, produces higher error rates at the pre-chosen patch number of 20 which

was determined earlier from cluster analysis. It is important to note that this error

graph confirms the results of the cluster analysis for the natural patch number, as

further increases beyond 20 result in less significant results in the final model.



84

This confirms the conclusion that the approach for the selection of the natural

number of clusters is valid, and hence the number of patches needed by the

model is correct.

As the number of clusters increases to 912 (which is the number of examples

within the training set) the error reaches zero. This is to be expected: when the

number of clusters is equal to the number of training examples, each cluster

contains only one member. The procedure then becomes a nearest neighbour

approach. Since each nearest neighbour is in fact a valid training example, the

validity of the shape is ensured, hence the zero error. This fact also explains the

error results of the nearest neighbour approach which performs comparably to

the other techniques. The question could be posed, why not use a nearest

neighbour approach to perform the procedure simply and accurately? However,

there are two issues, which have not as yet been considered.

1. The speed of the procedure increases as the number of linear patches

(clusters) increases, as each patch is itself a linear PDM.

2. A nearest neighbour approach is only valid if every possible model pose is

represented within the training set. This is often not the case and the power of

the linear PDM is the ability to model shapes not present within the training

set by linearly interpolating between examples.

It is therefore apparent that in order to consider the validity of any technique, two

questions must be posed.

Does the model stop non-valid shapes from being produced?

(which has already been addressed in Figure 5.7.1)

Does the model allow valid shapes which were not present within the training set

to be reproduced?

In order to answer this latter question a new set of experiments must be devised.
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By constructing a new set of n examples that are all valid in shape and

deformation not present within the training set (possible due to the synthetic

nature of the test case), the ability of the CBNLPDM at reproducing unseen,

valid shapes can be assessed. Using the same equation 5.4 (page 82) along with a

Euclidean distance measure between the 'original valid but unseen data' and the

'reconstructed shape' this feature of the model can be assessed.

1. Take n valid shapes not present in the training set new
iX

2. Project each new
iX into non-linear model and find closest reconstructed point

recon
iX

3. Calculate the length in image plane of projected model recon
iX , recon

iL

4. Calculate the length in image plane of any valid model X , 
validL

Calculate deformation error metric ∑
=

−=
n

i

validrecon
in LL

1

1

Euclidean distance error ( )∑
=

−=
n

i

new
i

recon
in XXD

1

1

Using these error metrics it would be expected that if the model were performing

perfectly any valid shape projected into the model would have zero deformation

error and zero Euclidean error. However, using the nearest neighbour approach

would result in a zero deformation error but produce a high distance error. The

result of performing this analysis on the data for both approaches is shown in

Figure 5.7.2, Figure 5.7.3 and Figure 5.7.4. The test set consisted of examples

generated from °± 38 angles and °17  intervals producing 135 valid, but unseen,

examples with which to test the various models.
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A Comparison of non-linear Models at Reproducing Valid Unseen Shapes
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Figure 5.7.2 - Graph showing error rates of non-linear approximation
techniques for Constraining Valid Unseen Data

Figure 5.7.2 shows the results generated via the deformation error metric for

valid, but unseen, shapes applied to the various models. From this graph it can

clearly be seen that the linear PDM produces a low baseline error of around 2.5

pixels deformation. This demonstrates the ability of the linear PDM to

encapsulate the deformation of the training set, allowing valid shapes to be

reproduced which were not present within the original data. It is not until in

excess of 85 linear patches are used that either the nearest neighbour or

constraint surface performs comparably to the linear PDM. The nearest

neighbour approach generates the highest error rates as was suspected. The

constraint surface with 4-hyperplanes produces the same results as the proposed

NLPDM technique, both of which produce by far the lowest errors. Using 20

linear patches, both techniques produce their lowest error rates of approximately

0.5 pixels deformation, which again confirms the selection of the natural number

of clusters for the data set.
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A Comparison of non-linear Models at Allowing for Valid Shapes
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Figure 5.7.3 - Graph showing error rates of non-linear approximation
techniques for Allowing Valid Unseen Data
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Figure 5.7.4 - Graph showing error rates of non-linear approximation
techniques for Allowing Valid Unseen Data

Figure 5.7.3 shows the results generated via the Euclidean distance error metric

for valid, but unseen, shapes applied to the various models. The figure uses a

logarithmic scale due to the extremely high error rates produced by the nearest
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neighbour approach. Figure 5.7.4 shows the same data (without the nearest

neighbour approach present) on a linear scale. It can clearly be seen that the

nearest neighbour approach produces error rates far in excess of any other

approach. The linear PDM produces a low baseline error, which could be

reduced further by increasing the number of modes of variation. The constraint

surface with 1-hyperplane produces much higher error rates than the linear PDM

and does not perform comparably with the linear PDM until around 450 linear

patches, where each patch effectively has only two members. If a patch has only

two members then it can have only one hyperplane, which means that more

planes are required to model the data. This is confirmed by the 4-hyperplane

approach which produces error rates identical to the NLPDM model, both of

which  produce errors of around 0.7-0.8 at the chosen number of clusters. If all

these graphs are considered, the lowest errors are produced at 20-30 linear

patches which suggests that the natural number may be slightly higher than was

chosen. However, changing this number would result in little gain in accuracy.

Model Approach Ability to
Constrain

Unseen Data

Ability to
Constrain Valid

Data

Ability to Allow
Valid Data

Linear PDM BAD POOR/GOOD GOOD
Nearest Neighbour GOOD BAD BAD
Constraint Surface 1
hyperplane

GOOD BAD POOR

Constraint Surface 4
hyperPlanes

POOR GOOD GOOD

Cluster Based
NLPDM

GOOD GOOD GOOD

Figure 5.7.5 - Table Showing Comparison of Techniques

If the performance of each technique is considered for each of the comparative

studies performed, the conclusions can be summarised in a table, as shown in

Figure 5.7.5. From this table it can be demonstrated that the proposed NLPDM

approach produces superior performance in all aspects of modelling.
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5.8 Conclusions

In conclusion, a NLPCA technique has been presented which models non-

linearity by breaking the problem down into a set of linear models, which

estimate high dimensional curvature. This has the advantages of the speed and

simplicity of linear PCA, whilst providing a robust solution to object modelling.

It has been shown how this technique performs in comparison to similar

techniques and how the simple selection of model parameters can produce

optimum solutions in the final model. These models have been shown to work on

both low dimensional, high non-linear, and high dimensional, high non-linear

problems where other procedures would fail.



90

6 Cluster Constraints on Shape Space

6.1 Introduction

Thus far techniques have been discussed to project a non-linear data set into a

lower dimensional space where further analysis is feasible. Once the shape space

and its non-linearity have been estimated through cluster analysis, this

segregation is modelled through multiple linear PDMs. The position and bounds

of each linear patch is obtained by performing PCA on each extracted cluster and

its members. The dimensional reduction allows the non-linear analysis

(clustering) to be performed on high dimensional problems, but provides no

added benefit to the final model. Each sub PCA cluster has the original

dimensionality of the training set.

The inherent dimensional reduction of the linear PDM often provides a useful

representation during classification. However, by breaking the original space up

into linear patches this benefit of the model is lost. To provide static

classification as demonstrated in [Bowden 96] a linear PDM formulation would

still need to be maintained in addition to the composite model. This would not be

the case if each patch of the composite model segregated the space in such a way

Chapter 6
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as to naturally aid classification. By retaining the dimensional reduction of the

linear model throughout, and applying the constraints to the reduced data set,

several advantages are achieved:

1. The dimensional reduction is retained throughout the model, providing a

simplified model for classification.

2. For complex models where the number of clusters is high, the computational

complexity of applying constraints is decreased.

3. Any noise within the model is filtered out by the linear PDM before

constraints are applied.

The remainder of this chapter is concerned with the application of constraints to

the dimensionally reduced data. Section 6.2 will discuss the application of these

constraints. Section 6.3 will evaluate the approach and make comparisons with

the previous chapter. Section 6.4 will demonstrate how this new model can be

used in classification using sign language as an exemplar application. Section 6.5

will evaluate the performance of the proposed appraoch and lastly, conclusions

will be drawn.

6.2 Constraining Shape Space

The basic procedure proposed in the previous chapter is outlined in Figure 6.2.1

where Nℜ  is the original dimensionality of the training set and Mℜ  is the

reduced dimensionality of the training set after it has been projected down into

the PCA space ( NMx ℜ→ℜ: ).

Previous work by the author and other researchers (see section 2.4) has shown

how the reduced dimensionality of PCA space is invaluable in the classification

of static poses of the model. Indeed, this is often used as an important tool in

classification. It is therefore beneficial to combine these techniques in the

modelling of a non-linear data set.
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Figure 6.2.1 - Cluster Based non-linear PDM

Figure 6.2.2 gives an overview of this new approach, which will be referred to as

'Constraining Shape Space' or CSSPDM. In this procedure the dimensional

reduction of the PCA is retained throughout the entire model. In addition to the

cluster analysis, PCA is performed on each cluster in the dimensionally reduced

space, constraining the model in PCA space. The model must then be projected

back up into the original dimensionality to extract the final shape.

Figure 6.2.2 - Cluster Based non-linear Constraints on Shape Space

An algorithmic overview is given below.

1. Perform PCA on training set

2. For each training example, do:

Project training example onto eigenvectors, recording distance from

mean.

Concatenate these distances into a reduced dimensional vector.
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3. Perform cluster analysis on dimensionally reduced data set to determine

natural number of clusters present

4. Use this natural number to segregate the data set into multiple clusters using

fuzzy k-means

4. Perform PCA on each cluster of training set

PCA is performed on the reduced dimensionality cluster. Here models

must be transformed to the reduced space at runtime, the closest

allowable shape from the model reconstructed and transformed back to

the original dimensionality.

6.3 Evaluation

In principle, this procedure should produce identical results to that produced by

applying the constraints to the original training set, with the added advantage of

the computational saving of performing the constraints within the reduced space.

However, in practice this approach performs better due to the data smoothing

effect of the initial linear projection, which reduces the dimensionality. Each

linear patch has a far lower dimensionality, hence the linear patch can be

modelled to encompass all the deformation. The initial linear projection is where

the data smoothing (lossy compression) occurs and as such the model's accuracy

is limited by this single factor.

In order to assess the performance of the technique the experiments detailed in

chapter 5.7 can be repeated and the error graphs produced. Returning to the robot

arm example (chapter 5.5.1), after the initial dimensional reduction from 32ℜ  to

4ℜ  the reduced dimension training set is fuzzy-clustered in the same manner.

From this data clustering PCA is performed on each linear patch in 4ℜ space. As

the maximum number of eigenvectors for each cluster cannot exceed the

dimensionality of the space, each cluster is constructed so as to encompass 100%

of the deformation (i.e. all four modes are used). This means that no decisions

need be made for the dimensionality of individual clusters and therefore

simplifes the procedure of model construction.
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The error metrics previously defined (section 5.7) are now used to assess the new

model's ability at both reproducing valid shapes and constraining non-valid

shapes.

Constraining Invalid Shapes in Reduced Shape Space
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constraints can perform better than the 2.7 error rate produced by the information

loss of the data projection. Surprisingly however, for models with between 200

and 500 linear patches, the technique does produce higher accuracy rates but

only in the order of fractions of a pixel. By altering the dimensional reduction to

utilise more eigenvectors in the initial projection and hence retaining more

information from the model, this baseline error can be reduced further. However,

this poses the same question as the linear PDM and the trade-off between

accuracy and compactness/robustness (see section 3.2.6).

The important features of Figure 6.3.1 are that the error rate is significantly

reduced by increasing the number of linear patches initially, and the most benefit

can be deemed to be at around 20 linear patches which correlates with the initial

analysis of the data set.

Comparison of Constraining Shape Space for non-valid Deformation 

0

5

10

15

20

25

30

1 5 10 15 20 25 30 35 40 45 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

17
5

20
0

22
5

25
0

27
5

30
0

35
0

40
0

50
0

60
0

70
0

80
0

90
0

number of linear patches

e
r
r
o
r
 
m
e
t
r
i
c
 
(
d
e
f
o
r
m
a
t
i
o
n
 
i
n

Constraint Surface 4 hyperplanes Constraint Surface 1 hyperplane Cluster Based NLPDM

Nearest Neighbour Linear PDM Constrained Shape Space

Figure 6.3.2 - Error graph showing comparison of Constraining Shape space

against previously discussed Techniques

Figure 6.3.2 shows the error line produced from the random data set in Figure

6.3.1 superimposed upon the results of the previously discussed approaches from

section 5.7. It can clearly be seen that although Constraining Shape Space does



96

not produce the lowest error rates, it does perform comparably with the lower of

the error plots generated by other techniques. Since it has already been

established in the previous chapter that the CBNLPDM produces the most

desirable results, the comparative performance of this solution is of primary

concern. The data smoothing of the dimensional reduction can be attributed to

the smoothed error graph produced by this technique. Although the error rate

does not reach zero, like many of the other approaches, it follows the same trend

until more than 60 linear patches are used.  Since the model only utilises 20, this

artefact of the approach can be disregarded, as model complexity would never

reach this level. It is also important to bear in mind that the minimum error of the

Constrained Shape Space approach can be reduced further by reducing the

information loss of the dimensional reduction (the initial linear PDM projection)

and including more information in the model i.e. using more eigenvectors.

A Comparison of non-linear Models at Allowing Valid Shapes
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Figure 6.3.3 - Error graph showing ability to model valid shapes

Figure 6.3.3 shows the result of measuring the performance of this new technique

upon the valid unseen test set (described in the previous chapter) for increasing

numbers of linear patches. The performance would be expected to be comparable

with the linear PDM model (as the initial projection is a linear PDM). Although
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the performance is not as high as the CBNLPDM, it performs significantly better

than the constraint surface or nearest neighbour approach which are not shown

on this graph due to the extremely high error rates they produce (around 45). In a

similar manor to the linear PDM, the CSSPDM error rate can be further reduced

by reducing the dimensional reduction of the initial projection to include more

deformation. However, this in turn will increase the dimensionality of the model

and hence computational complexity in analysis and runtime application. When

the huge dimensional reductions that can be achieved for analysis are considered,

this slight degradation in performance can be justified. In this example the

reduction from 32 to 4 may not be considered advantageous but when larger

dimensional examples are considered (examples in next section and later

chapters) the benefits of this approach can be seen.

To summaries these techniques,

An algorithmic overview is given below.

1. Perform PCA on training set

2. For each training example do

Project training example onto eigenvectors, recording distance from

mean.

Concatenate these distances into a reduced dimensional vector.

3. Perform cluster analysis on dimensionally reduced data set

4. Perform PCA on each cluster of training set

When performing PCA on individual clusters two approaches can be taken.

(1) PCA can be performed on the reduced training set cluster. Here models must

be transformed to the reduced space at runtime, the shape reconstructed and

transformed back. This is slightly more computationally expensive, but has the

advantage that the original encoding remains and therefore aids simple pose

analysis/recognition.

(2) PCA can be performed on the original training set clusters after the clusters

are transformed back into the original space. This technique is slower in analysis

but faster at runtime and ensures that little high frequency information is lost.
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6.4 Classification

6.4.1 Introduction

Due to the nature of constraining shape space, much of the segregation of the

data set which is important to classification is contained within the model. In

addition to this, the improved modelling capability of the non-linear estimation

allows more complex problems to be tackled. If the assumption is made that

similar poses of a model produce similar training vectors and each pose of the

model corresponds to a point in shape space, it is therefore a fair assumption that

similar poses of the model will produce tight clusters within this shape space.

These clusters should automatically be modelled by the non-linear constraints

that are placed on the model and facilitate more complex static pose recognition.

The application of gesture recognition provides an ideal application for the proof

of this assumption.

6.4.2 Sign Language & Gesture Recognition

American Sign Language or ASL has a finger spelt alphabet similar to other

national sign languages. These simple gesture alphabets are used to spell names

or words (letter by letter), for which there is no signing either known or present

in the vocabulary. ASL provides a more suitable problem domain over British

Sign Language as the BSL finger spelt alphabet is a two-handed system.

Although this two handed system in reality provides a method of signing which

is far easier to understand, it presents added difficulty for computer vision tasks

due to the problems associated with occlusion.

Watson presented a review of work related to hand gesture interface techniques

which consisted of glove sensor-based techniques, vision-based techniques and

the analysis of drawing gestures [Watson93]. These were later summarised and

techniques evaluated in by Handouyahia, Ziou and Wang [Handouyahia 99] and

are discussed later in this chapter.
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Figure 6.4.1 shows the ASL2 alphabet with images taken from the training set.

Figure 6.4.1 - The American Sign Language Finger Spelling Alphabet

It can clearly be seen from Figure 6.4.1 that each letter of the alphabet

corresponds to a specific pose of the hand, with the exception of the letter 'z'

which is a dynamic gesture and requires movement. This being the case, each

gesture should occupy a distinct area in shape space.

6.4.3 Constructing the Non linear Hand Model

Several image sequences were recorded which encapsulated numerous

occurrences of each of the letters of the alphabet. These sequences included three

'runs' through the alphabet, along with a small selection of simple sentences and

words. These image sequences were recorded using a blue backdrop and sleeve

to allow simple extraction using chroma key techniques.

                                                          
2 American Sign Language alphabet is almost identical to the alphabet of International Sign
Language (ISL).
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Once these sequences had been extracted, the hand was segmented to produce a

binary image, and a contour-tracing algorithm initiated to extract the external

contour of the hand for each image frame. Figure 6.4.2 shows: (a) a sample

image frame of the hand; (b) the binary image produced from chroma keying;

(c) and (d) the resulting extracted boundary.  The procedure was then repeated

for every image frame, providing training examples of the hand as it moves

throughout the alphabet and the possible shapes it can take as it makes transitions

between the letters.

Figure 6.4.2 - Extracting Training Examples for ASL Data Set

(a) Hand image, (b) Segmented hand, (c) Extracted Contour (d) Resampled

Contour

Before any statistical analysis can be performed, the training examples must first

be resampled and aligned. The contour was automatically allocated 3 landmark

points around the contour as shown in Figure 6.4.2(d). These landmark points

were allocated at the start and finish of the contour and one at the vertical

extremity within a 10° arc of the centeroid of the boundary. Once done, these

landmarks were used to resample the boundary using linear interpolation to

produce a contour consisting of 200 connected points. The low number of

landmark points and the simple landmark identification used guarantees that non-

linearity through non-optimum landmark point assignment will be present within

the training set. However, this non-linearity will be modelled through the use of

the Constrained Shape Space non-linear model discussed earlier. No rotational

alignment was performed to preserve as much information about the pose of the

model within the shape space. This again would introduce non-linearity into the

model. The rotation non-linearity is necessary in the recognition of gestures.

(a) (b) (c) (d)
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Poses produced by the dynamic gesture ('z' for example) are similar to other

gestures ('g') except for the rotation of the hand pose around the camera’s z-axis.

If this rotation were to be removed, then the distinction between these two poses

would be lost. Again the non-linear constraints will model this non-linearity and

allow simple distinctions to be made.

Finally any translation of the hand model in the xy image plane was removed by

translating the origin of the contour to that of the wrist, located by taking the

mean of the start and finish points of the contour. This approach removes any

translation of the hand in the image plane, but assumes that the hand is kept at a

consistent distance from the camera throughout the training set and hence has no

need to be scaled.

Once the training set had been prepared, a total of 7441 example contours were

produced and labelled with the actual letter the pose corresponded to. Poses that

were deemed transitory poses between real gestures were labelled as null

gestures.

Under the normal procedure for the construction of a PDM, the last phase before

PCA is performed would be to normalise all contour boundaries, ensuring a

consistent training set. However, for reasons that have already been mentioned

with regard to rotation, it is important that this information is preserved.

Theoretically the length of vectors on which PCA is performed should not affect

the resulting model except for its overall size. However, due to the nature of

floating-point arithmetic and the problems associated with overflow errors, it is

still necessary to reduce the size of the computations. This is facilitated by

dividing each training vector not by its own length (as in normalisation), but by

the length of the mean vector of the training set. This effectively normalises the

training set but retains any subtle size deviations between examples.

6.4.4 The Linear ASL Model

The Linear ASL model is now generated by performing linear PCA upon the

training set. Figure 6.4.3 shows the primary modes of the linear ASL PDM and

how these modes deform the model from the mean.
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Figure 6.4.3 - The linear ASL PDM Model

It can clearly be seen that the major modes of variation include large amounts of

deformation which, when put together, will produce an unreliable model capable

of producing far too much deformation (see examples in Figure 6.4.4)

By analysing the eigenvalues of the covariance matrix it can be determined that

the first 30 eigenvectors corresponding to the 30 largest eigenvalues encompass
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99.6% of the deformation within the model. Unfortunately, due to the natural

rotational non-linearity and high order non-linearity which has been introduced

into the model during re-sampling (as discussed in the previous section), this

linear model is unsuitable for tracking and classification. Figure 6.4.4 shows a

selection of invalid shapes that can be constructed from the linear ASL PDM.

These examples were produced by generating random vectors that were within

the bounds of the linear model. It is the linear PDM’s ability to allow invalid

shapes which make the model unreliable for tracking and classification. These

invalid deformations are due to the linear approximation of the non-linear data

set.

Figure 6.4.4 - Example Invalid Shapes produced by the linear ASL PDM

6.4.5 Adding non-linear Constraints

Using the procedure previously outlined, non-linear constraints to the model are

added by performing cluster analysis on the dimensionally reduced data set after

it has been projected down into PCA space. From the linear model it has been

determined that the 30 primary modes encompass 99.6% of the deformation, by

projecting each of the training vectors down into this space (as previously

described), a dimensional reduction of 400 to 30 is achieved. Cluster analysis is

now performed upon the reduced data set.
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Cost Graph for Hand PDM
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Figure 6.4.5 - Cluster Analysis on Dimensional Reduced ASL Training Set

Figure 6.4.5 shows the resulting cost graph from the cluster analysis of the

reduced data set and the natural number of clusters estimated to be 150. The

fuzzy k-means algorithm is then used to segregate the space into 150 clusters.

These clusters are then learnt by performing PCA on their members.

Figure 6.4.6 - Constrains on PCA space for the ASL Model
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Figure 6.4.6 shows the PCA space for the model projected into 3 dimensions for

visualisation purposes, with the constraints shown as the bounding boxes (first

two primary modes) of the linear patches (clusters) extracted via PCA. Notice the

two distinct clusters produced in the direction m1, meaning that the shape space is

discontinuous and there is no smooth path between the two distinct areas of

shape space. This is due to the simple landmark identification and the problems

associated with it. Further discontinuities may exist in the model which are not

apparent in the dimensions that are shown in Figure 6.4.6. These types of spaces

and solutions to the problems they introduce will be discussed in the chapter on

temporal dynamics (specifically sections 7.3-7.4 for the ASL shape space)

Figure 6.4.7 - Example Shapes Produced by the constrained non-linear ASL

PDM

Figure 6.4.7 shows random shapes generated within the constrained model, If

these are compared with those produced in Figure 6.4.4, it can be seen that the

constrained model contains far less invalid deformation and therefore results in a

more reliable model for tracking. Each random shape is also very close to a

natural gesture in ASL and it is this correlation between cluster and gesture that

can be used to perform gesture recognition.
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6.4.6 Recognising Gestures

Ideally for an alphabet with 26 characters, the model would contain 26 clusters,

where each cluster directly corresponds to a specific letter. However the non-

linearity of the model requires far more clusters to encompass the deformation

reliably. As a result, multiple clusters may correspond to a single letter. This is

due to:

1. The presence of null (transitional) poses of the hand within the training set

should not correspond directly to any specific letter. As these null poses will

be distributed throughout the space it is incorrect to assume that it is possible

to model them with a single cluster.

2. The landmark point assignment used may result in two very similar poses of

the model occupying completely different areas of the PCA space (i.e.

discontinuous shape space). Therefore, again, it is incorrect to assume that

any single letter will produce a single tight cluster.

3. The presence of dynamic gestures like 'z' requires movement of the hand to

complete the gesture. This movement results in a trajectory in PCA space that

corresponds to a letter rather than a cluster. This trajectory may require

multiple clusters in order to model the deformation.

Once these issues are considered it is apparent that in order to classify any

specific gesture, multiple clusters must be assigned to each letter rather than

single clusters as previously used in previous work by the author [Bowden 96;

Bowden 97]. This can be achieved by analysing the training set and

probabilistically assigning each cluster to a specific letter. This provides a

conditional probability that the model represents a letter given that model is in

any specific cluster. These conditional probabilities are constructed in a

probability matrix as shown in Figure 6.4.8.



107

nullCZCBCAC

nullCZCBCAC

nullCZCBCAC

nullCZCBCAC

nullCZCBCAC

ppppCluster

ppppCluster

ppppCluster

ppppCluster

ppppCluster

nullletterZletterBletterA

150150150150

149149149149

3333

2222

1111

150

149

3

2

1

$

$

%%&%%%

$

$

$

$

Figure 6.4.8 - Probability Matrix for ASL Classification

As each of the vectors from the training set has been pre-assigned a letter which

provides a label for each shape of the training set, the matrix can be constructed

by calculating which cluster a specific training example belongs to, and assigning

that cluster to the labelled letter. Each training example is projected down into

the PCA space and the closest cluster, α, located. The value along the row α, Pαβ

which corresponds to the letter β is then incremented. This procedure is carried

out for the entire training set and each row normalised to calculate the

conditional probability that any cluster belongs to a letter i.e.

1)( =∑
i

iClusterletterP . Now by locating which cluster the model exists in there

is a conditional probability that the model is representing a letter, with the

highest probability for a cluster representing the most likely letter. By analysing

this matrix information about how this correlation is achieved can be extracted.

Table 6.4-1 shows how many clusters each letter uses in this mapping.
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Letter N' Clusters Letter N' Clusters

a 23 O 16

b 9 P 9

c 8 Q 10

d 9 R 15

e 26 S 15

f 13 T 20

g 14 U 15

h 13 V 5

i 12 W 2

j 11 X 7

k 7 Y 9

l 4 Z 26

m 11 NULL 130

n 8

Table 6.4-1 - Correlation between ASL Gestures and Clusters in non-linear

Model

Cluster

N'

N'

Letters

Cluster

N'

N'

Letters

Cluster

N'

N'

Letters

Cluster

N'

N'

Letters

Cluster

N'

N'

Letters

Cluster

N'

N'

Letters

1 4 27 2 53 4 79 3 105 4 131 2

2 2 28 3 54 3 80 3 106 2 132 5

3 2 29 3 55 1 81 6 107 2 133 4

4 3 30 4 56 2 82 3 108 2 134 2

5 4 31 1 57 2 83 2 109 4 135 1

6 2 32 2 58 2 84 2 110 5 136 7

7 5 33 2 59 7 85 3 111 3 137 2

8 4 34 3 60 3 86 2 112 2 138 2

9 5 35 1 61 1 87 2 113 2 139 3

10 5 36 3 62 2 88 5 114 3 140 3

11 2 37 2 63 2 89 2 115 4 141 2

12 4 38 3 64 1 90 5 116 3 142 2

13 2 39 4 65 3 91 3 117 4 143 2

14 3 40 3 66 4 92 5 118 5 144 0

15 1 41 4 67 6 93 1 119 4 145 5

16 4 42 3 68 2 94 1 120 3 146 3

17 3 43 2 69 4 95 2 121 2 147 3

18 6 44 4 70 2 96 2 122 2 148 4

19 6 45 2 71 4 97 4 123 2 149 5

20 4 46 4 72 6 98 4 124 3 150 4

21 3 47 2 73 3 99 4 125 2 Average 2.98

22 1 48 2 74 3 100 4 126 3

23 1 49 7 75 1 101 1 127 3

24 1 50 2 76 4 102 2 128 4

25 2 51 5 77 3 103 3 129 1

26 1 52 3 78 3 104 3 130 1

Table 6.4-2 - Correlation between Clusters of non-linear model and ASL

Gesture
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Table 6.4-2 shows the number of ASL gestures that correspond to each cluster. It

would be expected that each cluster would correspond to only one letter,

however due to inconsistencies in labelling and the complexity of the model this

is not the case. The average cluster corresponds to 2.98 letters, but the matrix

gives us a probability that the cluster corresponds to a specific letter; The highest

probability entry in the matrix gives the best estimate to the recognised letter.

Highest Probabilistic Match Second Highest Probabilistic Match

Minimum 0.285714 0

Maximum 1 0.454545

Mean 0.706031 0.210881

Table 6.4-3 - Analysing the Resulting Probabilities

Table 6.4-3 shows the range of probabilities that result for this procedure. Using

an unseen test set of segmented hand shapes with (hand labelled) letter ground

truth for comparison, the average probability for the best match of the matrix is

around 0.7. The maximum value of 1 demonstrates that some clusters exclusively

belong to specific gestures and this can be confirmed by the presence of clusters

assigned to only one cluster in Table 6.4-2. The next highest probability from the

matrix is also shown with the mean value being much lower than that of the best

match, demonstrating that although there is some ambiguity between gestures

there is significant distinction probabilistically as to the function of each cluster.

By comparing the resulting highest probability match with the original labelled

letter for each of the training examples and converting this to a percentage, a

measure of the classifications accuracy can be determined.

Out of a total of 4741 examples the highest probability match was correct in

3348 cases, with the second highest probability match being correct in 1000

cases. This gives a 70.62% accuracy for the most likely match, with 20.09%

accuracy for the next most likely match. From this it can be said that there is a
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91.71% chance that the correct letter for each pose will be recognised as one of

the two highest probability matches from the matrix.

6.5 Evaluation

Initially these results may not seem overwhelming, however the complexity of

performing such a task using computer vision is considerable due to the

variability of the hand and the problems associated with accurately segmenting

or extracting features which represent its shape. If other approaches are

considered this becomes apparent. Table 6.5-1 [Handouyahia 99] summarises

other authors approaches the problem.

Authors/
Properties

Size of
Vocab

Type of
Vocab

Capture Representation Recognition Success
Rate %

Gourley3 26 ASL4 Elect5 Templates Perceptron Neural Network 95

Harling3 5 ASL4 Elect5 Templates Perceptron Neural Network 96

Murkami3 42 JSL6 Elect5 Templates Perceptron Neural Network 98

Takahashi3 46 JSL6 Elect5 Joint and orientation coding Template Matching 65

Gao3 13 D.Set7 Camera Convex/Concave coding Backpropogation Network 80

Uras3 25 ISL8 Camera First size functions family K-Nearest Neighbour 85

Uras3 25 ISL8 Camera Second size functions family K-Nearest Neighbour 86

Freeman3 15 D.Set7 Camera Orientation Histograms K-Nearest Neighbour 75

Handouyahia3 25 ISL8 Camera Moment Based Size Functions Perceptron Neural Network 90

Our Method 26 ASL4 Camera NL Point Distribution Model Fuzzy Nearest Neighbour 71(92)

Table 6.5-1 - Table Showing a Summary of Gesture Recognition Methods

The highest accuracy rates are achieved using an electrical sensor based data

glove as an input device. Those techniques that rely upon computer vision

perform less well. The higher accuracy's are also generated for systems which

use neural networks to provide the mapping between feature space and gesture

space. If the simplicity of the CSSPDM augmented with the conditional

probabilities which provide the gesture recognition is considered then the

attraction of this approach becomes apparent.

                                                          
3 Details of the authors work are contained in and Handouyahia 99 and Watson 93
4 American Sign Language
5 Electronic sensor based glove
6 Japanese Sign Language
7 The type of the vocabulary is pre-defined
8 International Sign Language
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It is also important to note that the CSSPDM is assessing the model at every

frame and attempting to recognise the gesture contained there in. This assessment

of each frame is static. No temporal or contextual information is used. Further

constraints could be applied from the English Language to increase accuracy (see

Chapter 7). Since humans tend to pause slightly at each gesture, the accuracy

could be further increased by accumulating probabilities over time, i.e.

consecutive frames would 'vote' towards the current gesture, further reducing the

effect of noise.

Selected
Feature/Criteria

Scale
Invariant

Translation
Invariant

Rotation
Invariant

Lighting
Invariant

Robust to N'
of Fingers

Computational
Complexity

Basic Chain Code3 No Yes No No No Low

Convex-Concave
Coding3

Yes Yes Yes No Yes Low

Fourier Desc.3 No No No No No Low

Hu Invariant Moments3 Yes Yes Yes No No High

Alt Invariant Moments3 Yes Yes No No No High

Principal axes3 Yes Yes No No No Low

Grey Level Histogram3 No Yes Yes No No Low

Hist. Of Local
Orientation3

Yes Yes No No No Low

Size Functions3 Yes Yes No Yes Yes High

Moment Based Size
Funct3

Yes Yes No Yes Yes Low

Authors Method3 Yes Yes Yes Yes Yes Low

Table 6.5-2 - Table Showing the Evaluation of Features used in Various

Gesture Recognition Methods

The CSSPDM naturaly lends itself to the probabilistic classification of pose,

however if the CSSPDM is compared to other features used in Gesture

Recognition, its benefits can clearly be seen. Table 6.5-2 [Handouyahia 99]

summarises features used by other methods.

Unlike other approaches the CSSPDM is:

1. Scale Invariant: Gestures can be executed by different people with different

hand sizes.

2. Translation Invariant: The location of the hand in the image plane can

change.
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3. Rotation Invariant: The hand can rotate around the cameras z-axis, other

rotations of the hand can be incorporated into the deformation of the model.

4. Lighting Invariant: The illumination and background of the scene can

change.

5. Robustness to number of fingers: Additional training data can be

incorporated into the model to allow for individual changes in hand shape

and gesture.

6. Computation Complexity: The simplicity of the linear mathematics and

single layer of conditional probability means the method is fast to compute.

6.6 Conclusions

This chapter has demonstrated that by projecting the dataset through a linear

PDM and hence reducing the overall dimensionality of the problem before

further non-linear constraints are applied, several benefits are gained:

1. The data is smoothed before constraints are applied, producing better results

in the final model.

2. The data reduction of the CSSPDM produces a significant computational

saving over the CBNLPDM at the cost of accuracy. However this accuracy

can easily be controlled to ensure model precision is maintained.

3. Construction is simplified as only one decision need be made as to the

information loss of the model. In CBNLPDMs each cluster requires a

different number of eigenvectors to achieve the required accuracy while

compressing the data. However, CSSPDMs need not be concern with the

local dimensionality of clusters as the initial projection allows each linear

patch to model 100% of the deformation of that cluster.

Furthermore, it has been shown that, although the nature of the space is complex,

simple classification techniques can be applied to perform static recognition of

object shape and pose. These models allow deformable models to be constructed

which, under the linear constraints of a simple PDM, would fail to be robust

enough for “Real World” applications.



113

One important consideration is that as models become more complex, the simple

gradient descent approach used on linear models begins to fail. These issues will

be addressed in the next chapter.
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7 Adding Temporal Constraints

7.1 Introduction

The deformation that has been 'learnt' thus far is time independent deformation.

Models have been constructed that know what is valid deformation but not when

deformation is valid. This important temporal constraint is beneficial in

disambiguating models. When such mathematical constraints have been placed

upon the deformation of an object in order to increase robustness, the important

consideration of how a model moves with time should also be considered.

The linear formulation of the PDM makes iterative movements within the image

frame based upon the assumption that the model will not alter considerably

between consecutive frames. Providing a simple model and a slow

moving/deforming object this assumption holds true. However, as has been

demonstrated with non-linear models, this smooth iterative movement through

shape space does not provide a sufficient mechanism to 'jump' between

discontinuities in shape space. It is therefore apparent that if complex models are

to be successfully tracked within the image frame, additional constraints must be

applied to both increase robustness and to improve the transition through shape

space.

Chapter 7
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The remainder of this chapter is concerned with the construction and use of

temporal dynamics, which can be learnt in addition to deformation. Section 7.2

takes a graphical simulation example to construct a 3D non-linear PDM from

which temporal dynamics are learnt. These dynamics can then be used to

reproduce the deformation and motion of the model. Section 7.3 will discuss the

issues of tracking complex non-linear models and how these temporal dynamics

can be used to increase robustness and support multiple hypotheses. Section 7.4

demonstrates how these temporal constraints can be used to enhance

classification. Lastly conclusions are drawn.

7.2 Learning Temporal Model Dynamics

7.2.1 Introduction

The work thus far has discussed the computer vision applications of non-linear

models of shape and deformation, where models have been used to locate and

track objects in the image frame. The models produce graphical representations

of objects, which can be mapped to the appearance of real world objects within

the image. In the field of computer graphics, similar representations are required

for animation. The main difference is that graphical models are required to be

'life-like' and three-dimensional for rendering. The models must therefore exist in

3D. The rendering procedure then projects these models into 2D for viewing. In

computer vision applications this projection is often incorporated into the

statistical model, representing how an object deforms on the image-plane rather

than within its own 3D co-ordinate system. However, this is not always the case

and deformable models have also been applied to 3D in computer vision in order

to reduce some of the non-linearity introduced during the projection process.

[Heap 96; Ferryman 95; Hogg 83] have tackled computer vision from this 3D

perspective, which is basically the reverse mapping of the rendering procedure.

In computer graphics, [Pentland 96; Parker 97] have used statistics and

interpolated models to produce 'life-like' renderings and animations of human

facial motion.
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The use of computer vision techniques in motion capture is common placein

acquiring trajectories for key points of objects that are used to produce life-like

3D animations. Figure 7.2.1 and Figure 7.2.2 show motion trajectory files for a

running and walking human female9. These were captured using reflective IR

markers on a real world human subject. The trajectories of these markers in space

were recorded in multiple camera views and the trajectories of these points

calculated using standard stereo reconstruction techniques. The model consists of

32 3D-marker points and their trajectories through space. By connecting these

points with a simple stick model the human motion can be visualized. In

computer animation, these key points would be used to animate the articulated

sections of a 3D virtual character for computer games or virtual environments.

Figure 7.2.1 - Examples from a Key-frame animation of a Running Woman

Figure 7.2.2 - Examples from a Key-frame animation of a Walking Woman

It is this notion of key points in the motion capture process that provides the link

between statistical models and animation, where animation key points are akin to

the landmark points used in statistical models. If statistical models of shape and

deformation can be learnt from a training set, producing realistic constraints on

the shape (or motion of landmark points), then similar learnt models of

animation trajectories can also be achieved.

                                                          
9 The motion capture data for the female subject was provided by TeleVirtual Ltd.
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7.2.2 The Linear Motion Model

The human motion capture data for both the running and walking woman

consists of 32 key points for each frame of the animation; these points can be

concatenated into a single 96 dimensional vector V=(x1,y1,z1, ..., x32, y32, z32).

The running animation consists of 474 key frames recorded at 30Hz which

produces a training set of 474, 96 dimensional vectors. The walking animation

consists of 270 key frames, again captured at 30Hz using 32 key points

producing a training set of 270, 96 dimensional vectors. Now the training sets are

in a form that enables further statistical analysis: linear PCA can be performed

upon them to produce a linear 3D PDM.

Figure 7.2.3- The Running Linear 3D PDM

Figure 7.2.4 - The walking Linear 3D PDM

1st Mode 2nd Mode 3rd Mode 4th Mode 5th Mode

1st Mode 2nd Mode 3rd Mode 4th Mode 5th Mode

47.2%
deformation

30.2%
deformation

13.4%
deformation

4.6%
deformation

1.3%
deformation

67.7%
deformation

14.6%
deformation

8.3%
deformation

4.6%
deformation

2.4%
deformation
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From the eigenvalue analysis, 98.8% of the deformation of the running model is

contained within the first 10 eigenvectors, with 99.4% of the walking model

being encompassed by the 10 eigenvectors.

It can be seen from Figure 7.2.3 and Figure 7.2.4 that the linear 3D PDM does

not model the trajectories of key points (and associated body parts) well. The

motion files contain perfect landmark point identification between examples.

However, the data sets are still non-linear due to the circular motion of the body

parts. This non-linearity can be seen in Figure 7.2.6 and will be discussed

shortly. It should be noted that the 3rd mode of variation of the walking model

encompasses mainly translation. This is due to the change in speed as the walker

establishes a consistent gait, and remains a part of the model due to the absence

of the alignment of the training examples. Had the normal alignment procedure

been followed, then this translational information would have been reduced. The

translation correlates to the shift in m1 of the walking model seen in Figure

7.2.6b. However, this information is important to the realism of the animation

and must therefore remain a component of the model. It will later be removed

through the use of temporal dynamics.

7.2.3 Adding Non-linear Constraints

Using the methods previously discussed, the data sets are first dimensionally

reduced by projecting each of the training examples down onto the eigenvectors

of the linear PDM. Using the 10 primary modes of the linear model as

determined in the previous section, both the running woman data and the walking

model are projected down from 96 to 10 dimensions. These lower dimensional

data sets are shown in Figure 7.2.6 as points drawn in 3D from two 2D views.

Cluster analysis was then performed on the reduced data sets. The resulting cost

files are shown in Figure 7.2.5. The natural number of clusters for the run and

walk trajectory files can be estimated to be 25 and 30 respectively. The larger

number for the walking model is due to the model translation introduced as the

subject establishes a consistent gait, as mentioned earlier.
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Walk trajectory file
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Figure 7.2.5 - Cost files for Trajectory Data

Using the natural number of clusters for each data set, the fuzzy k-means

algorithm was used to segregate each data set into its composite clusters. Each

cluster was then modelled by performing further PCA upon its members. The

final non-linear constraints can be seen in Figure 7.2.6 with the bounds of each

cluster drawn as a rectangle over the reduced data set.

(a) The Running Woman Data Set,          (b) The Walking Woman Data Set

Figure 7.2.6 - Dimensionally Reduced Data sets with the Cluster Based

Constraints
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From this diagram it can be seen that the clustering algorithm has smoothly

estimated the natural curvature of the data set through piecewise linear patches.

Each cluster better estimates the model locally as each linear patch must encode

less information.

The CSSPCA has learnt the Motion Capture Space and can be used to reproduce

viable shapes from the model. However, in computer animation this is

insufficient. For animation purposes, the ability to model the trajectory through

shape space is also required, allowing the motion to be reproduced.

7.2.4 Learning Temporal Constraints

Thus far the techniques have been used to learn the shape and size of the

trajectory space, temporal analysis must be performed to estimate how the model

moves through space with respect to time.

Figure 7.2.7 - Trajectory through Reduced Shape Space

Figure 7.2.7 shows the 3D trajectory of the reduced dimensional running data set

projected down into 3 dimensions. Using simple animation techniques it is

possible to watch the model move throughout the space as the animation

sequence iterates. It is apparent that the motion is cyclic and consistent in nature

and repeats in accordance with the period of the stride of the actor. Therefore,
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given any point within the space it is possible to predict where the model will

move to next, based upon this observed motion.

The model has been estimated in a lower dimensional space; if the trajectory can

also be modelled in this lower space then it is likely that paths of motion

throughout the space could be determined and reconstructed. The key again is in

this probabilistic analysis of the training set. The deformation constraints have

already broken the shape space down into linear patches with the centre of the

clusters being the mean shape of the transition at that point in time. It is also

known that, due to the cyclic nature of the data set, the pattern of movement

repeats at regular intervals for fixed speeds of motion. Although this is not a

necessary condition, it can effectively be modelled as a self-starting, finite state

machine. This lends itself naturally to a discrete, time dependent, probabilistic

analysis of the motion.

The reduced training set can therefore be used to analyse the model and

probabilistically learn the transition of the model between clusters. This can be

done with a state transition matrix of conditional probabilities, otherwise known

as a Markov chain.

7.2.5 Modelling Temporal Constraints as a Markov Chain

A Markovian assumption presumes that the present state of a system (St) can

always be predicted given the previous n states (St-1, St-2, ..., St-n). A Markov

process is a process which moves from state to state dependent only on the

previous n states. The process is called an order n model where n is the number

of states affecting the choice of the next state. The simplest Markov process is a

first order process, where the choice of state is made purely upon the basis of the

previous state. This likelihood of one state following another can be expressed as

a conditional probability P(St|St-1).

A Markov analysis looks at a sequence of events, and analyses the tendency of

one event to follow another. Using this analysis, a new sequence of random but

related events can be produced which have properties similar to the original.
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The probability mass function ( )nt
jCP  denotes the unconditional probability of

being in cluster j at time tn, or being in state j after n transitions (time steps). A

special situation exists for n=0 where ( )0
jCP  denotes the probability of starting

in state j. However, due to the assumption that the motion is cyclic and the

trajectory file starts and ends mid-cycle, no information is available for these

initial probabilities.

The conditional probability mass function is therefore defined as

( )mn t
k

t
j CCP

( )mn t
k

t
j CCP  gives the probability of being in cluster j at time tn conditional on

being in cluster k at time tm. In the trajectory file example it is fair to make the

assumption that the next state of the model can be determined from the previous

state. This can be confirmed by observing the trajectory taken through shape

space by the training set (see Figure 7.2.7). Provided stationary elements of the

chain are ignored, i.e. where ( ) ( )( )11 max −− ≥ t
k

t
j

k

t
j

t
j CCPCCP  and therefore choosing

the 2nd highest probability move at each time step, the continuous transition

through shape space can be achieved.  If this assumption is made, then the

process becomes a first order Markov process or Markov Chain and pj,k a one

step transition probability

( )1
,

−= t
k

t
jkj CCPp

If there are n clusters in the model, then there are n states in the chain, hence a

state transition matrix is an nn×  matrix of one step transition probabilities. This

is constructed in a similar manner to the classification probability matrix

constructed in section 6.5.6, and is a discrete probability density function (PDF).
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After construction of the PDF its content can be visualised by converting the

matrix to a grey-scale image. Figure 7.2.8 shows the resulting images for both

the running and walking data sets. It can clearly be seen that high probabilities

exist along the diagonal of the image. This diagonal, when i=j or St=St-1,

demonstrates that the model always has a high probability that it will stay within

the same local patch. This can be attributed to the discrete nature of the model,

and the fact that each patch is constructed to model local deformation. The darker

diagonal in the walking model shows that this model has a higher probability of

remaining within a local patch and is a result of the speed of movement. As both

sequences were captured at the same rate, the slower movement of the walking

model generates more frames in each local patch and hence a lower probability

that the model will make a transition to another patch. However, as the numerical

identity of each local patch within the matrix is randomly generated by the k-

means algorithm, no further conclusions can be drawn from the patterns within

the image, hence the random distribution.

       

(a) The Running Woman Data Set    (b) The Walking Woman Data Set

Figure 7.2.8 - Discrete Probability Density Functions
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The PDF's shown in Figure 7.2.8 provide a conditional probability that, given a

cluster at time t, the system will move to another cluster at the next time step. By

taking the highest probability move at each time step the highest probability path

can be modelled throughout the space.

Using this information and the mean shape of each cluster as key frames, the

motion of the training set can be reconstructed. If any cluster of the model is

chosen at random and the next highest probabilistic transition made at each time

step ( )jii p ,argmax  where ji ≠ , the model should settle within a natural path

through the space. This is similar to a finite state machine that has a circular path

and is self starting. If the natural number of clusters selected is correct then the

cyclic period of the model should be equal to that of the training set. If the cluster

number is too high then non-equidistant cluster centres result and the model

appears to 'jerk'. If the cluster number is greater than twice the natural number

then the model risks having a cyclic period of multiples of that of the true

motion.

Figure 7.2.9 - Extracted Trajectory for Running Model

Figure 7.2.9 shows the highest probability path for the running model that

consists of 15 clusters. Each pose of the model is the mean shape (exemplar) of a

cluster. This model is reconstructed from the information that has been learnt

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15
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from the motion file and accurately reproduces the original motion. The

animation can be further refined by linearly interpolating between these key

frames (exemplars), as the linear interpolant along a line between exemplars is

equivalent to linearly interpolating all points on the model between key frames.

This does however introduce slight non-linear deformities. These deformities can

be reduced by projecting the interpolated model into the constrained space to

extract the closest allowable model for rendering.

Figure 7.2.10 - Extracted Trajectory for Walking Model

Figure 7.2.10 shows the highest probability path through the walking model,

consisting of 19 key frames that produce a cyclic path of high probability

through the Markov chain. The original model contained 30 clusters and the

redundant 11 clusters partly model the introductory gait acceleration, which can
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8 9 10 11 12 13 14
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be seen in Figure 7.2.11. The red line shows this high probability path extracted

from the Markov chain. Acting like a self-starting finite state machine, if the

model is initiated within the low probability startup area of the space, the chain

quickly moves the model to the circular region, where constant cyclic movement

occurs.

Figure 7.2.11 - High Probability Path through Walking Model Shape Space

7.2.6 Conclusions

In this section it has been shown how the reduced dimensionality and discrete

representation of the Constrained Shape Space approach to modeling non-linear

data sets can be used to provide simple analysis and reconstruction of motion.

This is done by analysing the training set and constructing a Markov Chain,

which is a discrete, probabilistic representation of the movement of the model

through shape space. It has also been shown how, using this learnt temporal

information, animated models can be produced which encapsulate the temporal

information learnt from a training set.

Walker establishes
gait

Walker settles
into consistent
gait
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7.3 Tracking with Temporal Dynamics

7.3.1 Introduction

In the previous section, temporal information was learnt from a training set in

addition to deformation. It has been shown how this temporal deformation can be

used to represent and reproduce motion. However, for many computer vision

techniques this is not the ultimate goal. What is beneficial is using this learnt

temporal information to further constrain the model, or predict the movement and

deformation of an object, thus producing more robust tracking and classification.

A large body of work has been performed on the temporal mechanics of tracking.

Many researchers have attempted to use predictive methods such as those based

within a Kalman filter framework [Blake 98]. Hill et al proposed using genetic

algorithms to model the discontinuous changes in shape space/model parameters

[Hill 91][Hill 92].

Of particular interest to the work presented in this thesis is the

CONDENSATION algorithm [Isard 98] [Blake 98] which is a method for

stochastic tracking where a population of model hypotheses are generated at each

iteration. These populations are generated from pre-learnt PDFs generated over

the model parameter space to provide a hypothosis-and-test approach to model

prediction and tracking. A more comprehensive introduction to Condensation is

given in Section 2.5.

Condensation is a powerful tool in deformable model tracking for several

reasons:

1. It supports multiple hypotheses and therefore produces robust results for

tracking with occlusion and discontinuous movement.

2. It uses a priori knowledge about the object to predict its movement.

3. It recovers well from failure, allowing the model to 'jump' out of local

maxima/minima.
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It has been shown that, due to the discrete nature of the piecewise linear

approach to modeling non-linearity, the approach directly lends itself to a

discrete PDF with the addition of the Markovian assumption.

Figure 7.3.1 - Constrains on PCA space for the ASL Model

This temporal information can be used to augment the CSSPDM model with

conditional probabilities, which allow the support of multiple hypotheses similar

to that used in Condensation. This is important due to the discrete nature of the

piecewise linear model. If the discontinuous shape space constructed for the

American Sign Language (ASL) alphabet is considered from Section 6.5.6 (see

Figure 7.3.1), it can be seen that shape space is segregated into at least two

separate regions due to the movement of landmark points around the boundary

(see section 2.4 for a description of these types of non-linearity). Furthermore,

connected patches of the model may not represent consistent movement of the

model in the image frame. This leads to the model jumping between patches,

even when within region 2. Under these circumstances it is not possible for the

m0

m1

m2

Region 1

Region 2



129

iterative refinement algorithm used for the classic PDM/ASM (section 3.3) to

provide the 'jump' between regions.

An image sequence was recorded of a hand signing the word 'gesture' which

consisted of 170 frames. Figure 7.3.2 shows the model attempting to track the

image sequence for the letters 'e' and 'u'. The model successfully tracks the letter

'e' but when the image sequence reaches the letter 'u' and the fingers elongate, the

model is unable to make the jump to the new cluster responsible for modeling

this letter. This problem is fundamental to the operation of the least squares

iterative refinement algorithm and is due to two reasons:

1. Only a small section of the contour (marked in frame 'u') is responsible for

'pulling' the contour up to follow the elongated fingers. As this section is

relatively small, compared to the remainder of the contour, it has less

influence over the overall movement.

2. The maximum movement of the contour per iteration is governed by the

length of the normal used to search around the contour. Hence this factor

limits the distance the model can move through shape space at each iteration.

Figure 7.3.2 - ASL model Tracking an Image Sequence of the word 'gesture'

An obvious solution to these problems is to increase the search length along

normals. Figure 7.3.3 shows the results of various parameters for the least

squares iterative refinement algorithm on the ASL model. The graph

e   u
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demonstrates the effect of varying the number of iterations per frame and the

length of the normal (in pixels) either side of the contour. The cost at each

iteration is the sum of the pixel difference between the desired movement of the

model (gained from the assessment of the normals) and the final shape (after the

constraints of the model have been applied). Where multiple iterations per frame

were performed, these are displayed as fractions of a frame to visualise the

resulting error cost of iteration. The corresponding letters of the sequence are

shown with the vertical lines denoting the approximate transition between letters.

At these transitional frames, the model error rises due to the increased speed of

movement of the hand. During these faster movements the iterative refinement

procedure must make larger movements through shape space to deform with the

image. This produces the increase in error due to the limiting factor of the

localised normal search.

Increasing the number of iterations produces a resulting reduction in cost up to a

certain threshold, at which point the cost begins to rise again. This can be

attributed to the finer iterations allowing the model to achieve poses from which

it can not easily extract itself and is a further drawback of using the least squares

iterative refinement approach to fitting a non-linear model. Although the

increased normal length allows the model to achieve the aforementioned

transition to the letter 'u', the resulting cost demonstrates a reduction in the

overall performance of the model. The larger normal search allows the contour to

affix to incorrect features in the image and hence results in degradation. Where

image sequences with heavy background clutter are considered, this problem

becomes more acute.

Another drawback of large normal searches is the resulting computational cost in

assessing the additional pixel intensity gradients. It is therefore necessary to use a

tracking paradigm that allows these quantum leaps in shape space to be made

while retaining the localised searching and constraints of the model.
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7.3.2 Finding the Optimal Ground Truth for Tracking

To locate the optimum solution (i.e. the closest allowable shape from the

Constrained Shape Space PDM, CSSPDM) for each iteration of the model, the

space was exhaustively searched. If the assumption is made that any local patch

of the CSSPDM can indeed be treated as a linear model, then the iterative

refinement procedure can be used to move locally within that patch to the closest

possible shape. Therefore, if the best match within each patch (cluster) is located

for each frame, the resulting lowest cost solution must be the (near) optimum.

This exhaustive search was performed on the 'gesture' image sequence. For every

frame, each of the 150 clusters were assessed in turn. The mean shape of the

cluster was used as a starting shape and the iterative refinement of the model,

within the cluster, performed until the model converged (typically 40 iterations).

The cluster that produced the lowest cost solution was deemed to be the optimum

and the resulting costs plotted in Figure 7.3.4 along with the lowest of the least

squares approaches from Figure 7.3.3.

The two smoothed plots are polynomial trendlines fitted to the data to help

visualise the overall efficiency of the approaches. The optimum solution

produces a lower error than that of iterative refinement, which would be

expected. However, both exhibit similar trends. From this it can be inferred that

some of the errors produced during tracking are not the result of the algorithm's

inability to track successfully but are due to the constraints of the model. The

higher error rates that result from letters such as 'g' and 'r' suggest that more

training examples for these letters are required so as to increase the ability to

model unseen shapes.

By analysing the optimum path through shape space and comparing this with the

path taken by the least squares approach, the notion of discontinuity within shape

shape can be confirmed.
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Graph showing the Distance Moved at each Iteration for the Least Squares and 
Optimum Trajectory through ASL Shape Space
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Figure 7.3.5 - Graph of Distance Moved at each iteration for Least Squares
Solution and Optimum Solution

Graph showing the Distance from the Mean Shape at each Iteration for the Least 
Squares and Optimum Trajectory through ASL Shape Space
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Figure 7.3.6 - Graph of Distance from Mean of Shape Space at each frame for
Least Squares Solution and Optimum Solution

Figure 7.3.5 shows the distance moved through shape space at each iteration for

both the optimum trajectory and the iterative refinement algorithm. From this it

can clearly be seen that the least squares iterative refinement algorithm makes

small incremental movements at each iteration, whereas the optimum trajectory
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makes large 'jumps' at every frame. During the letters 'e' and 't' the least squares

approach almost stops moving, which demonstrates that the model has converged

upon a stable solution. However, the lack of such trends for other letters shows

that the model is constantly struggling to better refine itself. Figure 7.3.6 shows

distance from the centre of shape space for the two trajectories at each iteration.

Again this demonstrates that the optimum path jumps violently within the space

whereas the least squares approach makes small movements. The high values

achieved by the least squares approach for the letters 'u' to 'e' show that the model

is at the extremity of shape space making small movements. However, the

relative movement of the model in Figure 7.3.5 for frames 100-150 show that it

is moving considerably at each iteration attempting to find a better solution.

The most interesting aspect of these figures is within Figure 7.3.6. The letter 'e'

occurs twice during the sequence. However, during the first occurrence the least

squares approach is at a distance of around 200 units from the mean whereas

during the second occurrence it is at around 500. This demonstrates two facts:

1. That there are at least two areas of shape space responsible for modeling the

letter 'e' and these are distinctly separated in shape space.

2. The least squares approach can only use the local 'e' part of shape space and

is incapable of jumping between them.

This confirms that not only is the non-linear shape space discontinuous but the

least squares iterative refinement approach is incapable of providing a robust

method for tracking. Instead a new method of applying CSSPDMs must be

devised.

7.3.3 Supporting Multiple Hypotheses

By taking advantage of the Markovian assumption, a similar model of temporal

dynamics can be generated for the ASL model as was constructed for the motion

capture data previously discussed, where the conditional probability ( )t
j

t
i CCP 1+  is

calculated. As has been discussed, the major discontinuities of the shape space

occur when landmark points jump around the boundary and hence result in a
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jump in shape space (Figure 7.3.5 and Figure 7.3.6). However, within each patch,

the model still makes small iterative movements. This can be confirmed by

visualising the resulting PDF as a grey scale image.

Figure 7.3.7 - Discrete Probability Density Function for ASL Model

Figure 7.3.7 shows the ASL PDF, which again has a heavy diagonal dominance.

This dominance is when ( )( )t
j

t
ii CCP 1+argmax  and ji =  i.e. the highest

probability is that the PDM will usually stay within the present cluster. The

assumption can therefore be made that within any local patch the model can

iterate to a local solution. This confirms the assumption used when calculating

the optimum model shape. This assumption also provides two benefits:
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1. The iteration to convergence of any global optimisation technique can be

enhanced by allowing each hypothesis to iterate to a better solution within the

present cluster.

2. A smaller population is required, as only global differences in hypotheses

need to be supported.

This is a common procedure in speeding up the convergence on solutions for

many optimisation techniques such as in neural networks  or clustering [Boyle

95]. By combining a gradient descent method with a global optimisation

approach the speed to convergence is increased and the problem of oscillating

down narrow energy wells to local minima reduced.

From the 'learnt' probability density function, a sample population can be

generated at each iteration of the model. Given a good initialisation of the model

(see section 3.3.2) and the associated cluster 0=tC , which encompasses that

shape, the procedure is summarised thus:

Algorithm 7-1 - Simple CSSPDM Condensation

•  From the PDF ( )1−t
j

t
i CCP , extract the probability vector ( )1=t

iCP , which is the

probability distribution of the first iteration, given 01 =− = tt
j CC .

• Generate a randomly sampled distribution of k hypothoses [ ]k,,1!=ρρx ,

where ρx  is the mean shape of cluster iC  and ( ) ( )1== t
ii CPCP

• While still tracking,

• Fit the k hypothoses to the image frame using the least squares gradient

descent algorithm (section 3.3) and iterate, applying CSSPDM constraints

and assess fitness using error metric (section 7.3.2)

• Sort hypothoses into descending order according to error

• Take lowest error solution and locate closest cluster c

• From the PDF ( )1−t
j

t
i CCP , extract the vector ( )tiCP , which is the

probability distribution of the next iteration, where cCt
j =−1
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• Generate a new randomly sampled distribution of k hypothoses

[ ]k,,1!=ρρx  where ρx  is the mean shape of cluster iC  and

( ) ( )tii CPCP =

By repeating this procedure for each frame, iteration allows the model to

converge in the least square sense upon local solutions. However, due to the

generation of a new population of hypotheses gained from the a priori

information about movement contained within the PDF, the models are permitted

to 'jump' within shape space at each new frame. This allows multiple hypotheses

to be supported simultaneously, where the current lowest cost hypothosis is

deemed to be the correct one. Figure 7.3.8 demonstrates the error rates produced

by this simplified form of the condensation algorithm (Algorithm 7-1).

Experiments were performed to assess the result of various parameterizations of

the algorithm, where

n is the length of the normal search on either side of the contour

I is the number of least squares iterations used for each hypothosis

k is the size of the population size or the number of hypothosis used

Varying these parameters produces dramatic variations in the resulting error rates

produced and the overall performance of tracking. Many of the higher error

parameterizations fail to track the image sequence completely producing a zero

success rate and hence consistently high error rates. With n=40 (as with least

squares iterative refinement) high failure rates are produced, as do small

populations and low numbers of iterations. It is important to note that a

population size of one (k=1) is effectively least squares iterative refinement due

to the diagonal dominance of the PDF.

The best results were achieved using a normal length of 20 pixels, a population

size of 10 multiple hypotheses and between 5 and 10 iterations per hypothesis

(i.e. n=20, k=10, I=5/10). These traces are shown in Figure 7.3.9 along with the

results of both the optimum trajectory and the iterative refinement approach for

comparison. The trend lines give a good indication of the overall performance of

the various approaches.
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Figure 7.3.9 shows that both the simple condensation approaches produce

significantly better results than the iterative refinement least squares tracking, but

not as low as the optimum which would be expected. Increasing the number of

iterations performed on each frame from 5 to 10 provides a slight increase in

performance but not significant enough to warrant the additional computational

overhead.

However, with such a low population size (p=10) and only five iterations

required per frame (i=5) a total of (p*i), 50 models are fitted to the image at each

frame. This provides a significant computational saving upon standard

condensation where typically much larger populations (in the order of hundreds

are required) to accurately track objects.

However, this approach, unlike condensation, does not recover well from

failures. As the new population is solely based upon the current best-fit cluster

the approach is highly sensitive to both an accurate PDF representation of the

expected movement and the assumption that the best-fit cluster is actually affixed

upon the object. To help overcome this drawback two factors must be addressed.

1. Less emphasis must be placed upon the current best-fit hypothesis being

the optimum (and hence correct) solution, thus providing more robustness

to failure.

2. The PDF must be an accurate and thorough representation of the expected

object movement and hence the training set from which it is constructed

must be general in both shape and movement. This is more difficult and

will be addressed in the section 7.4.1.

Point 1 can be addressed by creating a new population of hypotheses, not from

the current best fit model, but from the weighted sum of the best n hypotheses as

described thus:
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Algorithm 7-2 - Weighted Condensation

• From the PDF ( )1−t
j

t
i CCP , extract the probability vector ( )1=t

iCP , which is the

probability distribution of the first iteration, given 01 =− = tt
j CC .

• Generate a randomly sampled distribution of k hypothoses [ ]k,,1!=ρρx ,

where ρx  is the mean shape of cluster iC  and ( ) ( )1== t
ii CPCP

• While still tracking,

• Fit k hypotheses, applying CSSPDM constraints and assess fitness using

error metric

• Sort hypotheses into descending order according to error

• Iteratively refine first n hypotheses and resort

• Apply the CSSPDM constraints and determine the n clusters 1−tCη , where

n,,1 !=η  which produce the lowest error

• From the PDF ( )1−t
j

t
i CCP , extract the vector ( )ηt

iCP  using the n extracted

clusters. Take the weighted sum using a Gaussian weighting distribution

to form a new distribution ( )t
iCP′ , where

∑
=

=
n

t
i

t
i CPCP

1

)()('
η

ηηω  and 
( )








 −−=
2

2

2

19
exp

n

ηωη

• Normalise probability distribution ( )t
iCP′ .

• Generate a new random population of k hypotheses from the distribution

( )t
iCP′ .

The results of applying this weighted approach to condensation are shown in

Figure 7.3.10. This graph shows that, by using the best 5 models to generate the

new population, lower error rates are achieved. Using the best 6 models produces

less clear benefits but does provide increased ability to recover from failure.
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7.3.4 Conclusion

This section has demonstrated that the nature of shape space need not be

continuous. Under these circumstances it has been shown that the least squares,

iterative refinement approach to PDM tracking fails. It has also been shown how

the Markovian assumption can be applied to the CCSPDM to provide a fast

tracking paradigm, which is less computationally expensive than standard

condensation, while allowing multiple hypotheses to be supported.

7.4 Extending Temporal Dynamics to Classification

7.4.1 Introduction

It has been shown how, with the addition of a first order Markov chain to the

CSSPDM, a hybrid approach to condensation can be used to provide robust

tracking where either:

• The non-linearity of the PDM along with the discrete representation of the

non-linear approximation leads to a discontinuous shape space.

• Rapid movement of the object produces large changes in the model

parameters.

This Markovian model of dynamics can be used to explicitly constrain the

movement of the model within shape space, or implicitly, using the hybrid

condensation approach. However, the use of temporal constraints relies upon one

major assumption, as mentioned earlier:

The training set from which the model is built contains a

thorough representation of all-possible deformation and

movement.

For simple models this is often true. However, for ASL it is not, and it is

important to ask the question,

'What exactly is the temporal model representing?'
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The ASL PDF represents two aspects of motion,

1. The non-linear representation of shape space, how the individual clusters

relate and how the model moves throughout the space to form letters.

2. It also contains information about the English language and how letters relate

to form words and sentences.

As the PDF encodes both of these attributes it must be constructed from a

training set which has a good representation of how the model deforms and be

representative of the English language. This is however infeasible.

If the ASL image sequence used previously is considered, it took 165 frames to

record the 7 letter word 'gesture'.  Konheim reported a statistical study where the

1-state transition probabilities of the English Language were determined using

67,320 transitions between two successive letters [Konheim 82]. As the 165

frames previously used produced an average of 20 frames per letter, this would

constitute a training set in excess of 1.3 million frames not including transitional

shapes between letters. As each frame produces a training shape this results in a

training set which is of infeasible size. At 12.5 frames per second it would

require almost 30 hours of continuous video capture. Of course smaller numbers

of both transitions and frame sampling could be used but would result in a less

reliable PDF.

The current ASL PDF (see Figure 7.3.7) contains valuable information about

how the model moves within shape space, but due to the deficiency in training it

does not contain sufficient information to accurately model the transitions

between the letters of the English language. Fortunately, it is relatively simple to

gain a transition matrix for the English language as it can be constructed in a

similar manner to previously described PDF's by analyzing large samples of

electronic text and calculating the 1-state transitions. What is required is a

method of combining this knowledge of English into the ASL PDF, producing a

more generic and accurate model for tracking and classification.
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7.4.2 The Temporal Model

The ASL PDF ( )1−t
j

t
i CCP , constructed from the training set, provides the

probability that the model will move to cluster iC  given it was at cluster jC  at

the last time step. This is illustrated by Figure 7.4.1, and provides the necessary

information of how the model moves within shape space. However, as discussed,

this information is incomplete and does not correctly contain the transitional

information about the letters and how they relate to form words.

Figure 7.4.1 - Temporal Constraints upon Shape Space for the ASL Model

Figure 7.4.2 - 1st Order Markov Chain in Gesture Space

Similarly a 1st order Markov Chain can be constructed for the English language

which provides a new PDF ( )1−t
j

t
i LLP  (see Figure 7.4.2). Figure 7.4.3 shows the

PDF gained from this Markov Chain as taken from Konheim and shows the 1-

Shape Space Shape Space

( )1−t
j

t
i CCP

a

b

c

d

Gesture Space

( )1−t
j

t
i LLP
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state transitions calculated from a sample text of over 67 thousand letters

[Konheim 82].

t
iL

a b c d e f g h i j k l m n o p q r s t u v w x y z

Figure 7.4.3 - Discrete Probability Density Function for the English Language

Figure 7.4.3 does not demonstrate a diagonal dominance, unlike previous PDF's.

This is because the English language has few occurrences of repetitive letters in

words whereas previous PDFs resulted from operations involving a high degree

of repetition. The main trend that can be seen are the vertical stripes that occur

for many of the letters. This shows letters which have a high occurrence and are

proceeded by almost any other letter in the alphabet. The highest probabilities

occur for the letter 'e' confirming that 'e' is the most commonly used letter in the

English language. Another observation is the single transition from the row 'q' to

the column 'u' as 'q' is always followed by a 'u' in standard English.

In order to incorporate this additional information learnt from sample text, a new

ASL PDF must be constructed ( )1−′ t
j

t
i CCP . To do this a mapping must be

achieved which allows shape space to relate to gesture space.

1−t
jL
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7.4.3 Extending to a Hidden Markov Model

It has already been shown how a mapping can be achieved between the gesture

space and shape space for use in classification (see section 6.5). Here the

conditional probability ( )t
j

t
i CLP  provides a probability of the occurrence of a

letter L given the model is in cluster C in shape space at any time.

Figure 7.4.4 - Conditional Probabilities Connecting Cluster Exemplars in

Shape Space to Specific Letters in Gesture Space

This conditional probability provides a mechanism to relate the shape space to

the gesture space where the constraints of the English language (as learnt) can be

applied. However, for this to be of use, a method that allows this information to

be mapped back into the shape space must be provided. This can be done using

the common form of Bayes theorum,

( ) ( ) ( )
( )

( ) ( )
( ) ( )∑

=
ABPAP

ABPAP
or

BP

ABPAP
BAP

Therefore, placing this in the context of the ASL CSSPDM

( ) ( ) ( )
( )t

j

t
i

t
j

t
it

j
t
i LP

CLPCP
LCP =

However, where ( )t
j

t
i LCP  and ( )tiCP  can both be gained from the training set,

( )t
jLP  (the probability of the occurrence of a letter) can only be gained from

analyzing English text. As it is known that the training set does not fully

represent the English Language this equation would lead to biasing of the final

a

b

c

d

Shape Space

Gesture Space

( )t
j

t
i CLP



149

conditional probabilities. Instead, a variation of Bayes Theorem can be used,

where

( ) ( ) ( )
( ) ( )∑

=
t
i

t
j

t
i

t
i

t
j

t
it

j
t
i

CLPCP

CLPCP
LCP

Using this form, ( ) ( ) ( )t
j

t
i

t
j

t
i LPCLPCP ≡∑  but all probabilities are gained from

the training set, and hence no bias occurs from mixing unrelated probabilities.

This is possible as, although the training set does not contain a thorough

representation of English, it does provide an accurate representation of the

mapping between the two spaces.

7.4.4 Augmenting the Hidden Markov Model to Increase Constraints

All the necessary tools are now available which allow a new ASL PDF to be

constructed which incorporates the 1-state transitions of the English Language.

• ( )t
j

t
i CLP , is the conditional probability that the model is representing a letter

L at time t, given the CSSPDM is in cluster C and time t.

• ( )tiCP , is the probability of the occurrence of cluster C.

• ( ) ( ) ( )
( ) ( )∑

=
t
i

t
j

t
i

t
i

t
j

t
it

j
t
i

CLPCP

CLPCP
LCP , is the conditional probability that the

CSSPDM is in cluster C at time t, given the current letter that is being

represented is L.

• ( )1−t
j

t
i LLP , is the 1-state transition that a letter Li will occur given the previous

letter was Lj.

A new ASL PDF can therefore be constructed which incorporates the 1-State

transitions of English, by

1. Taking the current cluster of the model

2. Calculating the corresponding letter(s) associated with this cluster

3. Applying the 1-state transition matrix to extract the most likely next letter

4. Then locating the cluster(s) associated with this transition.
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Where,

( ) ( ) ( ) ( )t
j

t
i

t
j

t
i

t
j

t
i

t
j

t
i LCPLLPCLPCCP 11 −− =′

This produces a new ASL PDF which is shown in Figure 7.4.5.

Figure 7.4.5 - Discrete Probability Density Function for derived ASL Model

Figure 7.4.5 demonstrates the same characteristic vertical strips seen from the

English Language PDF, which it has inherited, and as such differs from the

original ASL PDF in two ways.

1. Each cluster exhibits far more transition to other clusters.

2. The diagonal dominance, which is important to tracking, is missing.
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Diagonal dominance can be forced upon the PDF by imposing diagonal

dominance on either ( )1−t
j

t
i LLP  or ( )1−′ t

j
t
i CCP . However, this is haphazard and

risks over-biasing the hypothesis generated at each frame. An alternative is to

simply ensure that the population generated at each step always includes at least

one hypothesis from the current cluster.

In order to explore the validity of these assumptions and assess the success of the

derived PDF a new set of tests were performed upon the 'gesture' image

sequence.

The PDF used for each test was the weighted sum of the original PDF gained

from the training set and the derived PDF from English, where

( ) ( ) ( ) ( )111 1 −−− ′+−=′′ t
j

t
i

t
j

t
i

t
j

t
i CCPCCPCCP αα , for 10 ≤≤α

and hence

( ) ( ) ( ) ( ) ( ) ( )t
j

t
i

t
j

t
i

t
j

t
i

t
j

t
i

t
j

t
i LCPLLPCLPCCPCCP 111 1 −−− +−=′′ αα

Using this method, the performance of both approaches can be assessed. Figure

7.4.6 shows the results of varying α . When 0=α  the PDF is that gained from

the training set; but as α  increases, the resultant error rate decreases. When

6.0=α  the resulting error rate is only slightly higher than that produced by the

optimum path shown in Figure 7.3.4. However, as α approaches 1 an increase in

error rate results. This is attributable to the absence of diagonal dominance for

the derived PDF, and hence lack of support for hypotheses that remain static

within shape space. However, even in light of this fact, the overall error is still

lower than that gained form the original ASL PDF.

Original PDF
from

Training Set

Derived PDF
from English

Language
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7.5 Conclusions

This chapter has looked at augmenting statistical models with temporal dynamics

gained through the probabilistic analysis of the training set and how this relates

to movement within shape space. It has been shown how the discrete segregation

of shape space used in the CSSPDM directly lends itself to a Markov chain

approach to modeling temporal dynamics. This additional analysis has been used

to reproduce motion indicative of the training sets in the form of key frame

animations and how the motion of the CSSPDM can be further constrained

during tracking. It has been shown that the nature of shape space is often

complex and discontinuous and how, using these additional learnt temporal

constraints, tracking can be improved by supporting a population of multiple

hypotheses. Lastly a method of combining additional constraints into the model

was presented which provides more robust tracking and classification, while

reducing the necessity for large training sets.
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8 3D Point Distribution Models

8.1 Introduction

It has thus far been demonstrated how a Point Distribution Model can be

constructed for a 2D contour or shape (Chapter 3) and grey scale images (Section

5.5.2). Chapter 7 introduced a simple 3D PDM in the form of a stick human

figure. This chapter will extend upon this to 3D eigensurface models which are

constructed from polygonal surface representations and are the analogous

extension into 3D of the 2D contour.

For a 2D contour, consisting of n points, a training example x is constructed by

concatenating the constituent points of the contour into a single 2n vector

n2ℜ∈x . As was shown in section 7.2, for 3D the procedure follows a similar

procedure. Each point of the model differs only in its dimensionality. Therefore a

3D model consisting of m points (vertices) will form a vector m3ℜ∈x . In

chapter 7, where the 32 points consisted of key-points of a simple human skeletal

model, this produced a 96 dimensional vector. However, more realistically the

target data represents a surface, where each vertex of the surface represents a key

point within the model. This results in extremely high dimensional spaces i.e. for

a 3D mesh of 100 x 100 points, 30000ℜ∈x . Under these conditions it is often the

Chapter 8
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case that the number of training examples is less than the dimensionality of x,

and hence technique 2 for PCA (detailed in section 3.2.5) is invaluable in the

construction of 3D PDMs.

Although the construction of 3D PDMs is a simple extension to the 2D case, one

of the major problems associated with their construction is the acquisition of

training data and its alignment. Due to the complexity of constructing 3D

surfaces by hand, automated procedures are essential. As has been discussed in

chapter 8, many techniques such as isosurfacing produce complex discontinues

surfaces which are unsuitable for statistical analysis. These 3D surfaces must be

aligned and resampled in a similar manner to the 2D contour. However, the

problem is compounded by high dimensionality and the resulting computational

complexity of the procedure.

Section 8.2 demonstrates the construction of a 3D PDM using a synthetic

drinking glass example. Sections 8.3 will show how this can be extended to real

data and describe approaches to the resampling and alignment problem in 3D.

This will be demonstrated by a 3D PDM of a human head. Finally conclusions

will be drawn.

8.2 The Eigen Glass Model

8.2.1 Introduction

Point Distribution Models attempt to model the deformation of a class of objects

or shapes with simple statistical analysis. The example shown here is that of a

class of drinking vessels. This synthetic example data provides a data set with

which to explore the construction of 3D PDMs and will be used in chapter 10 as

an example for statistical inference.

8.2.2 Constructing the Training set

The eigen Glass training set consists of 7 types of glass shape (see Figure 8.2.1).

Each example was created by sweeping a 2D contour around a central y-axis.
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This forms a rotationally symmetric glass of varying shape and size. Since each

example was constructed in a similar manner, with the same number of rotational

steps and points along the contour, each example contains the same number of

vertices.

Figure 8.2.1 - Eigen Glass Training Set

The acquisition of the training set provides examples that have a direct

correspondence of landmark points and therefore no further alignment or

resampling is necessary.

8.2.3 Building the Eigen Model

Each glass example consists of 440 vertices which, when converted to a vector,

produces a training example 13203 ℜ⇒ℜ∈ nx . As there are only seven examples

in the training set, technique 2 (section 3.2.5) results in a large computation

saving during shape analysis. The use of this technique allows decomposition to

be performed upon a 7x7 matrix. This produces a significant computational

saving over performing a full decomposition upon the 1320 x 1320 covariance

matrix.

Figure 8.2.2 demonstrates the primary 3 modes of variation of the resulting 3D

PDM rendered in wire frame with hidden line removal. The primary mode is also

shown in Gouraud shaded form. The maximum number of modes of deformation

for the model is 6 (ie. 100% of the deformation present within the training set is
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contained within the first 6 eigenvectors). This is because the number of

eigenvectors can never exceed N-1, where N is the number of training examples.

In fact, 99% of the deformation is contained within the primary 4 modes of

variation.

This high reduction of the shape space is similar to that shown in earlier cases.

However, it is important to note that, due to the rotational symmetry of each of

the objects, the training examples contain no additional information after the

contours had been swept into a 3D surface. The model could equally have been

constructed by performing PCA upon the original contours and sweeping the

reconstructed contour, generated from the PDM, around the central axis. This is

demonstrated in Figure 8.2.3 where PCA has been performed upon the contours

and the resulting 2D PDM extracted.

If  Figure 8.2.3 is compared to Figure 8.2.2, it should be apparent that the

deformation contained in the modes of variation of the 2D PDM are exactly the

same as those of the 3D object. Since both models contain the same information

the resulting PDMs have the same characteristics with a total of 7 modes where

the first 4 encompass 99% of the deformation. The redundant dimensionality

introduced when the contour is swept into a 3D surface does not introduce any

additional information and this additional dimensionality is disregarded by PCA

demonstrating that both models lie upon the same dimensional sub space.
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Figure 8.2.3 - The Primary Modes of the 2D eigenGlass Model

8.3 Resampling Meshes

8.3.1 Mesh Alignment

In the previous synthetic eigenGlass demonstration, the simplicity of

construction was due to the direct correspondence of landmark points throughout

the training set and the artificial way in which it was created. However, this is

seldom the case and to ensure the construction of a PDM is successful, careful

alignment and resampling must be performed to provide a good correspondence

of landmark points between examples.

As with the 2D contour, to ensure a good correspondence between training

examples each must be aligned. Techniques like those presented by Cootes et al

[Cootes 95] for 2D alignment become infeasible due to the high dimensionality

of the models. A similar, but less time consuming, alignment process can be

performed by treating it as an optimisation problem, solved using an approach to

optimisation such as Simulated Annealing or Genetic Algorithms. Such

approaches rely upon a fitness function being formulated which assesses what is

a good (optimum) match.

For two meshes x and y , where

( )xyz
n

xyzxyz 1,,1,1 21 vvvx !=  , ( )xyz
m

xyzxyz 2,,2,2 21 vvvy !=  and 3ℜ∈xyz
nv is the nth

vertex of the mesh, a suitable fitness function to be minimised would be the

mean distance between the vertices of each mesh,

1st mode 2nd mode 3rd mode 4th mode
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( )[ ]( )∑
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1
1

2,,,,,1min
1

vv θθθ

where sx  is a scaling in x, xθ is a rotation around x, and 3ℜ∈xyzt is a translation

vector in Euclidean space.

However, this function must be assessed for each pose ( )xyzxyzxyz ts ,,θ  of the

model in order to find the optimum mapping of one mesh to another and quickly

becomes an unfeasible solution as the size of the mesh increases. In addition to

this complexity, the procedure must be repeated for all meshes in the training set.

If known features exist upon the surface and the position of these features can be

accurately located (such as large planar segments or areas of high curvature),

these features can be used in the fitness function rather than every vertex of the

mesh.

The simplest method of alignment is similar to that suggested in Section 3.2.4

where the mesh is treated as a cloud of points in 3ℜ . The centre of gravity of the

cloud, Cxyz, can then be calculated and subtracted from each vertex to translate

the mesh to the origin, where

Equation 8.3-1 ∑
=

=
n

i

xyz
i

xyz

n 1

1
vC

To normalise the mesh, and hence avoid numerical instability during PCA, each

vertex is then scaled by the mean distance of all the vertices from the origin,

where

Equation 8.3-2 ( )v

Cv
v

l

xyzxyz
ixyz

i

−
=

′
 , and ( ) ∑

=

−=
n

i

xyzxyz
in

l
1

1
Cvv

By then performing PCA upon the cloud (as done in 3.2.4) principal moments of

the shape and therefore the primary axes can be extracted. Once done, the shape

can be projected onto these axes to align the principal moments of the shape with
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the axes of Euclidean space. Providing the shape does not vary too extensively

this approach provides a fast and simple method for object alignment and

scaling.

8.3.2 Nearest Neighbour Resampling

Once all training examples have been aligned, they must be resampled to provide

a direct correspondence for each vertex, and the associated connectivity across

all training examples. It is also important that each example has the same number

of vertices so that all training examples have the same dimensionality.

Figure 8.3.1 - Nearest Neighbour Resampling

This can be accomplished by taking a known mesh and deforming it to fit to each

example in turn. Figure 8.3.1 demonstrates this procedure using a nearest

neighbour approach, a regular mesh (blue) is constructed which has a known

number of vertices and connectivity. The regular mesh is then deformed by

moving each vertex to the closest vertex of a training example (red) in 3ℜ .  The

resulting mesh has the same basic overall shape of the training example but has

the connectivity and number of vertices of the regular mesh. This procedure can

be repeated for each aligned training example to provide a consistent training set

on which statistical analysis can be performed. However, this procedure results

in the loss of information as the regular mesh may not contain the local density

of vertices required to successfully model high curvature. If the number of

polygons is increased further to accommodate this, then unnecessary

dimensionality is introduced for areas of low curvature. This approach also

introduces problems when mesh elements on the regular mesh are smaller than

P1

P2

P3

P4

P5

P6

P7

P8

P1

P2

P3

P4

P5
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those on the training example mesh. Under these circumstances multiple vertices

of the resampled mesh may be attracted to a single vertex resulting in polygons

of zero area (this will be shown shortly).

Another major disadvantage is that the procedure relies upon the correct

alignment of the training examples. If sufficient difference is present between

examples then it is possible that vertices will be assigned to completely unrelated

features across the training set. This effect can be minimised by utilising the

assumption that training examples do not vary extensively between individual

examples, although the overall variation may be considerable. Using this

assumption a mesh can be deformed to fit a training example and the same mesh

applied to the next example until the whole training set has been processed.

However, this approach requires user intervention to ensure that an optimum

ordering is used for the resampling sequence.

8.3.3 K-nearest Neighbour Resampling

An alternative approach is to use a variation of a clustering algorithm. This

results in a consistent mesh with known connectivity, but provides the advantage

that vertices on the resampled mesh attempt to best mimic the local features of

the surface by averaging the position of the vertices locally.

A mesh ( )xyz
k

xyzxyz 1,,1,1 21 vvvy !=  of known connectivity and size k is to be fitted

to second mesh ( )xyz
m

xyzxyz 2,,2,2 21 vvvx !=  of variable size m.  The vertices of x

are treated as a cloud of points in 3ℜ  and the vertices of y as exemplars in a k-

means algorithm (see Appendix 1). Each vertex of x is assigned to an exemplar

of y in a nearest neighbour sense using the crisp membership function

        Equation 8.3-3 ( )


 −=−=

otherwise

if
u

xyz
j

xyz
i

xyz
j

xyz
ixyz

ij
0

12min121
2

vvvv
v

Each vertex of y is then moved to minimise the distance from its assigned

members where
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Equation 8.3-4
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1
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vv
v  and kj ,,2,1 !=

This procedure is repeated until the total displacement of the vertices of x has

dropped below a threshold (i.e. equals zero); at this point the algorithm has

converged upon a solution.

8.3.4 K-cluster Elastic Mesh

Both nearest neighbour and k-nearest neighbour approaches are subject to the

same problem i.e. the incorrect convergence on local minima. This is largely a

problem of model initialisation. Features upon the meshes must be close if a

good correspondence is to be achieved as each vertex is only attracted to the

closest corresponding point in both techniques. Again, this approach places a

large emphasis on the accurate alignment of examples.

This can be overcome to an extent by extending the k-nearest neighbour

approach to an elasticised k-cluster approach, which provides the same

mechanism for local resampling, but allows global constraints to be placed upon

the shape of the mesh.

In addition to the local attraction of the regular mesh to vertices upon the training

mesh, elastic properties are added to the connectivity as described in Section 8.5.

As the mesh is deformed to fit the training data the elasticity of the mesh

attempts to retain as small and as planar a mesh as possible, thus smoothing the

mesh and ensuring that the connectivity is preserved.

If the elastic force from section 8.5.2 (equation 8.5-4) is taken and placed in the

context of the mesh y, the displacement of a node v1i from the elastic force is
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Equation 8.3-5 ∑
=

=∆
n

j
iji r

n
s

0

α

where α  is the stiffness, xyz
i

xyz
jijr 22 vv −=  the vector separation of two

connecting nodes and p is the number of nodes connecting to node v1i.

Combining this force with that of the k-means displacement (Equation 8.3-4) the

total movement of a the node v1i at each iteration is

Equation 8.3-6
( )

( )
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i

xyz
ij

m

i

xyz
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2

22
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vv
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In order to balance the attraction force and the surface tension of the mesh a

weighting parameter which balances the two influences is required. However, the

stiffness parameter α  can be used for this purpose as it controls the strength of

surface tension. This weighting parameter determines the influence of the two

forces on the movement of the mesh. When 0=α  the mesh operates as the k-

nearest neighbour resampling procedure described earlier. When ∞→α  the

mesh will not converge on any solution, remaining rigid. Upon initialisation the

force is set to allow surface tension to dominate i.e 2=α . This parameter and

hence the effect of surface tension is decreased at each iteration of the procedure

allowing the surface to deform to the data while retaining the constraints of

connectivity.

Figure 8.3.2 - Elastic k-cluster mesh

i=0 i=5 i=10 i=15 i=20 i=25
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Figure 8.3.2 demonstrates the use of the elastic k-cluster mesh technique to

resampling a surface of a human head. The shaded surface consists of an

irregular mesh consisting of 3896 vertices, which represent the shape of a face.

The wire frame mesh is a flat regular tri-mesh of known connectivity and 625

vertices. The flat wire frame mesh is located close to the face mesh and is

rendered slightly in front so the shape can be seen as the algorithm iterates. At

each iteration α  is decreased by 10% and after 25 iterations (i=25) the wire

frame mesh has deformed to best fit the original face mesh while retaining its

connectivity and smoothness. Without this elastic surface tension which

smoothes the resulting surface, the mesh would instantly crease and deform as

the initial attraction of the k-means algorithm is initially very large. As k-means

will only find a local optimum, this initial creasing of the surface remains

throughout the fitting. The elasticity ensures that the mesh retains its original

shape and connectivity while trying to best deform to resample the mesh.

However, this approach has two major drawbacks

1. The speed of the algorithm is prohibitive, as the computation complexity at

each iteration is considerable for even the simplest of surfaces.

2. The rate at which the weighting parameter is decreased is an unknown. Since

the rate at which the parameter decreases is responsible for the number of

iterations required (and hence the overall speed), an optimum rate must be

determined which provides the best time to convergence while allowing the

correct convergence on the shape. This is similar to the annealing schedule

used in simulated annealing but is beyond the scope of this work.

8.4 3D Head PDM

8.4.1 Constructing the Training set

To illustrate the alignment and construction of a 3D PDM, a model of the human

head was built. The head data set consists of 25 surface meshes of varying size

and structure acquired using a C3D10 scanning device. Each mesh has between

4000 and 5000 vertices and differing local mesh densities modelling local
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curvature. The examples were first aligned using the alignment procedure

outlined in section 8.3 such that each lies within a left handed co-ordinate system

with the z-axis is aligned with the direction of the gaze of the face. Once done,

each mesh was translated to ensure that the apex of the nose was at the origin.

The nose can easily be estimated as the point on the mesh which has the greatest

z-value. Each mesh was then normalised to lie within a unit cube as shown in

Figure 8.4.1.

Figure 8.4.1 - Aligning the Face Training Set

Once all the example meshes have been transformed in this way, the next step is

to resample each to a uniform mesh structure. A regular triangular faceted mesh

was generated as shown in Figure 8.4.2. The regular mesh consists of 1849

vertices and is a unit square with its centre at the origin and aligned with the x

and y-axis.

Figure 8.4.2 - Regular tri-mesh
                                                                                                                                                            
10 C3D Scanner model courtesy of the Turing Institute, all head models are freely available via
the web at http://www.turing.gla.ac.uk
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a) Original

b) Aligned

c) Resampled

Figure 8.4.3 - Resampling a 3D Mesh

(a) The original mesh (b) The aligned mesh (c) The resampled mesh

For each mesh in turn, the regular mesh is deformed to fit using the nearest

neighbour approach described previously. Figure 8.4.2 shows the regular mesh,

Figure 8.4.3 (a) the original training example, (b) shows the aligned mesh, and

(c) shows the resampled mesh after each vertex has been deformed to fit the

example. It should be noted that the final resampled wire frame mesh does not

look dissimilar to the original. However, the shaded version shows a step effect

to the mesh. This is due to two reasons
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1. The local surface density of patches is not optimum to model the curvature

hence areas of high curvature have less polygons and consequently a less

smooth appearance i.e. the number of vertices has been reduced from around

5000 to 1849.

2. Many polygons have zero area. Where this occurs normal calculations are ill-

defined and hence Gouraud shading fails and reverts to a flat shading

algorithm.

The problem of zero area polygons, where multiple vertices of the regular mesh

have been assigned to a single vertex on the example mesh, is one of the

disadvantages that were mentioned in section 8.3. It is not possible to simply

remove these polygons as all training examples must have the same

dimensionality. A polygon could therefore only be removed if it had zero area in

all training examples. However, it will be shown later that the smoothing

properties of PCA will remove some of these inaccuracies (see section 8.4.2).

8.4.2 The Face Eigen Model

Upon completion of the resampling procedure a training set is now available on

which statistical analysis can be performed.  The results of which can be seen in

Figure 8.4.4. However, it is difficult to see the overall effect of these modes of

deformation except at the extremities of the eigenvectors where the greatest

deformation is apparent. Figure 8.4.5 shows the primary 21 eigenvectors

corresponding to the 21st largest eigenvalues which encompass 99.998% of the

deformation. Each mode is colour coded to represent the deformation. Red,

Green and Blue coloured areas represent deformation in x,y and z respectively.

The intensity of the image is proportional to the size of the local deformation.

Figure 8.4.4 - Primary two modes of the 3D eigenFace model

MEAN1st mode

2nd mode
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Figure 8.4.5 - Colour map showing deformation of primary modes for eigenFace
model

1st Mode 2nd Mode 3rd Mode 4th Mode

5th Mode 6th Mode 7th Mode 8th Mode

9th Mode 10th Mode 11th Mode 12th Mode

13th Mode 14th Mode 15th Mode 16th Mode

17th Mode 18th Mode 19th Mode 20th Mode

21st Mode
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By examining these colour maps it is far easier to infer specific functions for

various modes. From the shading on the 6th mode it can be deduced that this

mode is responsible for the movement of the eyebrows and cheek areas. The 8th

mode however is clearly responsible for the movement of the eyes and mouth. It

can be seen that the primary mode contains mainly deformation in 'z' along the

top and bottom of the mesh surface. This is due to the large variation in

background depth, hair and neck between individual examples. Indeed, the

primary modes display large areas of blue showing that they mainly contribute to

the depth information of the mesh. As the number of the modes increases a more

speckled effect is observed. These effects are the high frequency oscillations,

which are typically picked-out by the lower modes of variation. However, much

of these high frequency oscillations are due to the nearest neighbour resampling

which resulted in zero area polygons.

The original training example mesh size were of the order of 5000 vertices. With

3 dimensions for each vertex this generates examples in a 15000 dimensional

space. Resampling each example to a mesh with 1849 vertices provides a

consistent dimensionality of 5547 throughout the entire training set. However

90% of the deformation is contained within the primary 10 modes of variation.

So, although the training set was originally in 15000 dimensional space, the data

actually lies upon a subspace of only 10 dimensions. The most important aspect

of the PDM is the predominant z-deformation (blue) in these primary 10 modes.

This demonstrates that the alignment and resampling procedure has been

successful. During resampling the simplicity of the resampling scheme lead to

zero area polygons. After PCA these do not occur as vertices are statistically

smoothed by the model. The perturbations of vertices in the x-y plane, which

were generated by zero area polygons, are expressed within the lower modes of

variation and effectively removed from the model.

8.5 Conclusions

This chapter has demonstrated how the techniques for the assembly of 2D PDMs

can easily be extended to 3D. Approaches to the alignment and resampling
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procedure have been proposed and a 3D PDM of a human face constructed. Due

to the high dimensionality and corresponding complexity of these techniques,

variations on the resampling method have been proposed which can be used

depending upon the extent and complexity of the training data. It has also been

demonstrated that errors introduced during resampling are statistically smoothed

and manifest themselves as high frequency oscillations of the model contained

within the lower modes of deformation. Since these lower modes are typically

discarded it can be deduced that the smoothing effect of the PDM can help

reduce errors introduced during assembly.

Future work is to apply these techniques to volumetric segmentation techniques

detailed in Appendix 2 to construct 3D PDMs from medical imaging data.
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9 Extending the Point Distribution Model

9.1 Introduction

Thus far, statistical models of deformation have been considered where the

vector x consists of related features such as the co-ordinates of a connected

contour, the vertices of a surface or the grey level intensity of each pixel of an

image. The principle relies upon the variation of elements with regard to others

and attempts to generalise the relative movement of the constituent components.

It therefore holds that similar statistical linkage of features could be achieved

even if they lie within different co-ordinate frames and represent quite different

elements providing that there is still some linear relationship between the various

elements. This chapter will discuss the use of this technique to link together

related information from differing sources. Section 9.2 will discuss combining

shape information with abstract parameters and using this to infer unseen

information from examples of shape. Section 9.3 will present the application of

this technique to inferring the shape and position of a human body from an image

sequence.  Finally conclusions will be drawn.

Chapter 9
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9.2 Combining Features Statistically

9.2.1 A Linear PDM with an Abstract Parameter

The linear 3D PDM of an eigenGlass, as constructed in chapter 9, provides an

ideal example to demonstrate the hypothosis that related information can be

combined into a PDM. It has already been shown that this PDM is essentially the

same as the 2D contour of the glass due to the rotational symmetry of the object.

Thus, the two dimensional vector that describes the glass profile can be used as a

training vector for PCA and the final reconstructed model swept around the

central axis to attain the full 3D model. This training vector x describes the shape

of the glass for each example in the training set. However, additional parameters

can be concatenated to the vector for each example in the hope that some

mapping which links the shape with other features can be achieved. For each

training example an abstract parameter MF was estimated. The parameter

corresponds to the masculinity or femininity of a specific training example. This

provides a rather subjective scale but provides an illustrative demonstration that a

link between shape and aesthetic appearance can be achieved. Figure 9.2.1 shows

each training example with the corresponding MF parameter estimated, 0 < MF

< 1, where 0 corresponds to feminine and 1 to masculine.

Figure 9.2.1 - MF Parameter for eigenGlass Training Set

MF=0.5

MF=0.1

MF=0.0

MF=1.0

MF=0.4
MF=0.6

MF=0.3
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For each n-dimensional training vector x a new training vector is constructed by

concatenating the MF parameter to the existing vector producing and n+1

dimensional vector x' = (x, MF) = (x1,y1, x2, y2, ..., MF).

After PCA has been performed on the training set the resulting PDM can be used

to reconstruct new drinking vessels of various shapes along with a corresponding

MF value. Figure 9.2.2 shows the primary mode of variation of the eigenGlass

model from the mean shape along with the corresponding MF value.

Figure 9.2.2 - Primary mode of variation of Augmented eigenGlass PDM

-0.12 0.01 0.15 0.29

0.55 0.68 0.82

0.41

0.95
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Figure 9.2.3 - Reconstructed glasses and MF value from Augmented

eigenGlass PDM

Figure 9.2.3 shows the results of reconstructing various glass types from the

eigenGlass model along with the corresponding MF value. This is achieved by

manipulating the weighting parameters of the model. As the overall shape

changes, so the additional MF parameter changes accordingly. It can be seen that

the pint glass produces a high MF value which corresponds to the training set.

Similarly the wine glass example c) produces a low MF value, demonstrating

that the PDM has successful achieved some mapping between the elements. As

MF=0.41

MF=0.43 MF=0.26MF=0.99

MEAN

example (a) example (b) example (c)
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with all PDMs, the ability of the final model to reproduce examples from the

training set is augmented by the ability to generalise the shape information and

produce unseen shapes, not present within the training set. When this is done an

MF value is also produced and by observing this parameter it is possible to draw

some conclusion about what the PDM has encoded.

The model demonstrates a high correlation between the size (volume) of the

glass and the MF value. This is to be expected, as the high MF examples were

the larger types of glass. However, example (b) shows the results of attempting

to make a 'more' masculine wine glass and results in a thicker stem. So it could

also be concluded that the more delicate the stem of a glass the more feminine its

appearance. This would seem a fair assumption given that in the training

examples the two extremities of MF were a pint Beer glass and a Champagne

glass where the major difference between the examples was the stem thickness

(see Figure 9.2.1).

This is an extremely subjective example but demonstrates how additional

information can be incorporated into a PDM.

9.2.2 Scaling Issues and Eigen Entrophy

One of the important issues when elements are to be combined for statistical

analysis is that of scaling. If an element contains too much variation across the

training set (due to the incorrect scaling of that component) then that element

will bias the PCA and dominate the principal modes of variation. In some cases

this may be desirable, e.g. when it is intended that the primary mode correlates

directly to the variation of a specific feature. However, more often, this is an

undesirable effect.

The premise of the PDM is that the largest variation of the training set should be

represented within the eigenvector corresponding to the largest eigenvalue. By

artificially biasing the PCA with an incorrect scaling the information content of

the PDM is destroyed.
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If the eigenGlass model is considered, the construction of the training vector

should contain a scaling parameter α  where

Equation 9.2-1 ( ) ( )MFyxyxMF αα !,,,,, 2211==′ xx .

When the training set is assembled this additional parameter can be scaled

appropriately to ensure incorrect dominance does not occur. However, it is

generally not apparent what this scaling value α  should be for any particular

example.

Sumpter, Boyle and Tillett [Sumpter 97] proposed a method for estimating the

scaling of parameters by calculating the eigen entropy (E) of the normalised

eigen vectors (p), and estimating the value α  which maximises this entropy

( )αE ,

Equation 9.2-2 ( ) ( )∑
+

=

−==
1

1
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i
ii ppEE α , where

Equation 9.2-3
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=
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n

i
i

i
ip

λ

λ
, ( ) ( )1log2 +≤ nE α ,

and ( ) 0→αE as ∞→α

Figure 9.2.4 shows the results of performing this procedure upon the eigen glass

example. From this graph it can be seen that the optimum eigen entropy is

achieved with a scaling of around 137=α .
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Eigen Entrophy of eigenGlass with MF Parameter
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Figure 9.2.4 - Graph of eigen entropy for varying parameter scaling

If PCA is now repeated upon the eigenGlass example with 137=α , a new PDM

is constructed. It is hoped that the MF parameter presents increased significance

within the primary modes of variation. This hypothesis can be confirmed by

examining the eigenvalues and the variance of MF for models constructed with

α = 1 and 137.

Figure 9.2.5 shows the histogram of normalised eigenvalues in percentile form

(see chapter 3.2) for the eigenGlass example with the two aforementioned MF

scalings. As would be expected the addition of this parameter and its increased

significance within the primary modes (for 137=α ) has removed some of the

information content from the primary modes of variation, with a small increase

in the significance of the latter modes. However, the resulting model still retains

99% of the variance within the first four modes so the information content is

preserved, unlike ∞→α  which results in only a single mode of variation (due

to the dominance of MF over the PCA), destroying the information content of the

model.
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Graph Showing the Contribution of eigen Vectors to the 
Total Deformation
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Figure 9.2.5 - Graph demonstrating the normalised eigen values for the

eigenGlass example with different parameter scaling

Graph Showing the Variance of the MF Parameter 
for PDMs with Different Alpha Scalings
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Figure 9.2.6 - Graph demonstrating the increased variance in eigenGlass

example for correct parameter scaling

Figure 9.2.6 demonstrates this increase in the variance of the MF parameter by

plotting the bounds of the variance for each of the primary modes of the two

PDMs. Both variances are based around the mean MF and regress to this mean as

the contribution of a mode diminishes. It can be seen for 137=α  that the

variance of MF is increased within the first two modes, with a significant

reduction of this variance in the latter modes. This demonstrates that the

∞
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increased scaling has forced the statistical correlation into the primary three

modes while more evenly distributing the overall variance of the model.

From Figure 9.2.5 and Figure 9.2.6 it can be concluded that the parameter scaling

increases the correlation between shape and parameter without destroying the

information content of the resulting PDM. However, another important

consideration is 'how has this affected the primary modes of shape deformation?'.

This can be answered by comparing the deformation of the original eigenGlass

PDM to this new weighted model.

Figure 9.2.7 - Primary modes of eigenGlass PDM with different alpha scalings

It can be seen from Figure 9.2.7 that the increased significance of the MF

parameter has done little to effect the overall deformation of the eigenGlass

shape. It has increased the shape deformation to accommodate the MF parameter

which shows that, although a correlation is being achieved, it is not a simple

linear correlation. This could be addressed by using a non-linear model as

previously developed, this will be discussed in more detail in Section 9.3.

9.2.3 Statistical Inference

It has been shown how additional information can be incorporated into a PDM

which does not necessarily have to lie within the same co-ordinate frame as the

shape deformation. It has also been shown how this information can be

statistically linked to the other features of the model. When a shape is

137=α

0=α

1st mode 2nd mode 3rd mode 4th mode
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reconstructed, so the additional parameters of the model are estimated due to the

statistical linkage that occurs between the elements during PCA. However, what

is desirable is to be able to use this model to estimate the parameters for unseen

objects or even predict shapes that correspond to specific parameter values.

Using the matrix form of a linear PDM the shape x of a model is equal to the

mean shape plus the weighted sum of the eigenvectors

Equation 9.2-4 Pbxx +=

where x is the shape vector, x  is the mean shape, ),,,( 21 tvvvP !=  is a matrix

of the first t eigenvectors and T
tbbb ),,,( 21 !=b  is a vector of weights.

Given a new shape x′ , the closest allowable shape from the model is constructed

by finding b such that

Equation 9.2-5 ( )xxPb −′= −1
 and iii b λλ 33 ≤≤−

The closest allowable shape can then be reconstructed as

Equation 9.2-6 Pbxx +=

If the eigenGlass example is now considered, it is feasible that given a new

'unseen' glass example ( x′ ) the PDM could be used to estimate a value for MF.

As the PDM has encoded a statistical link between the shape and parameter this

model can be used to predict this estimate. However, the two elements have

different dimensionality. The unseen example has dimensionality of 2n, where

the PDM has a dimensionality of 2n+1. The new example x′  could be converted

to a 2n+1 vector by the addition of a zero, and the vector then reconstrcuted

using the procedure above. However, in finding the closest allowable shape from

the PDM, weighting parameters would be extracted that best fit the shape and

provide an MF of zero. For non-linear mappings where the correlation between

these elements is complex and the linear formulation of the PDM is over
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generalising, this mapping will lead to unreliable results, i.e. the zero parameter

will bias the reconstruction. As the number of unknown parameters increases

this zero bias will begin to dominate the reconstruction and the resulting

reconstructed vector will begin to degrade. Instead the model must be reduced to

the dimensionality of the vector.

This is achieved by taking the matrix P which is a jn ×+12 matrix of eigen

vectors and extracting a smaller matrix P' which is a jn×2  matrix.
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This is done by discarding the elements of each eigen vector which correspond to

the unknown elements of the model (in this case the MF parameter).  A similar

procedure must be performed on the mean shape 12 +ℜ∈ nx  by discarding the

unknown parameter to obtain n2ℜ∈′x . The weightings which produce the shape

can then be calculated in a similar manner with the reduced dimensional model,

where

Equation 9.2-7 ( )xxPb ′−′′=′ −1
 and iii b λλ 33 ≤≤−

However, as only the dimensionality of the eigen vectors was changed and not

the number of eigen vectors, b' has the same dimensionality as jℜ∈b . The

weighting vector b' can therefore be placed directly into Equation 9.2-4 to

reproduce the shape x, by

Equation 9.2-8 bPxx ′+=

P′

MF element of each eigen vector
is discarded to construct P'
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The closest allowable shape vector 12 +ℜ∈ nx  to n2' ℜ∈x has now been

reconstructed. However, the additional information in x', contains the missing

MF information which has been estimated from the available shape information

and the a priori information contained within the model of about shape and how

this relates to the MF parameter.

9.3 Extending the Model to Inferring Human Motion

9.3.1 Introduction

The human vision system is adept at recognising the position and pose of an

object, even when presented with a monoscopic view. In situations with low

lighting conditions in which only a silhouette is visible, it is still possible for a

human to deduce the pose of an object. This is through structural knowledge of

the human body and its articulation.

A similar internal model can be constructed mathematically which represents a

human body and the possible ways in which it can deform. This is the premise of

model based vision, and as has been previously shown, this deformation can be

learnt using a Point Distribution Model. By introducing additional information to

the PDM that relates to the anatomical structure of the body, a direct mapping

between skeletal structure and projected shape can be achieved.

This section uses the previously presented techniques to statistically combine the

2D silhouette of a human body projected onto the image frame with the 3D pose

of the body.  To further aid the tracking and reconstruction process, additional

information about the location of both the head and hands is combined into the

model. This helps disambiguate the model and provides useful information for

both its initialisation and tracking.



184

9.3.2 Constructing a Combined Non-linear Point Distribution Model for a

Human

The point distribution model is constructed from three components: the position

of the head and hands within the image frame; the 2D contour which represents

the shape of the body silhouette; and the 3D structure of the body (see Figure

9.3.1). Each of these components are generated separately from the training

image sequence and then concatenated to provide a training vector representing

all these attributes.

The relative position of the head and hands is represented as the location of these

features in the image frame. When concatenated, this generates a six dimensional

feature vector VH=(x1,y1,...x3,y3). The body contour, once extracted from the

image, is resampled to a list of 400 connected points. These are concatenated into

an 800 dimensional feature vector VC=(x1,y1,...x400,y400). Lastly the skeletal

structure of the 3D model is represented by 10 3D points which produce a 30

dimensional feature vector VS. The relative location of the hands and head helps

to disambiguate the contour during tracking. It can also be used to estimate an

initial location and shape for the body contour.

Figure 9.3.1 Composite elements of human body PDM

(a) Position of head and hands VH  (b) Body Contour VC

(c) Corresponding 3D model VS

The position of the head and hands is extracted from the training image

sequences using the Hue-Saturation colour thresholding technique described in

Chapter 4.

(b) (c)(a)
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For the purpose of simple contour extraction from the training set, shape

extraction is facilitated through the use of a blue screen and chroma keying.  This

allows the background to be simply keyed out to produce a binary image of the

body silhouette.  As the figure always intersects the base of the image at the

torso, an initial contour point is easily located. Once found, this is used as the

starting point for a contour tracing algorithm which follows the external

boundary of the silhouette and stores this contour as a list of connected points. In

order to perform any statistical analysis on the contour, it must first be resampled

to a fixed length. To ensure some consistency throughout the training set,

landmark points are set at the beginning and end of the contour. A further

landmark point is allocated at the highest point along the contour within 10

degrees of a vertical line drawn from the centroid of the shape. Two further

points are positioned at the leftmost and rightmost points of the contour. This

simple landmark point identification results in non-linearity within the model.

The problems associated with this are discussed in Section 9.3.5.

The 3D skeletal structure of the human is generated manually. Co-ordinates in

the xy (image) plane are derived directly from the image sequence by hand

labelling. The position in the third dimension is then estimated for each key

frame.

9.3.3 Scaling the Model

When combining information for statistical analysis via PCA it is important that

constituent features (VH VC  VS) are scaled to ensure that any particular feature

does not dominate the principal axes. This can be done by calculating the eigen

entropy as discussed earlier (section 9.2.2). However, as all three components

exist within the same co-ordinate frame and are directly linked, such a scaling

should be unnecessary.

This assumption can easily be tested by formulating the vector x as the weighted

combination of the components where ( )SHC VVV βα ,,=x . Using the same

procedure as described earlier, the eigen entropy is calculated for
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∞<< βα ,0 and suitable scaling values determined by maximising the entropy

of the resulting PDM.

Eigen Entrophy of Hand Element Scaling
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Figure 9.3.2 - Graph showing eigen entropy of hand element in composite

body PDM

Eigen Entrophy for Skeletal Scaling
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Figure 9.3.3 - Graph showing eigen entropy of skeletal element in composite

body PDM

From Figure 9.3.2 it can be seen that the optimum scaling for VH is around 4.

Figure 9.3.3 shows that the skeletal element does not need scaling as the greatest
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entropy is achieved when 1=β . This confirms the assumption that scaling is

unnecessary as all the elements lie within the same (image) co-ordinate frame.

9.3.4 The Linear PDM

Once these separate feature vectors are assembled, they are concatenated to form

an 836 dimensional vector which represents the total pose of the model. A

training set of these vectors is assembled which represents the likely movement

of the model. Figure 9.3.4 shows a sample of training images along with the

corresponding contour and skeletal models in 2D.

Figure 9.3.4 - Sample training images and corresponding contour and skeletal

models

A linear PDM is now constructed from the training set and its primary modes of

variation are shown in Figure 9.3.5.

After PCA is performed, it is calculated that the first 84 eigenvectors, which

correspond to the 84 largest eigenvalues, encompass 99.99% of the deformation

contained in the training set.

Figure 9.3.5 demonstrates the deformation of the composite PDM. The crosses

are the locations of the hands and head. It can be seen that although the

movement of the three elements are closely related, the model does not
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accurately represent the natural deformation of the body. The shapes generated

by the primary modes of variation are not indicative of the training set due to its

inherent non-linearity. In order to produce a model that is accurate/robust enough

for practical applications, a more constrained representation is required.

Figure 9.3.5 - Primary modes of variation on the linear PDM

9.3.5 Non-Linear Estimation

As described in chapter 6, to perform non-linear estimation upon the dataset the

linear model is first used to reduce the dimensionality. 99.99% of the

deformation is contained within the first 84 eigenvectors. However, the primary

40 modes of deformation encompass 99.8% of the deformation. Projecting the

entire training set down into this lower dimensional space achieves a dimensional

reduction of 836 to 40, which significantly reduces the computation time

required for further analysis.

Performing cluster analysis upon the dimensionally-reduced dataset, the natural

number of clusters is estimated to be 25. By performing further PCA on each of

the 25 clusters, the shape of the model can be constrained by restricting the shape

vector to remain within this volume. These constraints upon shape space are

applied in the same manner as described in earlier chapters.

       1st MODE    2nd MODE      3rd MODE

4th MODE  5th MODE
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Figure 9.3.6 shows the training set after dimensional reduction gained from the

initial linear PDM, projected into 2 dimensions. The bounding boxes represent

the 25 clusters that best estimate the curvature. These bounding boxes are the

bounds of the first and second modes of deformation for each linear patch

(cluster). The number of modes for each cluster varies according to the

complexity of the training set at that point within the space. All clusters are

constructed to encompass 99.9% of the deformation within that cluster.

Figure 9.3.6 - Clusters in reduced shape space

9.3.6 Initialising the PDM

Upon initialisation the first step is to locate the position of the head and hands.

This can be done by colour thresholding the entire image which, although

computationally expensive, does not need to be repeated on every iteration. Once

done these positions can be used to initialise the PDM and give an initial guess as

to the shape of the contour to be found. As is it not clear which blobs correspond

to which features, three possible contours are produced. The contour that iterates

to the best solution provides the final state from which tracking proceeds.
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9.3.7 Tracking with the PDM

Once initialised the two components must be fitted to the image separately. The

contour is attracted to high intensity gradients within the image using local edge

detection (chapter 3). The hand and head positions are used as centres in a single

iteration of a kmeans-clustering algorithm on the segmented binary skin image.

This is possible due to the assumption that the model will not change

significantly from the last image frame.

9.3.8 Reconstruction of 3D Shape and Pose

As the shape deforms to fit with the image so the third element of the model, the

skeleton, also deforms. By plotting this 3D skeleton, its movements mimic the

motion of the human in the image frame.
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Figure 10.3.7 demonstrates the correspondence between the body contour and

skeletal structure. Each contour image (a) is generated from a different sub

cluster of shape space. The deformation corresponds to the largest mode of

deformation for that cluster. The 3D skeletal diagrams (b) correspond to the

relevant contour (a), and demonstrate the movement of the skeleton. The

orientation of these skeletal models has been changed in order to better visualise

the movement in 3D. Skeleton (1b) demonstrates the arms moving in the z

direction corresponding to the change in contour (1a) around the elbow region.

Contour (4a) represents a body leant toward the camera with moving arms.

Skeleton 4b shows the corresponding change in the skeleton with the shoulders

twisting as the arms move. The Skeleton 5b is a plan view showing the

movement of the hands.

All model points move along straight lines due to the linear clusters used to

approximate the non-linear shape space. However, all poses of the models are

lifelike human silhouettes, demonstrating the CSSPDM’s ability at modelling the

non-linearity.

Figure 9.3.8– Reconstructed poses  from the model

Figure 9.3.8 shows the original model pose from the training set in red with the

reconstructed skeletal model in black. It can be seen that the original and

reconstructed models are similar in pose and position with the length of limbs

preserved, further demonstrating the absence of non-linear effects. However, as

the constraints on shape space are increased, so the performance degrades.

Inconsistencies in the original and reconstructed models and the deterioration
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under heavy constraints can be attributed to the hand labelling of the training set.

During hand labelling it is impossible to provide consistent models of the

skeletal structure throughout the training set. This factor leads to the final model

producing mean skeletal ‘smoothed’ shapes which have been ‘learnt’ from the

original training set and hence produces the inconsistencies observed in figure

1.3.8.

9.4 Conclusion

This section has shown how information can be statistically linked through PCA

to produce point distribution models which contain multiple perspectives of data.

These perspectives do not have to lie in the same co-ordinate frame and may be

related but abstract in nature. By concatenating features, ensuring that incorrect

biases do not occur, models can be constructed which not only learn about shape

and deformation and how this relates to other aspects of an object, but also to

predict these aspects or other missing information from that which is available.

It has been shown how these techniques for statistical inference can be applied to

the extraction of 3D structure of an object, given only a monoscopic view of its

outline. The technique uses computationally inexpensive techniques for real time

tracking and reconstruction of objects. It has also been shown how two sources

of information can be combined to provide a direct mapping between them.

Being able to reconstruct 3D pose of a human from a simple contour has

applications in surveillance, virtual reality and smart room technology and could

possibly provide an inexpensive solution to more complex motion capture

modalities such as electromagnetic sensors and marker based vision systems.



194

10 Closing Discussion

10.1 Summary
This thesis has attempted to address the problems associated with the

construction and application of deformable contour models for real-time tracking

and interpretation of scenes. Deformable models were chosen as a research

subject due to their power and speed at segmenting objects under normal

environmental conditions where few constraints can be placed upon applications

to simplify segmentation. By taking deformable models as a starting point, the

work has attempted to push current approaches into new domains where existing

techniques would fail. In doing so, a fundamental understanding of the associated

problems has been gained and these problems addressed.

After reviewing related literature in Chapter 2, Chapter 3 introduced linear Point

Distribution Models and discussed their construction and use in object tracking.

It was shown that one of the most important aspects of the PDM is the inherent

dimensional reduction of the model.

Chapter 4 discussed the use of colour in object tracking and demonstrated how

simple colour techniques could be used to enhance object segmentation. This

Chapter 10
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chapter also demonstrated how object colour could be used in its own right as a

powerful feature for tracking.

In Chapter 5 non-linear datasets were introduced and their effects upon linear

PDMs discussed. The Cluster Based non-linear PDM (CBNLPDM) was

introduced which modelled non-linearity by breaking a dataset down into a

piecewise linear approximation to the non-linear data set. It was shown how

models could be constructed which better represented non-linearity while

retaining the simplicity and speed of the linear PDM. It was also shown that the

technique produced superior performance for model representation than other

related approaches.

Chapter 6 extended this work and introduced a vital adaptation to the

CBNLPDM. By projecting the training set down into a lower dimensional space

before non-linear analysis, large computational savings could be made. This

approach called Constrained Shape Space PDMs (CSSPDM) allows non-linear

analysis to be performed on high dimensional data such as images or 3D

structures. It was also shown that the data smoothing effect of this dimensional

reduction produces advantages for both model building and reconstructive

accuracy. Furthermore the natural segregation of the CSSPDM combined with

the low dimensionality provides a mechanism for the static pose recognition of

objects. This was demonstrated by using a CSSPDM of the hand to classify

letters from the American Sign Language finger spelt alphabet.

In Chapter 7 the important consideration of how objects move with time was

introduced. It was shown that this natural segmentation of shape space could be

used for discrete time dependent analysis by augmenting the CSSPDM with a

markov chain. This was illustrated with 3D motion capture data, where not only

the deformation of the model was learnt, but also the motion contained within the

training set. Using this motion model plausible mean trajectories of human

motion were reproduced which were learnt from recorded motion data and

visualised graphically.  The temporal CSSPDM was then applied to object

tracking and it was demonstrated how it could be used in a simplified

CONDENSATION algorithm, which outperformed standard ASM tracking. It
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was also shown how the PDF used in the Markov chain could be constructed

from sources other than the training data, providing superior results. This is

especially important in applications such as gesture recognition where it is not

feasible to learn this information by example.

In Chapter 8 the extension of Point Distribution Models to the 3D domain was

discussed. Techniques for the construction and alignment of such models were

presented and results shown for the automatic construction of large 3D eigen

models of the human head.

Finally Chapter 9 took many of the techniques and approaches discussed in this

work and applied them to the subject of markerless human motion capture. By

linking elements together before PCA is performed, a statistical linkage is

achieved which allows unseen information to be inferred from available visual

queues. This was demonstrated by tracking a human body in a monoscopic

image sequence and extracting a corresponding 3D skeletal model which

mimicked the motion of the human.

In order to extend the Point Distribution  Models to more complex applications it

was necessary to address the problems associated with automated model

construction. Namely, the complexities that automated procedures introduce to

training sets. Unlike many earlier authors who tackled this problem by trying to

attempt to devise complex techniques which would minimise these non-linear

effects. This work has tackled the problem by attempting to produce models

which can cope with these complexities. In doing so, the resulting developed

models have become more reliable and accurate while retaining the simplicity

and speed of the original formulation. These accurate, fast non-linear models not

only produce superior results, but also allow automated models to be constructed

which can have any dimensionality or complexity with almost no user

intervention.
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10.2 Future Work
This thesis has attempted to address the problems associated with the

construction of deformable models. In doing so, it has established a set of generic

tools and techniques for the construction and application of complex non-linear

models of deformation. By addressing the problems of non-linearity, the

approaches provide a solution which, has few constraints upon model assembly

and hence opens the application base of the work.

Future work is therefore varied and current work is concerned with further

developing the construction and application of models with computer vision and

graphics.

Current work into the colour distribution of objects and scenes is extending the

work of Chapter 4 to provide an accurate method of locating human motion

within complex environments. This work will incorporate models of deformation

to address the applications of visual surveillance and monitoring.

The work of Chapter 7 is supporting research into two areas, namely computer

animation and gesture recognition. In the field of animation the ability to be able

to model the motion of complex surfaces in lower dimensional spaces allows

smooth key-frame animations to be achieved. It is also intended that these

techniques could be combined with the work in Section 9.2 to allow the abstract

parameterisation of human motion in simulation. To fully investigate the

applications to gesture recognition, a two handed system must be constructed

which allows temporal gestures to be both tracked and classified.

A new model of human motion is currently being constructed, extending the

work of chapter 9. This model consists of a tri-camera view of the human subject

with the corresponding optical motion capture ground truth. This new model will

provide the means to assess the accuracy of the inferred human structure and

investigate the associated accuracy of mono, stereo and tri camera reconstruction.
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It is also intended that the work described in Appendix 2 on volumetric

segmentation be combined with that of the construction of 3D PDMs for medical

analysis and diagnosis. In doing so the shape and size of internal organs can be

compared with a statistical model to gain an indication of variation from the

population mean. It is intended to investigate the use of such approaches in the

diagnosis of medical conditions such as hydrocephalus.
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Appendix A – K-means and Fuzzy K-means Clustering

11 

11.1 K-Means Clustering

Clustering algorithms attempts to segregate a dataset into distinct regions of

membership, this is widely performed by a gradient descent based iterative

algorithm that is known as k-means (or c-means) algorithm or the Generalised

Lloyd algorithm {Karayiannis 95]. The k-means algorithm begins with a set of k

initial exemplars, where the data is to be segregated into k distinct regions. Each

region is evaluated with the exemplar as the centeroid of the region. Data points

are assigned to the exemplar in a nearest neighbour fashion and the exemplars

moved to minimise the distance between the exemplar and its members. This

membership is reassessed at each iteration and repeated until the algorithm

converges upon a solution i.e. the movement of the exemplars approaches zero.

Figure 11.1.1 - K-means clustering

For the clustering of a training set ( )MX xxx ,,, 21 !=  where n
i ℜ∈x  is an n

dimensional vector in Euclidean space and Mi ,,2,1 != . The segregation of the

training set into k clusters using the exemplars (cluster centres)

y1
xm

x2x1
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( )MY yyy ,,, 21 !=  where n
j ℜ∈y  and kj ,,2,1 !=  is performed by

minimising the cost function D where,
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The K-means algorithm assigns each training vector to a certain cluster on the

basis of the nearest neighbour condition. According to this strategy, the training

vector xi is assigned to the jth cluster if ( ) ( ) ( )jiYiji ddd
j

yxxyx y ,min, min ∈== ,

where ( )jid yx ,  is the squared Euclidean distance between the training vector xi

and the exemplar yj, defined as ( ) 2
,, jijid yxyx =  [Karayiannis 95].

The nearest neighbour description can be described by the membership function
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The algorithm minimises this cost function D through the iterative refinement of

cluster centres where the exemplar yj is the mean of the vectors assigned to it,
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Although the k-means algorithm is simple and relatively fast to iterate it is a

gradient descent method and therefore only capable of finding local energy

minima. It will always converge on a low cost solution, but because the energy

surface that it traverses is full of local minima, it will not necessarily find the

global solution As such, it is extremely sensitive to the initial placement of

exemplars. Exemplars are commonly placed randomly within the data space or

randomly allocated from the data points themselves. It is therefore necessary to
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run the algorithm a number of times with different random initialisations to try

and find the best local minima possible.

11.2 Selecting the Natural Number of Clusters k

Often during clustering the natural number of distinct clusters is known. Under

these circumstances cluster analysis can be performed using k=5. However, more

often, little is known about the nature of the data and a method of estimating k is

required. Furthermore, the nature of the energy minimisation within the k-means

algorithm makes the assumption that clusters are hyper-spherical. Where

elongated hyper-elliptical clusters are present these may be better modelled using

multiple adjoining spherical clusters as demonstrated in chapter 5.2.

The cost function D is commonly used as a metric with which to assess the

performance of clustering. As the number of clusters is increased, so the resulting

overall cost diminishes in a characteristic way.

Number of Clusters against Resulting Total Cost Function
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Figure 11.2.1 - Characteristic Cost Graph for k-means for 1 < k < M

Figure 11.2.1 shows the characteristic graph produced for a training set by

plotting the resulting overall cost of a converged solution against the number of

clusters k, where 1<k<M.  The overall cost of a solution decreases as the number

of clusters increases, where k=1 produces the highest cost and k=M (the number

Natural
Number of
Clusters
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of training examples) produces a cost of zero. However, as the number of k is

increased there becomes a point where increasing k further does not produce a

significant decrease in the resulting cost. This is said to be the natural number of

clusters of the data and is a simple but effective method for estimating k.

11.3 The Fuzzy K-means Algorithm (FCM)

Fuzzy set theory is a method of representing vagueness in every day life.

Bezdeck, Ehrlich and Full proposed a family of fuzzy k-means algorithms

[Bezdeck 84]. Fuzzy clustering algorithms consider each cluster as a fuzzy set,

while a membership function measures the possibility that each training vector

belongs to a cluster. As a result, each training vector may be assigned to multiple

clusters with some degree of certainty measured by the membership function.

Thus, the partition of the training set is based upon soft decisions [Karayiannis

95].

The fuzzy k-means algorithm uses a fuzzy membership rule where [Bezdeck84]
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The new cluster position yj is therefore calculated as
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The "fuzziness" of the clustering produced by these algorithms is controlled by

the parameter m, which is greater than 1 [Bezdeck84]. As this parameter

approaches 1, the partition of the data is nearly the binary decision used in the k-

means algorithm. However, as the parameter m is increased the membership

degrades towards a fuzzy state [Bezdeck84].
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Results comparing the partition of space using the k-means algorithm and the

FCM algorithm can be found in section 5.2, Figure 5.4.3.
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Appendix B – Volumetric Segmentation

12 

12.1 Introduction

The availability and clinical requirements of medical imaging as a source of 3D

data set has generated a significant interest in the processing and segmentation of

volumetric data. The problems of understanding 3D structure from a discretely

sampled volume have shown the benefit of visualisation techniques. Surface

approximations, such as isosurfacing, allow surfaces to be extracted that when,

rendered and shaded, provide an invaluable insight into a volume’s internal

structure.

The reconstruction of multi-modal data sets from different sources of volumetric

data is greatly simplified by the successful segmentation of surface topology.

Surfaces that directly correspond to a volume can be matched far more simply

than the original volumes [Moshfeghi 94].

In addition to structural insight, surface approximations are invaluable in

reducing the processing time needed for traditional image processing techniques,

as processing can be localised to a contour boundary. Furthermore, these surfaces

can provide a mathematical representation of shape which can then be used

statistically to model and classify shape and deformation [Cootes 95] [Bowden

96].

If a statistical model is to be constructed which represents 3D surfaces or features

extracted from medical or other volumetric datasets, a method of extracting

surfaces from these datasets is required in order to produce the training examples

necessary for statistical analysis.

A common technique for surface extraction is isosurfacing. Isosurfaces are

structures that represent surfaces of equal value, normally made out of graphical
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primitives such as triangles connected together and rendered using standard

graphical techniques.

There are five basic algorithms for Isosurfacing:

1. Opaque cubes or the Cuberille algorithm [Herman 79]

2. Contour connecting [Barequet 96][Fuchs 77][Keppel 75]

3. Marching Cubes [Mullick 95][Cline 88][Lorenson 91]

4. Dividing Cubes [Cline 88]

5. Marching Tetrahedra [Shirley 90].

The Marching Cubes algorithm is by far the most popularly implemented

algorithm for iso-intensity surface extraction, efficiently generating isosurfaces

with low memory requirements. The Contour Connecting method requires

localisation of the contour in each slice of the data and, like the Cuberille

algorithm, is prone to artefacts when handling small features and branches in the

data. Though the Marching Tetrahedra approach reduces ambiguous topological

connections, it generates many more graphical primitives than the Marching

Cubes algorithm. Finally, the Dividing Cubes algorithm creates points and

corresponding normals requiring special purpose hardware/software for

visualisation, making it inappropriate for many applications [Mullick 95].

Barequet et al [Barequet 96] propose a technique for piecewise-linear surface

reconstruction from a series of parallel polygonal cross sections. As well as the

applications of such algorithms in visualisation (isosurfacing) it is an important

problem in medical imaging, where contours are often detected in single layers

of the volume. By reducing the problem to the piecewise linear interpolation

between each pair of successive slices, they use a partial curve matching

technique for matching parts of the contours. The major advantage with this over

such a scheme as marching cubes is that the size of the resulting polygons

compared those produced by marching cudes, where each voxel can produce

multiple polygons.

Since the original formulation of Active Contour Models (Snakes) [Kass 88] a

significant interest has been shown in extending the technique to dynamic 3D
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models. Snakes have been shown to be useful in contour reconstruction, but

require large amounts of user intervention to successfully segment complex

objects. As has been shown, Point Distribution Models [Cootes 95] can simplify

the problem of object recognition and segmentation by statistically constraining

the shape of the model within suitable bounds, through the analysis of a training

set of shapes. However, in 3D, where models become too large to manufacture

by hand, another means of generating training sets for statistical analysis must be

found.

Terzopolous and Vasilescu [Terzopoulos 91] extended the snake model to

include an inflation force that helps remove the need for initial contour

placement and thus avoid convergence on local minima. The inflation force

drives the snake model outwards towards the object boundary like an inflating

balloon. Terzopolous and Vasilescu formulated the model as a finite element

mesh and later extended the model to a thin plate spline, demonstrating

successful results in the reconstruction of range data and volumetric CT data

surface representations [McInery 93].

This chapter presents an iterative, dynamic mesh model which uses simulated

physical forces to segment desired surface approximations from volumetric

datasets. The work is based on the work of Chen and Medioni [Chen 95] which

is itself a continuation of the work on dynamic balloon models by Terzopoulos

and Vasilescu [Terzopoulos 91]. Chen and Medioni applied the work to the

constrained problem of reconstruction from pre-registered range images.

It will be shown how simplifications can be made to the model which increases

the iterative speed of converging on segmented features. It is also shown how

balloon models can be reformulated to remove explicit data attraction forces to

image features. The process hence behaves like a region growing technique

which locates isointensity boundaries within the image. This removes the need

for parameter selection which must be balanced against the internal parameters

for standard snake [Kass 88] and balloon [Terzopoulos 91] models and further

reduces suseptibility to initial placement and image noise.
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The remainder of this chapter is organised as follows, Section 12.2 provides an

overview of the dynamic mesh balloon model. Section 12.3 discusses mesh

structure and connectivity while Section 12.4 covers dataset scaling and

interpolation issues. Section 12.5 then formulates the dynamic mesh structure

and subdivision mechanisms. Section 12.6 shows the resulting model applied to

sample volumetric data sets. Finally conclusions and further work are discussed.

12.2 Overview of the Dynamic Mesh Model

The mesh structure consists of a triangular mesh which can vary in size, shape

and connectivity. Each vertex is connected to other vertices in the model by the

edges of the polygonal facets. These interconnections are used to simulate

springs that connect the mesh mathematically. The force of these springs gives a

resulting surface tension to the model which attempts to keep the surface as

smooth as possible. An inflation force is used at each vertex to inflate the overall

model, while surface tension attempts to keep the mesh spherical. A simple local

feature detection scheme is used at each vertex to remove the inflation force as

nodes reach the boundaries of desired structures. A dynamic mesh subdivision

scheme is used to subdivide polygons locally if they exceed set size or curvature

criteria. This allows the mesh to inflate and grow until a boundary is located.

Once the mesh has converged on a solution, a good local edge detection scheme

can be used to lock vertex points to the boundary. The process starts with a small

polygon object which is inflated from within a volumetric image with the

inflation force driving the surface towards the object boundary. The mesh grows

in size and complexity to fill the object like an inflating balloon until the mesh

vertices lie close to the true object boundary (See Figure 12.2.1). This technique

requires no user intervention after the initial placement and provides a simple,

fast method for object segmentation, which produces surfaces with a low

polygon count.
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Figure 12.2.1 - Simple 2D Contour Inflating Towards the Object Boundary

12.3 Mesh Structure

To provide the successful extension of the balloon model into 3D, the mesh

structure must fulfil a number of criteria:

1. It should allow the dynamic manipulation of a surface and its local

properties.

2. It should be structured to ensure render times and processing times are

kept to a minimum

3. It should have the ability to represent features accurately by ensuring

planar facets and hence reducing mathematical inaccuracies.

4. It must maintain knowledge of its connectivity, to provide a simulated

physical model like snakes [Kass 88].

5. It must provide a faithful render of the volume providing accurate

visualisation of complex features within a given dataset.

The addition of this final constraint also ensures that the surface will look

continuous when rendered with a suitable shading routine such as

Gouraud/Phong shading. Perhaps the simplest of mesh structures is that of the

simplex mesh, proposed by [Delingette 94]. A simplex mesh is an interconnected

set of nodes, where each node is connected to exactly three other nodes (Figure

12.3.1a).
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Figure 12.3.1 - Mesh structures

(a) The Simplex Mesh Structure (b) A Planar Mesh Structure

Each node (N1) always connects to exactly 3 other nodes producing a simple

interconnected surface model from which mathematical simulations of physical

properties can easily be implemented. However the polygons bounded by these

nodes are non-planar. The calculation of a vertex normal is produced by

averaging the normals from the connecting polygons surrounding that vertex.

Since non-planar polygons produce inaccurate normal calculations, this mesh

formulation will produce inaccuracies in rendering or physical simulation

calculations. Inaccuracies in normals will result in non-uniform shading as

lighting equations depend upon normals and planar polygons. Surface features

will also suffer from the use of non-planar polygons.

A better solution is to use a mesh that has planar facets. Three points always

ensure a unique plane and it is simple to subdivide a triangle into multiple

triangles. This does, however introduces problems with the connectivity, as any

node must be able to connect to any other number of nodes to ensure a complete

and evenly spaced surface. In Figure 12.3.1b the node (N2) connects to five

other nodes.

This provides a mechanism that represents how each vertex connects to other

vertices allowing simple physical properties to be represented, i.e. elasticity can

be manifested as the force that each of the connected vertices applies on a

(a) (b)

N1

N2
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specific vertex by the direction and length of the connections. However other

operations such as rendering and normal calculations require polygons to be

expressed as the connection of vertices that constitute a surface facet and it is

therefore necessary to retain a dual representation of the surface.

12.4 Volume scaling and Interpolation

Volumetric data is commonly stored as a 3D array of discrete values for each

voxel (Volumetric Element) of a volume. The resolution of these volumes tends

to be far lower than standard images due to the size and memory requirements. A

typical 256x256 grey scale image would occupy 64KB of memory, however a

256x256x256 volume using 256 grey levels would occupy 16MB of memory.

Due to the low resolution of volumes and non-cubic voxels it is necessary to

smoothly interpolate intensities and attempt to estimate missing information. Tri-

linear interpolation is used to reconstruct missing data from the discrete data set

and allows a value to be estimated for any position within the volume. Higher

order interpolation schemes can be used but introduce additional computational

complexity for little gain.
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Figure 12.4.1 - Tri-linear Interpolation

Figure 12.4.1 demonstrates the principal behind tri-linear interpolation. The

normalised point within the unit cube is first converted to the discrete volume

and its eight discrete corner values determined along with the normalised

position within this new sub-unit cube. Placing these values within the equation

fxyz gives a linearly-interpolated value for the required point. The equation,

although not complex, can quickly become a computational overhead where a
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large number of interpolated values are required. This technique does not

therefore lend itself well to normal image processing techniques where many

samples are required for each iteration of an algorithm. However in the case of

meshes/3D-surfaces where the presence of the surface greatly reduces the

number of interpolations per iteration, the technique enables the dataset to be

treated as a continuous volume, smoothing edges and noise.

Higher order interpolation schemes can be used (e.g. tri-cubic interpolation)

however, the additional computational cost involved with such schemes

outweighs the benefits gained. It should be pointed out that no matter which

interpolation scheme is used it is never possible to reconstruct missing data, the

values are merely estimated from the available information.

Volumetric data from the medical imaging field tends to have non-cubic voxels

where the in-slice resolution is much smaller than that of the depth resolution,

and for this reason the volume should be scaleable. This artefact of acquisition

can be overcome by translating and  rescaling the volume to a cube of 2 unit size.

A scaling in x, y and z can then be applied to rescale the volume and associated

voxels in to a cuberville (a volume with cubic voxels). Tri-linear interpolation

will then attempt to fill-in this missing inter-slice resolution.

Figure 12.4.2 - The working volume of the 3Dinterpolator

Figure 12.4.2 shows this cube centred about the object, this enables meshes to be

built that are of the same scale. For a given dataset the scale is set such that the
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largest dimension of the volume occupies the full size of the unit cube centred

about the origin. As the same scale applies to all dimensions a non cubic volume

(eg 200x200,100 voxels) would produce a scaling demonstrated in Figure

12.4.2b, any attempt to access part of the volume outside the volumetric data as

outside the cube results in a value of zero. This allows the dataset to easily be

rescaled to suit applications.

12.5 The Balloon Model

The balloon model consists of a mesh of triangular facets or patches. The initial

triangulated surface can be any shape or size allowing the re-application of a

segmented surface to a new data set. Each node (vertex) has two forces acting

upon it. The spring force derived from the sum of the vectors of the

interconnections of the mesh, and the inflation force, derived from the weighted

normal direction of the surface at each node.

The operation of the inflating balloon model can be encapsulated by the

following algorithm.

Algorithm 12.1.

for a given closed form polygonal model do,

build a connected mesh of vertices

while number of polygons is not constant do

compute the normal at each node

for each node do,

compute the elastic force using Equation 12.5-4 (See Section 12.5.2),

test node position in dataset using feature detection scheme,

if feature not found calculate the inflation force using Equation

12.5-5 (See Section 12.5.3) and add to the elastic force

compute the new node position vi
t t+∆  using Equation 12.5-3 (Section

12.5.1) and update node

perform dynamic subdivision using Algorithm  (See Section 12.5.4)
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12.5.1 A Simple Dynamic Model.

The motion of any element i on a finite element mesh model can be described by

the set of coupled second order differential equations [Terzopoulos 91]

Equation 12.5-1 m
d x

dt

dx

dt
g f i ni

i
i

i
i i

2

2 1+ + = =γ , , .!

Here, x is the location of the element i, m is its mass, g is the surface tension,

generated by the interconnections of the elastic mesh, f is the inflation force and

γ  is the velocity-dependent damping coefficient that controls the rate of

dissipation of kinetic energy. Giving the mesh these simulated physical

properties provide a robust model that performs well but at a computational cost.

The main rationale for the momentum term m
d x

dti
i

2

2







  is its ability to reduce the

mesh's susceptibility to noise. Due to the momentum of nodes the damping

termγ  is necessary to bring the model to rest. The mesh reaches an equilibrium

state when d x

dt

dx

dt
i i

2

2
0+ =  which can take some time [Chen 95]. Chen and

Medioni simplify this model by making m=0 and 1=γ  for all i reducing

Equation 12.5-1 to

Equation 12.5-2

dx

dt
f g i ni
i i= − =1, , .!

Due to this simplification the equation (2) has a very simple explicit integration

[Chen 95]

Equation 12.5-3 x f g t xt t
i
t

i
t t+ = − +∆ ∆( )
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Unlike the work of Terzopoulos, the approach described here does not use an

explicit data force that attracts the balloon surface to image features. Instead the

inflation force is used to inflate the surface until the desired feature is located. In

order to overcome the noise inherent in medical imaging datasets, the surface is

not anchored to positive data features. When a feature is detected at a node

position, the inflation force is removed for that node. The surface is then free to

oscillate around features until it converges on a solution.

12.5.2 Simplified Spring Force

The spring force exerted on node i by the spring linking node i and j of natural

length lij  can be expressed as [Terzopoulos 91],

s
c e

r
rij

ij ij

ij

ij=

where cij  is the stiffness, ijij xxr −=  the vector separation of the nodes, rij  is

the length of the spring and e r lij ij ij= −  is the deformation of the spring.

In order to generate a generic technique for the segmentation of objects, and due

to the large nature of 3D objects it is not feasible to assign values to cij  and lij

for each node. Further simplifications can therefore be made by setting all

stiffness coefficients to a constant value with a minimum spring length of zero,

c cij =  and 0=ijl .

The total elastic force on a node i is therefore,

Equation 12.5-4 ∑
=

=
n

j
iji r

n

c
g

0
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12.5.3 Inflation Force

The inflation force applied to each node i is

Equation 12.5-5 inkf ˆ=

where !ni   is the normal at node i and k is the amplitude of the inflation force.

The value of k can be selected to be a constant for a specific data set or

dynamically generated as igk
4

5= , which ensures that the inflation force for

each node always exceeds the surface tension of the model. Although this

removes the parameter selection of k, it produces a slower convergence on

solutions as non optimum parameter selection results.

Node normals are calculated as the average normal of the surrounding polygons

sharing the node i, gained from the cross product of polygonal edges between

vertices. Other, more complicated schemes as used by Chen and Medioni [Chen

95], give little benefit as errors in this normal estimation technique are reduced

by the surface smoothing properties of the surface tension (elastic force). This

also gives a significant performance increase as normals must be recalculated at

least once every iteration of the algorithm.

12.5.4 Dynamic Subdivision

As the inflation force increases the surface area of the mesh, individual polygons

grow in size. Since the elastic force is directly proportional to the size of

polygons, there comes a point where the elastic force will not allow the mesh to

increase in size further, unless the inflation amplitude is increased accordingly.

Dynamic subdivision can be used to subdivide polygons which exceed set size

criteria and keep polygons within a suitable limit. Each edge of the mesh is

checked in turn at each iteration to see if it exceeds the subdivision threshold.

Figure 12.5.1 demonstrates how the process works.
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Figure 12.5.1 - Dynamic Subdivision

When the length of a node connection AB exceeds set criteria, distance or

curvature, the two triangles that contain this edge are located (ABC, ADB) and

removed from the polygon list. The midpoint m of AB is calculated and four

new triangles constructed AMC, CMB, ADM, and MDB. The internal

connectivity of the mesh is also altered to reflect this new local structure. Long

thin triangles are undesirable, as they do not model local surface properties well.

This technique ensures that they never occur, as any edge that exceeds a distance

threshold is immediately subdivided. This procedure allows the mesh to grow

asymmetrically to fit any feature located within the data set.

The dynamic subdivision procedure can be encapsulated by the following

algorithm.

Algorithm 12.2.

• for each node (V1) do

• for each connection to another node (V2) do

• if the connection (V1V2) matches the subdivision criteria do

• remove connection (V1V2)

• remove the two polygons that share this edge

• find the mid point m of V1V2

• construct four polygons using m as a common node

• update the connections of the mesh

• recalculate the normal at each node
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m
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12.5.5 Subdivision Criteria

Using a distance threshold for subdivision produces an evenly spaced mesh

which can alter its structure locally to fit any dataset. It is also possible to use

other criteria to provide a more flexible approach. As the normal at each node is

known for use with the inflation force, the dot product of two adjacent vertices'

normals represents local surface curvature. This can be used to further subdivide

the mesh if the dot product drops below a certain threshold value, i.e. the area has

a high degree of curvature, allowing more vertices to be placed in these areas of

high curvature. This is useful where long narrow features are present in the

dataset.

Figure 12.5.2- Curvature Based Subdivision

Figure 12.5.2 demonstrates an image boundary and an inflating balloon front.

The boundary shown has found an equilibrium state in the narrow feature. By

subdividing the mesh on a curvature basis, in addition to distance, extra vertices

are added to the front of the model providing the inflation force needed to

successfully segment the long narrow feature.

Both subdivision criteria can be used in conjunction to minimise the polygon

count of a mesh, removing the need for post-processing techniques such as

Delaunay Triangulation [Soucy 96]. An edge is subdivided only if it exceeds

both a distance and a curvature threshold. Polygons on parts of the surface with

low curvature grow beyond the threshold keeping polygon counts to a minimum.

Therefore, areas of high curvature have larger numbers of small polygons that

better model the surface features.
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12.5.6 Feature Detection

Edge features within an image are typically identified as a change in intensity

from one range to another via an isointensity which depicts the boundary of these

two regions.

Figure 12.5.3 - The Boundary between Light and Dark

Figure 12.5.3 shows a cross section through an image depicting a sharp boundary

between light and dark. The intensity xi depicts the threshold that would generate

an isointensity boundary for this feature within an image. Providing scanning

starts within the model boundary, it can be said the boundary (xi) has been passed

when either

 niwhereIIorII
ii xxxx ,,1,0 !=>< ′′

depending on the direction of the intensity gradient along the isosurface

boundary normal.

This simple thresholding mechanism can be used to detect when the balloon has

just passed through a possible isosurface boundary, at which point the inflation

force can be removed for that node. Due to the simplicity of this mechanism,

many false boundary points are detected and hence results in a noisy

segmentation. However, elasticity is a constant force and as such provides the

function of a simple momentum term which pulls the nodes away from false

boundary points.
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Where complicated internal structures are required this approach may not

provide adequate results. In this situation, other more sophisticated feature

detection schemes can be employed. However as the feature of primary

concerned is the external boundary of the model, where a distinct boundary is

present, this approach provides an efficient and simple solution.

12.5.7 Robustness to Noise

               

Figure 12.5.4 - Balloon Boundary,

(a) Contour is pulled away from noise (b) Contour oscillates at real edge

Figure 12.5.4 demonstrates this invulnerability to noise spikes. In Figure

12.5.4(a) the boundary moves towards the true boundary through the influence of

the inflationary force. Points X and Y are located on noisy areas of the image.

Where these false edges are located the inflation force is removed. However, as

the remainder of the contour progresses forward under the inflation force the

elasticity pulls these points away from the noise. Once a sufficient distance from

the noise has been reached the edge detection criteria no longer apply and the

inflation force is reapplied. Elasticity then helps smooth these features as the

process iterates. Figure 12.5.4b demonstrates what happens when the contour

approaches the true boundary. As points are inflated beyond the boundary their

inflation force is removed and elasticity pulls the point back within the model,

where the inflation force is then re-applied. This causes the contour to oscillate

around the true edge. As points oscillate back and forth chaotically their overall

movement is at a minimum and therefore mesh subdivision approaches zero. At

this point a local edge detection scheme can be used to clamp nodes onto their

real edge

YX

noise
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closest edge. This creates an evenly spaced mesh that is a good surface

approximation to the desired object.

12.6 Results

12.6.1 Synthetic Dataset

A synthetic data set of a 3D-horseshoe shape was constructed. The volume

consisted of 20x20x6 cubic voxels where each 20x20 slice is identical

throughout the volume. Figure 12.6.1 shows one slice from this volume. An

initial diamond-shaped seed balloon consisting of 8 vertices is placed inside the

object and the model grown to fill the volume. The resulting surface

segmentation is shown in Figure 12.6.2. As the model expands to fill the volume,

vertices that reach the outer boundary oscillate as their inflation force is turned

on and off. The resulting segmentation has almost a circular cross section

although the original data had very distinct straight edges. This is due to the tri-

linear interpolation which smoothes the data, and is very apparent due to the low

number of constituent voxels within the volume. The ends of the model continue

to grow under the inflation force and as the distances between vertices increases

the dynamic subdivision introduces addition polygons allowing the model to

locally deform to fit the dataset.
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Figure 12.6.2 - Balloon Growing to fill Synthetic Dataset

12.6.2 MRI Dataset

To demonstrate the ability of the balloon model segment a real volumetric

dataset the model was applied to a raw MRI scan of a human hand11. This is also

compared to the results of segmentation gained from a standard isosurface and an

3D elastic mesh model (3D snake). The volume is 256x256x20 voxels in size.

This is rescaled by 1x1x2 to reconstruct a cuberville and tri-linear interpolation

used to estimate values within the volume. Figure 12.6.3 shows an insosurface

generated from the dataset. Although it clearly shows the shape of the hand

within the volume the surface is discontinuous and noisy. The background noise

in the image is perhaps the most prominent feature and is the cause of the

speckled effect of the surface. Another disadvantage of the technique (as

mentioned earlier) is that for each voxel, a number of polygons are produced.

The isosurface shown in Figure 12.6.3 was generated from a super-sampled

volume of 128x128x20 to allow the resulting model to be rendered as a surface

generated from the original volume would result in some 235,000 polygons.

                                                          
11 MRI data of the hand model was provided by the Centre for Medical Imaging
Research (CoMIR) at the University of Leeds
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Figure 12.6.3 - Isosurface of MRI Hand Dataset

Figure 12.6.4 - 3D Surface Snake Applied to MRI Hand Dataset

Figure 12.6.4 shows the results of applying a 3D elastic surface to the dataset.

This produces a poor segmentation for two reasons

1. The large amount of background noise in the volume means that the

snake easily gets stuck as it shrinks to fit around the hand.
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2. The long narrow features of the fingers make it difficult for the

surface to succesfully segment their structure.

By increasing the data attraction force of the snake, the ability to locate and

segment the fingers is increased. However, if this attraction force is increased the

suseptibility to background noise is also increased and segmentation fails.

Figure 12.6.5 shows the development of the balloon mesh when applied to this

dataset. Initially, a seed balloon is placed within the volumetric dataset.

      

Figure 12.6.5 - Segmentation of an MRI dataset of the Human Hand

The seed consists of a simple diamond shape with 8 polygons and 6 vertices.

Forces are applied to the model and after 10 iterations it has grown to 307

polygons. The almost spherical shape is due to the surface tension of the model.

Its non-spherical symmetry shows that positive features have been detected early

0 Iterations
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10 Iterations
307 Polygons
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1229 Polygons

30 Iterations
2479 Polygons

60 Iterations
3945 Polygons

80 Iterations
4151 Polygons

100 Iterations
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40 Iterations
3439 Polygons

The Balloon Model Inflating to fill a MRI
Image of a Human Hand
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on in the process and thus the inflation force has not been applied evenly. This

demonstrates the algorithm’s robustness to false boundaries and noise.

As the process iterates further the final shape very quickly starts to take form.

Although mesh subdivision continues we can see that it is starting to decrease in

rate considerably after 40 iterations. Figure 12.6.6 shows the rate of growth of

the mesh.
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Figure 12.6.6 - Graph Showing the Rate of Polygonal Increase.

Although the model will finally converge on a stable solution, it is sufficiently

complete at around 70 iterations which takes approximately 35 seconds on a

single MIPS R4400 200MHz processor, including render time. This is

significantly faster than previous researchers’ techniques, the most comparable

being the work of Chen and Medioni [Chen 95], where a comparable complexity

model takes approximately 30 mins to iterate on a SUN Sparc-10 machine. This

can also be compared with a standard isosurface of the external hand boundary

that generated a surface of 235000 polygons as compared to the balloon model of

4000 polygons.

The hand dataset is a good example of the effectiveness of the technique,

demonstrating its ability to work with complex noisy images which contain an

object with convex, concave and long narrow features.
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12.7 Conclusions

This chapter has presented a surface segmentation method which uses a

simulated inflating balloon model to estimate structure from volumetric data

using a triangular mesh. The model uses simulated surface tension and an

inflationary force to grow from within an object and find its boundary.

Mechanisms have been described that allow either evenly spaced or minimal

polygonal count surfaces to be generated. Unlike previous work by researchers,

the technique uses no explicit attraction to data features and as such is less

dependent on the initialisation of parameters and local minima. Instead, the

model grows under its own forces, never anchored to boundaries but constrained

to remain inside the desired object. Results have been presented that demonstrate

the technique’s ability and speed at the segmentation of a complex, concave

object with narrow features, while keeping model complexity within acceptable

limits.

12.8 Future Work

This work is ongoing, the primary rationale being the ability to produce low level

polygonal surface approximations to allow 3D Point Distribution Models to be

built for automatic recognition, segmentation and analysis of volumetric data.

Work has also been done in the area of mesh self-intersection. A set of criteria

have been developed which allow the detection of mesh self-intersection. Future

work includes allowing this criteria to be used to detect intersections, and re-join

the mesh at these points to allow more complex torus like shapes to be

successfully extracted.
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