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9 Extending the Point Distribution Model

9.1 Introduction

Thus far, statistical models of deformation have been considered where the

vector x consists of related features such as the co-ordinates of a connected

contour, the vertices of a surface or the grey level intensity of each pixel of an

image. The principle relies upon the variation of elements with regard to others

and attempts to generalise the relative movement of the constituent components.

It therefore holds that similar statistical linkage of features could be achieved

even if they lie within different co-ordinate frames and represent quite different

elements providing that there is still some linear relationship between the various

elements. This chapter will discuss the use of this technique to link together

related information from differing sources. Section 9.2 will discuss combining

shape information with abstract parameters and using this to infer unseen

information from examples of shape. Section 9.3 will present the application of

this technique to inferring the shape and position of a human body from an image

sequence.  Finally conclusions will be drawn.

Chapter 9
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9.2 Combining Features Statistically

9.2.1 A Linear PDM with an Abstract Parameter

The linear 3D PDM of an eigenGlass, as constructed in chapter 9, provides an

ideal example to demonstrate the hypothosis that related information can be

combined into a PDM. It has already been shown that this PDM is essentially the

same as the 2D contour of the glass due to the rotational symmetry of the object.

Thus, the two dimensional vector that describes the glass profile can be used as a

training vector for PCA and the final reconstructed model swept around the

central axis to attain the full 3D model. This training vector x describes the shape

of the glass for each example in the training set. However, additional parameters

can be concatenated to the vector for each example in the hope that some

mapping which links the shape with other features can be achieved. For each

training example an abstract parameter MF was estimated. The parameter

corresponds to the masculinity or femininity of a specific training example. This

provides a rather subjective scale but provides an illustrative demonstration that a

link between shape and aesthetic appearance can be achieved. Figure 9.2.1 shows

each training example with the corresponding MF parameter estimated, 0 < MF

< 1, where 0 corresponds to feminine and 1 to masculine.

Figure 9.2.1 - MF Parameter for eigenGlass Training Set
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For each n-dimensional training vector x a new training vector is constructed by

concatenating the MF parameter to the existing vector producing and n+1

dimensional vector x' = (x, MF) = (x1,y1, x2, y2, ..., MF).

After PCA has been performed on the training set the resulting PDM can be used

to reconstruct new drinking vessels of various shapes along with a corresponding

MF value. Figure 9.2.2 shows the primary mode of variation of the eigenGlass

model from the mean shape along with the corresponding MF value.

Figure 9.2.2 - Primary mode of variation of Augmented eigenGlass PDM
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Figure 9.2.3 - Reconstructed glasses and MF value from Augmented

eigenGlass PDM

Figure 9.2.3 shows the results of reconstructing various glass types from the

eigenGlass model along with the corresponding MF value. This is achieved by

manipulating the weighting parameters of the model. As the overall shape

changes, so the additional MF parameter changes accordingly. It can be seen that

the pint glass produces a high MF value which corresponds to the training set.

Similarly the wine glass example c) produces a low MF value, demonstrating

that the PDM has successful achieved some mapping between the elements. As

MF=0.41

MF=0.43 MF=0.26MF=0.99

MEAN

example (a) example (b) example (c)
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with all PDMs, the ability of the final model to reproduce examples from the

training set is augmented by the ability to generalise the shape information and

produce unseen shapes, not present within the training set. When this is done an

MF value is also produced and by observing this parameter it is possible to draw

some conclusion about what the PDM has encoded.

The model demonstrates a high correlation between the size (volume) of the

glass and the MF value. This is to be expected, as the high MF examples were

the larger types of glass. However, example (b) shows the results of attempting

to make a 'more' masculine wine glass and results in a thicker stem. So it could

also be concluded that the more delicate the stem of a glass the more feminine its

appearance. This would seem a fair assumption given that in the training

examples the two extremities of MF were a pint Beer glass and a Champagne

glass where the major difference between the examples was the stem thickness

(see Figure 9.2.1).

This is an extremely subjective example but demonstrates how additional

information can be incorporated into a PDM.

9.2.2 Scaling Issues and Eigen Entrophy

One of the important issues when elements are to be combined for statistical

analysis is that of scaling. If an element contains too much variation across the

training set (due to the incorrect scaling of that component) then that element

will bias the PCA and dominate the principal modes of variation. In some cases

this may be desirable, e.g. when it is intended that the primary mode correlates

directly to the variation of a specific feature. However, more often, this is an

undesirable effect.

The premise of the PDM is that the largest variation of the training set should be

represented within the eigenvector corresponding to the largest eigenvalue. By

artificially biasing the PCA with an incorrect scaling the information content of

the PDM is destroyed.
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If the eigenGlass model is considered, the construction of the training vector

should contain a scaling parameter α  where

Equation 9.2-1 ( ) ( )MFyxyxMF αα !,,,,, 2211==′ xx .

When the training set is assembled this additional parameter can be scaled

appropriately to ensure incorrect dominance does not occur. However, it is

generally not apparent what this scaling value α  should be for any particular

example.

Sumpter, Boyle and Tillett [Sumpter 97] proposed a method for estimating the

scaling of parameters by calculating the eigen entropy (E) of the normalised

eigen vectors (p), and estimating the value α  which maximises this entropy

( )αE ,
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Figure 9.2.4 shows the results of performing this procedure upon the eigen glass

example. From this graph it can be seen that the optimum eigen entropy is

achieved with a scaling of around 137=α .
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Eigen Entrophy of eigenGlass with MF Parameter
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Figure 9.2.4 - Graph of eigen entropy for varying parameter scaling

If PCA is now repeated upon the eigenGlass example with 137=α , a new PDM

is constructed. It is hoped that the MF parameter presents increased significance

within the primary modes of variation. This hypothesis can be confirmed by

examining the eigenvalues and the variance of MF for models constructed with

α = 1 and 137.

Figure 9.2.5 shows the histogram of normalised eigenvalues in percentile form

(see chapter 3.2) for the eigenGlass example with the two aforementioned MF

scalings. As would be expected the addition of this parameter and its increased

significance within the primary modes (for 137=α ) has removed some of the

information content from the primary modes of variation, with a small increase

in the significance of the latter modes. However, the resulting model still retains

99% of the variance within the first four modes so the information content is

preserved, unlike ∞→α  which results in only a single mode of variation (due

to the dominance of MF over the PCA), destroying the information content of the

model.
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Graph Showing the Contribution of eigen Vectors to the 
Total Deformation
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Figure 9.2.5 - Graph demonstrating the normalised eigen values for the

eigenGlass example with different parameter scaling

Graph Showing the Variance of the MF Parameter 
for PDMs with Different Alpha Scalings
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Figure 9.2.6 - Graph demonstrating the increased variance in eigenGlass

example for correct parameter scaling

Figure 9.2.6 demonstrates this increase in the variance of the MF parameter by

plotting the bounds of the variance for each of the primary modes of the two

PDMs. Both variances are based around the mean MF and regress to this mean as

the contribution of a mode diminishes. It can be seen for 137=α  that the

variance of MF is increased within the first two modes, with a significant

reduction of this variance in the latter modes. This demonstrates that the

∞
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increased scaling has forced the statistical correlation into the primary three

modes while more evenly distributing the overall variance of the model.

From Figure 9.2.5 and Figure 9.2.6 it can be concluded that the parameter scaling

increases the correlation between shape and parameter without destroying the

information content of the resulting PDM. However, another important

consideration is 'how has this affected the primary modes of shape deformation?'.

This can be answered by comparing the deformation of the original eigenGlass

PDM to this new weighted model.

Figure 9.2.7 - Primary modes of eigenGlass PDM with different alpha scalings

It can be seen from Figure 9.2.7 that the increased significance of the MF

parameter has done little to effect the overall deformation of the eigenGlass

shape. It has increased the shape deformation to accommodate the MF parameter

which shows that, although a correlation is being achieved, it is not a simple

linear correlation. This could be addressed by using a non-linear model as

previously developed, this will be discussed in more detail in Section 9.3.

9.2.3 Statistical Inference

It has been shown how additional information can be incorporated into a PDM

which does not necessarily have to lie within the same co-ordinate frame as the

shape deformation. It has also been shown how this information can be

statistically linked to the other features of the model. When a shape is

137=α

0=α

1st mode 2nd mode 3rd mode 4th mode
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reconstructed, so the additional parameters of the model are estimated due to the

statistical linkage that occurs between the elements during PCA. However, what

is desirable is to be able to use this model to estimate the parameters for unseen

objects or even predict shapes that correspond to specific parameter values.

Using the matrix form of a linear PDM the shape x of a model is equal to the

mean shape plus the weighted sum of the eigenvectors

Equation 9.2-4 Pbxx +=

where x is the shape vector, x  is the mean shape, ),,,( 21 tvvvP !=  is a matrix

of the first t eigenvectors and T
tbbb ),,,( 21 !=b  is a vector of weights.

Given a new shape x′ , the closest allowable shape from the model is constructed

by finding b such that

Equation 9.2-5 ( )xxPb −′= −1
 and iii b λλ 33 ≤≤−

The closest allowable shape can then be reconstructed as

Equation 9.2-6 Pbxx +=

If the eigenGlass example is now considered, it is feasible that given a new

'unseen' glass example ( x′ ) the PDM could be used to estimate a value for MF.

As the PDM has encoded a statistical link between the shape and parameter this

model can be used to predict this estimate. However, the two elements have

different dimensionality. The unseen example has dimensionality of 2n, where

the PDM has a dimensionality of 2n+1. The new example x′  could be converted

to a 2n+1 vector by the addition of a zero, and the vector then reconstrcuted

using the procedure above. However, in finding the closest allowable shape from

the PDM, weighting parameters would be extracted that best fit the shape and

provide an MF of zero. For non-linear mappings where the correlation between

these elements is complex and the linear formulation of the PDM is over
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generalising, this mapping will lead to unreliable results, i.e. the zero parameter

will bias the reconstruction. As the number of unknown parameters increases

this zero bias will begin to dominate the reconstruction and the resulting

reconstructed vector will begin to degrade. Instead the model must be reduced to

the dimensionality of the vector.

This is achieved by taking the matrix P which is a jn ×+12 matrix of eigen

vectors and extracting a smaller matrix P' which is a jn×2  matrix.
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This is done by discarding the elements of each eigen vector which correspond to

the unknown elements of the model (in this case the MF parameter).  A similar

procedure must be performed on the mean shape 12 +ℜ∈ nx  by discarding the

unknown parameter to obtain n2ℜ∈′x . The weightings which produce the shape

can then be calculated in a similar manner with the reduced dimensional model,

where

Equation 9.2-7 ( )xxPb ′−′′=′ −1
 and iii b λλ 33 ≤≤−

However, as only the dimensionality of the eigen vectors was changed and not

the number of eigen vectors, b' has the same dimensionality as jℜ∈b . The

weighting vector b' can therefore be placed directly into Equation 9.2-4 to

reproduce the shape x, by

Equation 9.2-8 bPxx ′+=

P′

MF element of each eigen vector
is discarded to construct P'



183

The closest allowable shape vector 12 +ℜ∈ nx  to n2' ℜ∈x has now been

reconstructed. However, the additional information in x', contains the missing

MF information which has been estimated from the available shape information

and the a priori information contained within the model of about shape and how

this relates to the MF parameter.

9.3 Extending the Model to Inferring Human Motion

9.3.1 Introduction

The human vision system is adept at recognising the position and pose of an

object, even when presented with a monoscopic view. In situations with low

lighting conditions in which only a silhouette is visible, it is still possible for a

human to deduce the pose of an object. This is through structural knowledge of

the human body and its articulation.

A similar internal model can be constructed mathematically which represents a

human body and the possible ways in which it can deform. This is the premise of

model based vision, and as has been previously shown, this deformation can be

learnt using a Point Distribution Model. By introducing additional information to

the PDM that relates to the anatomical structure of the body, a direct mapping

between skeletal structure and projected shape can be achieved.

This section uses the previously presented techniques to statistically combine the

2D silhouette of a human body projected onto the image frame with the 3D pose

of the body.  To further aid the tracking and reconstruction process, additional

information about the location of both the head and hands is combined into the

model. This helps disambiguate the model and provides useful information for

both its initialisation and tracking.



184

9.3.2 Constructing a Combined Non-linear Point Distribution Model for a

Human

The point distribution model is constructed from three components: the position

of the head and hands within the image frame; the 2D contour which represents

the shape of the body silhouette; and the 3D structure of the body (see Figure

9.3.1). Each of these components are generated separately from the training

image sequence and then concatenated to provide a training vector representing

all these attributes.

The relative position of the head and hands is represented as the location of these

features in the image frame. When concatenated, this generates a six dimensional

feature vector VH=(x1,y1,...x3,y3). The body contour, once extracted from the

image, is resampled to a list of 400 connected points. These are concatenated into

an 800 dimensional feature vector VC=(x1,y1,...x400,y400). Lastly the skeletal

structure of the 3D model is represented by 10 3D points which produce a 30

dimensional feature vector VS. The relative location of the hands and head helps

to disambiguate the contour during tracking. It can also be used to estimate an

initial location and shape for the body contour.

Figure 9.3.1 Composite elements of human body PDM

(a) Position of head and hands VH  (b) Body Contour VC

(c) Corresponding 3D model VS

The position of the head and hands is extracted from the training image

sequences using the Hue-Saturation colour thresholding technique described in

Chapter 4.

(b) (c)(a)
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For the purpose of simple contour extraction from the training set, shape

extraction is facilitated through the use of a blue screen and chroma keying.  This

allows the background to be simply keyed out to produce a binary image of the

body silhouette.  As the figure always intersects the base of the image at the

torso, an initial contour point is easily located. Once found, this is used as the

starting point for a contour tracing algorithm which follows the external

boundary of the silhouette and stores this contour as a list of connected points. In

order to perform any statistical analysis on the contour, it must first be resampled

to a fixed length. To ensure some consistency throughout the training set,

landmark points are set at the beginning and end of the contour. A further

landmark point is allocated at the highest point along the contour within 10

degrees of a vertical line drawn from the centroid of the shape. Two further

points are positioned at the leftmost and rightmost points of the contour. This

simple landmark point identification results in non-linearity within the model.

The problems associated with this are discussed in Section 9.3.5.

The 3D skeletal structure of the human is generated manually. Co-ordinates in

the xy (image) plane are derived directly from the image sequence by hand

labelling. The position in the third dimension is then estimated for each key

frame.

9.3.3 Scaling the Model

When combining information for statistical analysis via PCA it is important that

constituent features (VH VC  VS) are scaled to ensure that any particular feature

does not dominate the principal axes. This can be done by calculating the eigen

entropy as discussed earlier (section 9.2.2). However, as all three components

exist within the same co-ordinate frame and are directly linked, such a scaling

should be unnecessary.

This assumption can easily be tested by formulating the vector x as the weighted

combination of the components where ( )SHC VVV βα ,,=x . Using the same

procedure as described earlier, the eigen entropy is calculated for
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∞<< βα ,0 and suitable scaling values determined by maximising the entropy

of the resulting PDM.

Eigen Entrophy of Hand Element Scaling
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Figure 9.3.2 - Graph showing eigen entropy of hand element in composite

body PDM

Eigen Entrophy for Skeletal Scaling
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Figure 9.3.3 - Graph showing eigen entropy of skeletal element in composite

body PDM

From Figure 9.3.2 it can be seen that the optimum scaling for VH is around 4.

Figure 9.3.3 shows that the skeletal element does not need scaling as the greatest
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entropy is achieved when 1=β . This confirms the assumption that scaling is

unnecessary as all the elements lie within the same (image) co-ordinate frame.

9.3.4 The Linear PDM

Once these separate feature vectors are assembled, they are concatenated to form

an 836 dimensional vector which represents the total pose of the model. A

training set of these vectors is assembled which represents the likely movement

of the model. Figure 9.3.4 shows a sample of training images along with the

corresponding contour and skeletal models in 2D.

Figure 9.3.4 - Sample training images and corresponding contour and skeletal

models

A linear PDM is now constructed from the training set and its primary modes of

variation are shown in Figure 9.3.5.

After PCA is performed, it is calculated that the first 84 eigenvectors, which

correspond to the 84 largest eigenvalues, encompass 99.99% of the deformation

contained in the training set.

Figure 9.3.5 demonstrates the deformation of the composite PDM. The crosses

are the locations of the hands and head. It can be seen that although the

movement of the three elements are closely related, the model does not
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accurately represent the natural deformation of the body. The shapes generated

by the primary modes of variation are not indicative of the training set due to its

inherent non-linearity. In order to produce a model that is accurate/robust enough

for practical applications, a more constrained representation is required.

Figure 9.3.5 - Primary modes of variation on the linear PDM

9.3.5 Non-Linear Estimation

As described in chapter 6, to perform non-linear estimation upon the dataset the

linear model is first used to reduce the dimensionality. 99.99% of the

deformation is contained within the first 84 eigenvectors. However, the primary

40 modes of deformation encompass 99.8% of the deformation. Projecting the

entire training set down into this lower dimensional space achieves a dimensional

reduction of 836 to 40, which significantly reduces the computation time

required for further analysis.

Performing cluster analysis upon the dimensionally-reduced dataset, the natural

number of clusters is estimated to be 25. By performing further PCA on each of

the 25 clusters, the shape of the model can be constrained by restricting the shape

vector to remain within this volume. These constraints upon shape space are

applied in the same manner as described in earlier chapters.

       1st MODE    2nd MODE      3rd MODE

4th MODE  5th MODE
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Figure 9.3.6 shows the training set after dimensional reduction gained from the

initial linear PDM, projected into 2 dimensions. The bounding boxes represent

the 25 clusters that best estimate the curvature. These bounding boxes are the

bounds of the first and second modes of deformation for each linear patch

(cluster). The number of modes for each cluster varies according to the

complexity of the training set at that point within the space. All clusters are

constructed to encompass 99.9% of the deformation within that cluster.

Figure 9.3.6 - Clusters in reduced shape space

9.3.6 Initialising the PDM

Upon initialisation the first step is to locate the position of the head and hands.

This can be done by colour thresholding the entire image which, although

computationally expensive, does not need to be repeated on every iteration. Once

done these positions can be used to initialise the PDM and give an initial guess as

to the shape of the contour to be found. As is it not clear which blobs correspond

to which features, three possible contours are produced. The contour that iterates

to the best solution provides the final state from which tracking proceeds.
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9.3.7 Tracking with the PDM

Once initialised the two components must be fitted to the image separately. The

contour is attracted to high intensity gradients within the image using local edge

detection (chapter 3). The hand and head positions are used as centres in a single

iteration of a kmeans-clustering algorithm on the segmented binary skin image.

This is possible due to the assumption that the model will not change

significantly from the last image frame.

9.3.8 Reconstruction of 3D Shape and Pose

As the shape deforms to fit with the image so the third element of the model, the

skeleton, also deforms. By plotting this 3D skeleton, its movements mimic the

motion of the human in the image frame.
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Figure 10.3.7 demonstrates the correspondence between the body contour and

skeletal structure. Each contour image (a) is generated from a different sub

cluster of shape space. The deformation corresponds to the largest mode of

deformation for that cluster. The 3D skeletal diagrams (b) correspond to the

relevant contour (a), and demonstrate the movement of the skeleton. The

orientation of these skeletal models has been changed in order to better visualise

the movement in 3D. Skeleton (1b) demonstrates the arms moving in the z

direction corresponding to the change in contour (1a) around the elbow region.

Contour (4a) represents a body leant toward the camera with moving arms.

Skeleton 4b shows the corresponding change in the skeleton with the shoulders

twisting as the arms move. The Skeleton 5b is a plan view showing the

movement of the hands.

All model points move along straight lines due to the linear clusters used to

approximate the non-linear shape space. However, all poses of the models are

lifelike human silhouettes, demonstrating the CSSPDM’s ability at modelling the

non-linearity.

Figure 9.3.8– Reconstructed poses  from the model

Figure 9.3.8 shows the original model pose from the training set in red with the

reconstructed skeletal model in black. It can be seen that the original and

reconstructed models are similar in pose and position with the length of limbs

preserved, further demonstrating the absence of non-linear effects. However, as

the constraints on shape space are increased, so the performance degrades.

Inconsistencies in the original and reconstructed models and the deterioration
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under heavy constraints can be attributed to the hand labelling of the training set.

During hand labelling it is impossible to provide consistent models of the

skeletal structure throughout the training set. This factor leads to the final model

producing mean skeletal ‘smoothed’ shapes which have been ‘learnt’ from the

original training set and hence produces the inconsistencies observed in figure

1.3.8.

9.4 Conclusion

This section has shown how information can be statistically linked through PCA

to produce point distribution models which contain multiple perspectives of data.

These perspectives do not have to lie in the same co-ordinate frame and may be

related but abstract in nature. By concatenating features, ensuring that incorrect

biases do not occur, models can be constructed which not only learn about shape

and deformation and how this relates to other aspects of an object, but also to

predict these aspects or other missing information from that which is available.

It has been shown how these techniques for statistical inference can be applied to

the extraction of 3D structure of an object, given only a monoscopic view of its

outline. The technique uses computationally inexpensive techniques for real time

tracking and reconstruction of objects. It has also been shown how two sources

of information can be combined to provide a direct mapping between them.

Being able to reconstruct 3D pose of a human from a simple contour has

applications in surveillance, virtual reality and smart room technology and could

possibly provide an inexpensive solution to more complex motion capture

modalities such as electromagnetic sensors and marker based vision systems.


