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8 3D Point Distribution Models

8.1 Introduction

It has thus far been demonstrated how a Point Distribution Model can be

constructed for a 2D contour or shape (Chapter 3) and grey scale images (Section

5.5.2). Chapter 7 introduced a simple 3D PDM in the form of a stick human

figure. This chapter will extend upon this to 3D eigensurface models which are

constructed from polygonal surface representations and are the analogous

extension into 3D of the 2D contour.

For a 2D contour, consisting of n points, a training example x is constructed by

concatenating the constituent points of the contour into a single 2n vector

n2ℜ∈x . As was shown in section 7.2, for 3D the procedure follows a similar

procedure. Each point of the model differs only in its dimensionality. Therefore a

3D model consisting of m points (vertices) will form a vector m3ℜ∈x . In

chapter 7, where the 32 points consisted of key-points of a simple human skeletal

model, this produced a 96 dimensional vector. However, more realistically the

target data represents a surface, where each vertex of the surface represents a key

point within the model. This results in extremely high dimensional spaces i.e. for

a 3D mesh of 100 x 100 points, 30000ℜ∈x . Under these conditions it is often the
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case that the number of training examples is less than the dimensionality of x,

and hence technique 2 for PCA (detailed in section 3.2.5) is invaluable in the

construction of 3D PDMs.

Although the construction of 3D PDMs is a simple extension to the 2D case, one

of the major problems associated with their construction is the acquisition of

training data and its alignment. Due to the complexity of constructing 3D

surfaces by hand, automated procedures are essential. As has been discussed in

chapter 8, many techniques such as isosurfacing produce complex discontinues

surfaces which are unsuitable for statistical analysis. These 3D surfaces must be

aligned and resampled in a similar manner to the 2D contour. However, the

problem is compounded by high dimensionality and the resulting computational

complexity of the procedure.

Section 8.2 demonstrates the construction of a 3D PDM using a synthetic

drinking glass example. Sections 8.3 will show how this can be extended to real

data and describe approaches to the resampling and alignment problem in 3D.

This will be demonstrated by a 3D PDM of a human head. Finally conclusions

will be drawn.

8.2 The Eigen Glass Model

8.2.1 Introduction

Point Distribution Models attempt to model the deformation of a class of objects

or shapes with simple statistical analysis. The example shown here is that of a

class of drinking vessels. This synthetic example data provides a data set with

which to explore the construction of 3D PDMs and will be used in chapter 10 as

an example for statistical inference.

8.2.2 Constructing the Training set

The eigen Glass training set consists of 7 types of glass shape (see Figure 8.2.1).

Each example was created by sweeping a 2D contour around a central y-axis.
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This forms a rotationally symmetric glass of varying shape and size. Since each

example was constructed in a similar manner, with the same number of rotational

steps and points along the contour, each example contains the same number of

vertices.

Figure 8.2.1 - Eigen Glass Training Set

The acquisition of the training set provides examples that have a direct

correspondence of landmark points and therefore no further alignment or

resampling is necessary.

8.2.3 Building the Eigen Model

Each glass example consists of 440 vertices which, when converted to a vector,

produces a training example 13203 ℜ⇒ℜ∈ nx . As there are only seven examples

in the training set, technique 2 (section 3.2.5) results in a large computation

saving during shape analysis. The use of this technique allows decomposition to

be performed upon a 7x7 matrix. This produces a significant computational

saving over performing a full decomposition upon the 1320 x 1320 covariance

matrix.

Figure 8.2.2 demonstrates the primary 3 modes of variation of the resulting 3D

PDM rendered in wire frame with hidden line removal. The primary mode is also

shown in Gouraud shaded form. The maximum number of modes of deformation

for the model is 6 (ie. 100% of the deformation present within the training set is
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contained within the first 6 eigenvectors). This is because the number of

eigenvectors can never exceed N-1, where N is the number of training examples.

In fact, 99% of the deformation is contained within the primary 4 modes of

variation.

This high reduction of the shape space is similar to that shown in earlier cases.

However, it is important to note that, due to the rotational symmetry of each of

the objects, the training examples contain no additional information after the

contours had been swept into a 3D surface. The model could equally have been

constructed by performing PCA upon the original contours and sweeping the

reconstructed contour, generated from the PDM, around the central axis. This is

demonstrated in Figure 8.2.3 where PCA has been performed upon the contours

and the resulting 2D PDM extracted.

If  Figure 8.2.3 is compared to Figure 8.2.2, it should be apparent that the

deformation contained in the modes of variation of the 2D PDM are exactly the

same as those of the 3D object. Since both models contain the same information

the resulting PDMs have the same characteristics with a total of 7 modes where

the first 4 encompass 99% of the deformation. The redundant dimensionality

introduced when the contour is swept into a 3D surface does not introduce any

additional information and this additional dimensionality is disregarded by PCA

demonstrating that both models lie upon the same dimensional sub space.
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Figure 8.2.3 - The Primary Modes of the 2D eigenGlass Model

8.3 Resampling Meshes

8.3.1 Mesh Alignment

In the previous synthetic eigenGlass demonstration, the simplicity of

construction was due to the direct correspondence of landmark points throughout

the training set and the artificial way in which it was created. However, this is

seldom the case and to ensure the construction of a PDM is successful, careful

alignment and resampling must be performed to provide a good correspondence

of landmark points between examples.

As with the 2D contour, to ensure a good correspondence between training

examples each must be aligned. Techniques like those presented by Cootes et al

[Cootes 95] for 2D alignment become infeasible due to the high dimensionality

of the models. A similar, but less time consuming, alignment process can be

performed by treating it as an optimisation problem, solved using an approach to

optimisation such as Simulated Annealing or Genetic Algorithms. Such

approaches rely upon a fitness function being formulated which assesses what is

a good (optimum) match.

For two meshes x and y , where

( )xyz
n

xyzxyz 1,,1,1 21 vvvx !=  , ( )xyz
m

xyzxyz 2,,2,2 21 vvvy !=  and 3ℜ∈xyz
nv is the nth

vertex of the mesh, a suitable fitness function to be minimised would be the

mean distance between the vertices of each mesh,

1st mode 2nd mode 3rd mode 4th mode
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where sx  is a scaling in x, xθ is a rotation around x, and 3ℜ∈xyzt is a translation

vector in Euclidean space.

However, this function must be assessed for each pose ( )xyzxyzxyz ts ,,θ  of the

model in order to find the optimum mapping of one mesh to another and quickly

becomes an unfeasible solution as the size of the mesh increases. In addition to

this complexity, the procedure must be repeated for all meshes in the training set.

If known features exist upon the surface and the position of these features can be

accurately located (such as large planar segments or areas of high curvature),

these features can be used in the fitness function rather than every vertex of the

mesh.

The simplest method of alignment is similar to that suggested in Section 3.2.4

where the mesh is treated as a cloud of points in 3ℜ . The centre of gravity of the

cloud, Cxyz, can then be calculated and subtracted from each vertex to translate

the mesh to the origin, where

Equation 8.3-1 ∑
=

=
n

i

xyz
i

xyz

n 1

1
vC

To normalise the mesh, and hence avoid numerical instability during PCA, each

vertex is then scaled by the mean distance of all the vertices from the origin,

where

Equation 8.3-2 ( )v
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By then performing PCA upon the cloud (as done in 3.2.4) principal moments of

the shape and therefore the primary axes can be extracted. Once done, the shape

can be projected onto these axes to align the principal moments of the shape with
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the axes of Euclidean space. Providing the shape does not vary too extensively

this approach provides a fast and simple method for object alignment and

scaling.

8.3.2 Nearest Neighbour Resampling

Once all training examples have been aligned, they must be resampled to provide

a direct correspondence for each vertex, and the associated connectivity across

all training examples. It is also important that each example has the same number

of vertices so that all training examples have the same dimensionality.

Figure 8.3.1 - Nearest Neighbour Resampling

This can be accomplished by taking a known mesh and deforming it to fit to each

example in turn. Figure 8.3.1 demonstrates this procedure using a nearest

neighbour approach, a regular mesh (blue) is constructed which has a known

number of vertices and connectivity. The regular mesh is then deformed by

moving each vertex to the closest vertex of a training example (red) in 3ℜ .  The

resulting mesh has the same basic overall shape of the training example but has

the connectivity and number of vertices of the regular mesh. This procedure can

be repeated for each aligned training example to provide a consistent training set

on which statistical analysis can be performed. However, this procedure results

in the loss of information as the regular mesh may not contain the local density

of vertices required to successfully model high curvature. If the number of

polygons is increased further to accommodate this, then unnecessary

dimensionality is introduced for areas of low curvature. This approach also

introduces problems when mesh elements on the regular mesh are smaller than
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those on the training example mesh. Under these circumstances multiple vertices

of the resampled mesh may be attracted to a single vertex resulting in polygons

of zero area (this will be shown shortly).

Another major disadvantage is that the procedure relies upon the correct

alignment of the training examples. If sufficient difference is present between

examples then it is possible that vertices will be assigned to completely unrelated

features across the training set. This effect can be minimised by utilising the

assumption that training examples do not vary extensively between individual

examples, although the overall variation may be considerable. Using this

assumption a mesh can be deformed to fit a training example and the same mesh

applied to the next example until the whole training set has been processed.

However, this approach requires user intervention to ensure that an optimum

ordering is used for the resampling sequence.

8.3.3 K-nearest Neighbour Resampling

An alternative approach is to use a variation of a clustering algorithm. This

results in a consistent mesh with known connectivity, but provides the advantage

that vertices on the resampled mesh attempt to best mimic the local features of

the surface by averaging the position of the vertices locally.

A mesh ( )xyz
k

xyzxyz 1,,1,1 21 vvvy !=  of known connectivity and size k is to be fitted

to second mesh ( )xyz
m

xyzxyz 2,,2,2 21 vvvx !=  of variable size m.  The vertices of x

are treated as a cloud of points in 3ℜ  and the vertices of y as exemplars in a k-

means algorithm (see Appendix 1). Each vertex of x is assigned to an exemplar

of y in a nearest neighbour sense using the crisp membership function

        Equation 8.3-3 ( )
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Each vertex of y is then moved to minimise the distance from its assigned

members where
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Equation 8.3-4
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This procedure is repeated until the total displacement of the vertices of x has

dropped below a threshold (i.e. equals zero); at this point the algorithm has

converged upon a solution.

8.3.4 K-cluster Elastic Mesh

Both nearest neighbour and k-nearest neighbour approaches are subject to the

same problem i.e. the incorrect convergence on local minima. This is largely a

problem of model initialisation. Features upon the meshes must be close if a

good correspondence is to be achieved as each vertex is only attracted to the

closest corresponding point in both techniques. Again, this approach places a

large emphasis on the accurate alignment of examples.

This can be overcome to an extent by extending the k-nearest neighbour

approach to an elasticised k-cluster approach, which provides the same

mechanism for local resampling, but allows global constraints to be placed upon

the shape of the mesh.

In addition to the local attraction of the regular mesh to vertices upon the training

mesh, elastic properties are added to the connectivity as described in Section 8.5.

As the mesh is deformed to fit the training data the elasticity of the mesh

attempts to retain as small and as planar a mesh as possible, thus smoothing the

mesh and ensuring that the connectivity is preserved.

If the elastic force from section 8.5.2 (equation 8.5-4) is taken and placed in the

context of the mesh y, the displacement of a node v1i from the elastic force is
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Equation 8.3-5 ∑
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where α  is the stiffness, xyz
i
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jijr 22 vv −=  the vector separation of two

connecting nodes and p is the number of nodes connecting to node v1i.

Combining this force with that of the k-means displacement (Equation 8.3-4) the

total movement of a the node v1i at each iteration is

Equation 8.3-6
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In order to balance the attraction force and the surface tension of the mesh a

weighting parameter which balances the two influences is required. However, the

stiffness parameter α  can be used for this purpose as it controls the strength of

surface tension. This weighting parameter determines the influence of the two

forces on the movement of the mesh. When 0=α  the mesh operates as the k-

nearest neighbour resampling procedure described earlier. When ∞→α  the

mesh will not converge on any solution, remaining rigid. Upon initialisation the

force is set to allow surface tension to dominate i.e 2=α . This parameter and

hence the effect of surface tension is decreased at each iteration of the procedure

allowing the surface to deform to the data while retaining the constraints of

connectivity.

Figure 8.3.2 - Elastic k-cluster mesh

i=0 i=5 i=10 i=15 i=20 i=25
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Figure 8.3.2 demonstrates the use of the elastic k-cluster mesh technique to

resampling a surface of a human head. The shaded surface consists of an

irregular mesh consisting of 3896 vertices, which represent the shape of a face.

The wire frame mesh is a flat regular tri-mesh of known connectivity and 625

vertices. The flat wire frame mesh is located close to the face mesh and is

rendered slightly in front so the shape can be seen as the algorithm iterates. At

each iteration α  is decreased by 10% and after 25 iterations (i=25) the wire

frame mesh has deformed to best fit the original face mesh while retaining its

connectivity and smoothness. Without this elastic surface tension which

smoothes the resulting surface, the mesh would instantly crease and deform as

the initial attraction of the k-means algorithm is initially very large. As k-means

will only find a local optimum, this initial creasing of the surface remains

throughout the fitting. The elasticity ensures that the mesh retains its original

shape and connectivity while trying to best deform to resample the mesh.

However, this approach has two major drawbacks

1. The speed of the algorithm is prohibitive, as the computation complexity at

each iteration is considerable for even the simplest of surfaces.

2. The rate at which the weighting parameter is decreased is an unknown. Since

the rate at which the parameter decreases is responsible for the number of

iterations required (and hence the overall speed), an optimum rate must be

determined which provides the best time to convergence while allowing the

correct convergence on the shape. This is similar to the annealing schedule

used in simulated annealing but is beyond the scope of this work.

8.4 3D Head PDM

8.4.1 Constructing the Training set

To illustrate the alignment and construction of a 3D PDM, a model of the human

head was built. The head data set consists of 25 surface meshes of varying size

and structure acquired using a C3D10 scanning device. Each mesh has between

4000 and 5000 vertices and differing local mesh densities modelling local
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curvature. The examples were first aligned using the alignment procedure

outlined in section 8.3 such that each lies within a left handed co-ordinate system

with the z-axis is aligned with the direction of the gaze of the face. Once done,

each mesh was translated to ensure that the apex of the nose was at the origin.

The nose can easily be estimated as the point on the mesh which has the greatest

z-value. Each mesh was then normalised to lie within a unit cube as shown in

Figure 8.4.1.

Figure 8.4.1 - Aligning the Face Training Set

Once all the example meshes have been transformed in this way, the next step is

to resample each to a uniform mesh structure. A regular triangular faceted mesh

was generated as shown in Figure 8.4.2. The regular mesh consists of 1849

vertices and is a unit square with its centre at the origin and aligned with the x

and y-axis.

Figure 8.4.2 - Regular tri-mesh
                                                                                                                                                            
10 C3D Scanner model courtesy of the Turing Institute, all head models are freely available via
the web at http://www.turing.gla.ac.uk
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a) Original

b) Aligned

c) Resampled

Figure 8.4.3 - Resampling a 3D Mesh

(a) The original mesh (b) The aligned mesh (c) The resampled mesh

For each mesh in turn, the regular mesh is deformed to fit using the nearest

neighbour approach described previously. Figure 8.4.2 shows the regular mesh,

Figure 8.4.3 (a) the original training example, (b) shows the aligned mesh, and

(c) shows the resampled mesh after each vertex has been deformed to fit the

example. It should be noted that the final resampled wire frame mesh does not

look dissimilar to the original. However, the shaded version shows a step effect

to the mesh. This is due to two reasons
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1. The local surface density of patches is not optimum to model the curvature

hence areas of high curvature have less polygons and consequently a less

smooth appearance i.e. the number of vertices has been reduced from around

5000 to 1849.

2. Many polygons have zero area. Where this occurs normal calculations are ill-

defined and hence Gouraud shading fails and reverts to a flat shading

algorithm.

The problem of zero area polygons, where multiple vertices of the regular mesh

have been assigned to a single vertex on the example mesh, is one of the

disadvantages that were mentioned in section 8.3. It is not possible to simply

remove these polygons as all training examples must have the same

dimensionality. A polygon could therefore only be removed if it had zero area in

all training examples. However, it will be shown later that the smoothing

properties of PCA will remove some of these inaccuracies (see section 8.4.2).

8.4.2 The Face Eigen Model

Upon completion of the resampling procedure a training set is now available on

which statistical analysis can be performed.  The results of which can be seen in

Figure 8.4.4. However, it is difficult to see the overall effect of these modes of

deformation except at the extremities of the eigenvectors where the greatest

deformation is apparent. Figure 8.4.5 shows the primary 21 eigenvectors

corresponding to the 21st largest eigenvalues which encompass 99.998% of the

deformation. Each mode is colour coded to represent the deformation. Red,

Green and Blue coloured areas represent deformation in x,y and z respectively.

The intensity of the image is proportional to the size of the local deformation.

Figure 8.4.4 - Primary two modes of the 3D eigenFace model

MEAN1st mode

2nd mode
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Figure 8.4.5 - Colour map showing deformation of primary modes for eigenFace
model

1st Mode 2nd Mode 3rd Mode 4th Mode

5th Mode 6th Mode 7th Mode 8th Mode

9th Mode 10th Mode 11th Mode 12th Mode

13th Mode 14th Mode 15th Mode 16th Mode

17th Mode 18th Mode 19th Mode 20th Mode

21st Mode



170

By examining these colour maps it is far easier to infer specific functions for

various modes. From the shading on the 6th mode it can be deduced that this

mode is responsible for the movement of the eyebrows and cheek areas. The 8th

mode however is clearly responsible for the movement of the eyes and mouth. It

can be seen that the primary mode contains mainly deformation in 'z' along the

top and bottom of the mesh surface. This is due to the large variation in

background depth, hair and neck between individual examples. Indeed, the

primary modes display large areas of blue showing that they mainly contribute to

the depth information of the mesh. As the number of the modes increases a more

speckled effect is observed. These effects are the high frequency oscillations,

which are typically picked-out by the lower modes of variation. However, much

of these high frequency oscillations are due to the nearest neighbour resampling

which resulted in zero area polygons.

The original training example mesh size were of the order of 5000 vertices. With

3 dimensions for each vertex this generates examples in a 15000 dimensional

space. Resampling each example to a mesh with 1849 vertices provides a

consistent dimensionality of 5547 throughout the entire training set. However

90% of the deformation is contained within the primary 10 modes of variation.

So, although the training set was originally in 15000 dimensional space, the data

actually lies upon a subspace of only 10 dimensions. The most important aspect

of the PDM is the predominant z-deformation (blue) in these primary 10 modes.

This demonstrates that the alignment and resampling procedure has been

successful. During resampling the simplicity of the resampling scheme lead to

zero area polygons. After PCA these do not occur as vertices are statistically

smoothed by the model. The perturbations of vertices in the x-y plane, which

were generated by zero area polygons, are expressed within the lower modes of

variation and effectively removed from the model.

8.5 Conclusions

This chapter has demonstrated how the techniques for the assembly of 2D PDMs

can easily be extended to 3D. Approaches to the alignment and resampling
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procedure have been proposed and a 3D PDM of a human face constructed. Due

to the high dimensionality and corresponding complexity of these techniques,

variations on the resampling method have been proposed which can be used

depending upon the extent and complexity of the training data. It has also been

demonstrated that errors introduced during resampling are statistically smoothed

and manifest themselves as high frequency oscillations of the model contained

within the lower modes of deformation. Since these lower modes are typically

discarded it can be deduced that the smoothing effect of the PDM can help

reduce errors introduced during assembly.

Future work is to apply these techniques to volumetric segmentation techniques

detailed in Appendix 2 to construct 3D PDMs from medical imaging data.


