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7 Adding Temporal Constraints

7.1 Introduction

The deformation that has been 'learnt' thus far is time independent deformation.

Models have been constructed that know what is valid deformation but not when

deformation is valid. This important temporal constraint is beneficial in

disambiguating models. When such mathematical constraints have been placed

upon the deformation of an object in order to increase robustness, the important

consideration of how a model moves with time should also be considered.

The linear formulation of the PDM makes iterative movements within the image

frame based upon the assumption that the model will not alter considerably

between consecutive frames. Providing a simple model and a slow

moving/deforming object this assumption holds true. However, as has been

demonstrated with non-linear models, this smooth iterative movement through

shape space does not provide a sufficient mechanism to 'jump' between

discontinuities in shape space. It is therefore apparent that if complex models are

to be successfully tracked within the image frame, additional constraints must be

applied to both increase robustness and to improve the transition through shape

space.

Chapter 7
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The remainder of this chapter is concerned with the construction and use of

temporal dynamics, which can be learnt in addition to deformation. Section 7.2

takes a graphical simulation example to construct a 3D non-linear PDM from

which temporal dynamics are learnt. These dynamics can then be used to

reproduce the deformation and motion of the model. Section 7.3 will discuss the

issues of tracking complex non-linear models and how these temporal dynamics

can be used to increase robustness and support multiple hypotheses. Section 7.4

demonstrates how these temporal constraints can be used to enhance

classification. Lastly conclusions are drawn.

7.2 Learning Temporal Model Dynamics

7.2.1 Introduction

The work thus far has discussed the computer vision applications of non-linear

models of shape and deformation, where models have been used to locate and

track objects in the image frame. The models produce graphical representations

of objects, which can be mapped to the appearance of real world objects within

the image. In the field of computer graphics, similar representations are required

for animation. The main difference is that graphical models are required to be

'life-like' and three-dimensional for rendering. The models must therefore exist in

3D. The rendering procedure then projects these models into 2D for viewing. In

computer vision applications this projection is often incorporated into the

statistical model, representing how an object deforms on the image-plane rather

than within its own 3D co-ordinate system. However, this is not always the case

and deformable models have also been applied to 3D in computer vision in order

to reduce some of the non-linearity introduced during the projection process.

[Heap 96; Ferryman 95; Hogg 83] have tackled computer vision from this 3D

perspective, which is basically the reverse mapping of the rendering procedure.

In computer graphics, [Pentland 96; Parker 97] have used statistics and

interpolated models to produce 'life-like' renderings and animations of human

facial motion.
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The use of computer vision techniques in motion capture is common placein

acquiring trajectories for key points of objects that are used to produce life-like

3D animations. Figure 7.2.1 and Figure 7.2.2 show motion trajectory files for a

running and walking human female9. These were captured using reflective IR

markers on a real world human subject. The trajectories of these markers in space

were recorded in multiple camera views and the trajectories of these points

calculated using standard stereo reconstruction techniques. The model consists of

32 3D-marker points and their trajectories through space. By connecting these

points with a simple stick model the human motion can be visualized. In

computer animation, these key points would be used to animate the articulated

sections of a 3D virtual character for computer games or virtual environments.

Figure 7.2.1 - Examples from a Key-frame animation of a Running Woman

Figure 7.2.2 - Examples from a Key-frame animation of a Walking Woman

It is this notion of key points in the motion capture process that provides the link

between statistical models and animation, where animation key points are akin to

the landmark points used in statistical models. If statistical models of shape and

deformation can be learnt from a training set, producing realistic constraints on

the shape (or motion of landmark points), then similar learnt models of

animation trajectories can also be achieved.

                                                          
9 The motion capture data for the female subject was provided by TeleVirtual Ltd.
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7.2.2 The Linear Motion Model

The human motion capture data for both the running and walking woman

consists of 32 key points for each frame of the animation; these points can be

concatenated into a single 96 dimensional vector V=(x1,y1,z1, ..., x32, y32, z32).

The running animation consists of 474 key frames recorded at 30Hz which

produces a training set of 474, 96 dimensional vectors. The walking animation

consists of 270 key frames, again captured at 30Hz using 32 key points

producing a training set of 270, 96 dimensional vectors. Now the training sets are

in a form that enables further statistical analysis: linear PCA can be performed

upon them to produce a linear 3D PDM.

Figure 7.2.3- The Running Linear 3D PDM

Figure 7.2.4 - The walking Linear 3D PDM

1st Mode 2nd Mode 3rd Mode 4th Mode 5th Mode

1st Mode 2nd Mode 3rd Mode 4th Mode 5th Mode
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2.4%
deformation
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From the eigenvalue analysis, 98.8% of the deformation of the running model is

contained within the first 10 eigenvectors, with 99.4% of the walking model

being encompassed by the 10 eigenvectors.

It can be seen from Figure 7.2.3 and Figure 7.2.4 that the linear 3D PDM does

not model the trajectories of key points (and associated body parts) well. The

motion files contain perfect landmark point identification between examples.

However, the data sets are still non-linear due to the circular motion of the body

parts. This non-linearity can be seen in Figure 7.2.6 and will be discussed

shortly. It should be noted that the 3rd mode of variation of the walking model

encompasses mainly translation. This is due to the change in speed as the walker

establishes a consistent gait, and remains a part of the model due to the absence

of the alignment of the training examples. Had the normal alignment procedure

been followed, then this translational information would have been reduced. The

translation correlates to the shift in m1 of the walking model seen in Figure

7.2.6b. However, this information is important to the realism of the animation

and must therefore remain a component of the model. It will later be removed

through the use of temporal dynamics.

7.2.3 Adding Non-linear Constraints

Using the methods previously discussed, the data sets are first dimensionally

reduced by projecting each of the training examples down onto the eigenvectors

of the linear PDM. Using the 10 primary modes of the linear model as

determined in the previous section, both the running woman data and the walking

model are projected down from 96 to 10 dimensions. These lower dimensional

data sets are shown in Figure 7.2.6 as points drawn in 3D from two 2D views.

Cluster analysis was then performed on the reduced data sets. The resulting cost

files are shown in Figure 7.2.5. The natural number of clusters for the run and

walk trajectory files can be estimated to be 25 and 30 respectively. The larger

number for the walking model is due to the model translation introduced as the

subject establishes a consistent gait, as mentioned earlier.
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Walk trajectory file
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Figure 7.2.5 - Cost files for Trajectory Data

Using the natural number of clusters for each data set, the fuzzy k-means

algorithm was used to segregate each data set into its composite clusters. Each

cluster was then modelled by performing further PCA upon its members. The

final non-linear constraints can be seen in Figure 7.2.6 with the bounds of each

cluster drawn as a rectangle over the reduced data set.

(a) The Running Woman Data Set,          (b) The Walking Woman Data Set

Figure 7.2.6 - Dimensionally Reduced Data sets with the Cluster Based

Constraints
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From this diagram it can be seen that the clustering algorithm has smoothly

estimated the natural curvature of the data set through piecewise linear patches.

Each cluster better estimates the model locally as each linear patch must encode

less information.

The CSSPCA has learnt the Motion Capture Space and can be used to reproduce

viable shapes from the model. However, in computer animation this is

insufficient. For animation purposes, the ability to model the trajectory through

shape space is also required, allowing the motion to be reproduced.

7.2.4 Learning Temporal Constraints

Thus far the techniques have been used to learn the shape and size of the

trajectory space, temporal analysis must be performed to estimate how the model

moves through space with respect to time.

Figure 7.2.7 - Trajectory through Reduced Shape Space

Figure 7.2.7 shows the 3D trajectory of the reduced dimensional running data set

projected down into 3 dimensions. Using simple animation techniques it is

possible to watch the model move throughout the space as the animation

sequence iterates. It is apparent that the motion is cyclic and consistent in nature

and repeats in accordance with the period of the stride of the actor. Therefore,
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given any point within the space it is possible to predict where the model will

move to next, based upon this observed motion.

The model has been estimated in a lower dimensional space; if the trajectory can

also be modelled in this lower space then it is likely that paths of motion

throughout the space could be determined and reconstructed. The key again is in

this probabilistic analysis of the training set. The deformation constraints have

already broken the shape space down into linear patches with the centre of the

clusters being the mean shape of the transition at that point in time. It is also

known that, due to the cyclic nature of the data set, the pattern of movement

repeats at regular intervals for fixed speeds of motion. Although this is not a

necessary condition, it can effectively be modelled as a self-starting, finite state

machine. This lends itself naturally to a discrete, time dependent, probabilistic

analysis of the motion.

The reduced training set can therefore be used to analyse the model and

probabilistically learn the transition of the model between clusters. This can be

done with a state transition matrix of conditional probabilities, otherwise known

as a Markov chain.

7.2.5 Modelling Temporal Constraints as a Markov Chain

A Markovian assumption presumes that the present state of a system (St) can

always be predicted given the previous n states (St-1, St-2, ..., St-n). A Markov

process is a process which moves from state to state dependent only on the

previous n states. The process is called an order n model where n is the number

of states affecting the choice of the next state. The simplest Markov process is a

first order process, where the choice of state is made purely upon the basis of the

previous state. This likelihood of one state following another can be expressed as

a conditional probability P(St|St-1).

A Markov analysis looks at a sequence of events, and analyses the tendency of

one event to follow another. Using this analysis, a new sequence of random but

related events can be produced which have properties similar to the original.
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The probability mass function ( )nt
jCP  denotes the unconditional probability of

being in cluster j at time tn, or being in state j after n transitions (time steps). A

special situation exists for n=0 where ( )0
jCP  denotes the probability of starting

in state j. However, due to the assumption that the motion is cyclic and the

trajectory file starts and ends mid-cycle, no information is available for these

initial probabilities.

The conditional probability mass function is therefore defined as

( )mn t
k

t
j CCP

( )mn t
k

t
j CCP  gives the probability of being in cluster j at time tn conditional on

being in cluster k at time tm. In the trajectory file example it is fair to make the

assumption that the next state of the model can be determined from the previous

state. This can be confirmed by observing the trajectory taken through shape

space by the training set (see Figure 7.2.7). Provided stationary elements of the

chain are ignored, i.e. where ( ) ( )( )11 max −− ≥ t
k

t
j

k

t
j

t
j CCPCCP  and therefore choosing

the 2nd highest probability move at each time step, the continuous transition

through shape space can be achieved.  If this assumption is made, then the

process becomes a first order Markov process or Markov Chain and pj,k a one

step transition probability

( )1
,

−= t
k

t
jkj CCPp

If there are n clusters in the model, then there are n states in the chain, hence a

state transition matrix is an nn×  matrix of one step transition probabilities. This

is constructed in a similar manner to the classification probability matrix

constructed in section 6.5.6, and is a discrete probability density function (PDF).
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After construction of the PDF its content can be visualised by converting the

matrix to a grey-scale image. Figure 7.2.8 shows the resulting images for both

the running and walking data sets. It can clearly be seen that high probabilities

exist along the diagonal of the image. This diagonal, when i=j or St=St-1,

demonstrates that the model always has a high probability that it will stay within

the same local patch. This can be attributed to the discrete nature of the model,

and the fact that each patch is constructed to model local deformation. The darker

diagonal in the walking model shows that this model has a higher probability of

remaining within a local patch and is a result of the speed of movement. As both

sequences were captured at the same rate, the slower movement of the walking

model generates more frames in each local patch and hence a lower probability

that the model will make a transition to another patch. However, as the numerical

identity of each local patch within the matrix is randomly generated by the k-

means algorithm, no further conclusions can be drawn from the patterns within

the image, hence the random distribution.

       

(a) The Running Woman Data Set    (b) The Walking Woman Data Set

Figure 7.2.8 - Discrete Probability Density Functions
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The PDF's shown in Figure 7.2.8 provide a conditional probability that, given a

cluster at time t, the system will move to another cluster at the next time step. By

taking the highest probability move at each time step the highest probability path

can be modelled throughout the space.

Using this information and the mean shape of each cluster as key frames, the

motion of the training set can be reconstructed. If any cluster of the model is

chosen at random and the next highest probabilistic transition made at each time

step ( )jii p ,argmax  where ji ≠ , the model should settle within a natural path

through the space. This is similar to a finite state machine that has a circular path

and is self starting. If the natural number of clusters selected is correct then the

cyclic period of the model should be equal to that of the training set. If the cluster

number is too high then non-equidistant cluster centres result and the model

appears to 'jerk'. If the cluster number is greater than twice the natural number

then the model risks having a cyclic period of multiples of that of the true

motion.

Figure 7.2.9 - Extracted Trajectory for Running Model

Figure 7.2.9 shows the highest probability path for the running model that

consists of 15 clusters. Each pose of the model is the mean shape (exemplar) of a

cluster. This model is reconstructed from the information that has been learnt

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15
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from the motion file and accurately reproduces the original motion. The

animation can be further refined by linearly interpolating between these key

frames (exemplars), as the linear interpolant along a line between exemplars is

equivalent to linearly interpolating all points on the model between key frames.

This does however introduce slight non-linear deformities. These deformities can

be reduced by projecting the interpolated model into the constrained space to

extract the closest allowable model for rendering.

Figure 7.2.10 - Extracted Trajectory for Walking Model

Figure 7.2.10 shows the highest probability path through the walking model,

consisting of 19 key frames that produce a cyclic path of high probability

through the Markov chain. The original model contained 30 clusters and the

redundant 11 clusters partly model the introductory gait acceleration, which can

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19
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be seen in Figure 7.2.11. The red line shows this high probability path extracted

from the Markov chain. Acting like a self-starting finite state machine, if the

model is initiated within the low probability startup area of the space, the chain

quickly moves the model to the circular region, where constant cyclic movement

occurs.

Figure 7.2.11 - High Probability Path through Walking Model Shape Space

7.2.6 Conclusions

In this section it has been shown how the reduced dimensionality and discrete

representation of the Constrained Shape Space approach to modeling non-linear

data sets can be used to provide simple analysis and reconstruction of motion.

This is done by analysing the training set and constructing a Markov Chain,

which is a discrete, probabilistic representation of the movement of the model

through shape space. It has also been shown how, using this learnt temporal

information, animated models can be produced which encapsulate the temporal

information learnt from a training set.

Walker establishes
gait

Walker settles
into consistent
gait
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7.3 Tracking with Temporal Dynamics

7.3.1 Introduction

In the previous section, temporal information was learnt from a training set in

addition to deformation. It has been shown how this temporal deformation can be

used to represent and reproduce motion. However, for many computer vision

techniques this is not the ultimate goal. What is beneficial is using this learnt

temporal information to further constrain the model, or predict the movement and

deformation of an object, thus producing more robust tracking and classification.

A large body of work has been performed on the temporal mechanics of tracking.

Many researchers have attempted to use predictive methods such as those based

within a Kalman filter framework [Blake 98]. Hill et al proposed using genetic

algorithms to model the discontinuous changes in shape space/model parameters

[Hill 91][Hill 92].

Of particular interest to the work presented in this thesis is the

CONDENSATION algorithm [Isard 98] [Blake 98] which is a method for

stochastic tracking where a population of model hypotheses are generated at each

iteration. These populations are generated from pre-learnt PDFs generated over

the model parameter space to provide a hypothosis-and-test approach to model

prediction and tracking. A more comprehensive introduction to Condensation is

given in Section 2.5.

Condensation is a powerful tool in deformable model tracking for several

reasons:

1. It supports multiple hypotheses and therefore produces robust results for

tracking with occlusion and discontinuous movement.

2. It uses a priori knowledge about the object to predict its movement.

3. It recovers well from failure, allowing the model to 'jump' out of local

maxima/minima.
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It has been shown that, due to the discrete nature of the piecewise linear

approach to modeling non-linearity, the approach directly lends itself to a

discrete PDF with the addition of the Markovian assumption.

Figure 7.3.1 - Constrains on PCA space for the ASL Model

This temporal information can be used to augment the CSSPDM model with

conditional probabilities, which allow the support of multiple hypotheses similar

to that used in Condensation. This is important due to the discrete nature of the

piecewise linear model. If the discontinuous shape space constructed for the

American Sign Language (ASL) alphabet is considered from Section 6.5.6 (see

Figure 7.3.1), it can be seen that shape space is segregated into at least two

separate regions due to the movement of landmark points around the boundary

(see section 2.4 for a description of these types of non-linearity). Furthermore,

connected patches of the model may not represent consistent movement of the

model in the image frame. This leads to the model jumping between patches,

even when within region 2. Under these circumstances it is not possible for the

m0

m1

m2

Region 1

Region 2
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iterative refinement algorithm used for the classic PDM/ASM (section 3.3) to

provide the 'jump' between regions.

An image sequence was recorded of a hand signing the word 'gesture' which

consisted of 170 frames. Figure 7.3.2 shows the model attempting to track the

image sequence for the letters 'e' and 'u'. The model successfully tracks the letter

'e' but when the image sequence reaches the letter 'u' and the fingers elongate, the

model is unable to make the jump to the new cluster responsible for modeling

this letter. This problem is fundamental to the operation of the least squares

iterative refinement algorithm and is due to two reasons:

1. Only a small section of the contour (marked in frame 'u') is responsible for

'pulling' the contour up to follow the elongated fingers. As this section is

relatively small, compared to the remainder of the contour, it has less

influence over the overall movement.

2. The maximum movement of the contour per iteration is governed by the

length of the normal used to search around the contour. Hence this factor

limits the distance the model can move through shape space at each iteration.

Figure 7.3.2 - ASL model Tracking an Image Sequence of the word 'gesture'

An obvious solution to these problems is to increase the search length along

normals. Figure 7.3.3 shows the results of various parameters for the least

squares iterative refinement algorithm on the ASL model. The graph

e   u
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demonstrates the effect of varying the number of iterations per frame and the

length of the normal (in pixels) either side of the contour. The cost at each

iteration is the sum of the pixel difference between the desired movement of the

model (gained from the assessment of the normals) and the final shape (after the

constraints of the model have been applied). Where multiple iterations per frame

were performed, these are displayed as fractions of a frame to visualise the

resulting error cost of iteration. The corresponding letters of the sequence are

shown with the vertical lines denoting the approximate transition between letters.

At these transitional frames, the model error rises due to the increased speed of

movement of the hand. During these faster movements the iterative refinement

procedure must make larger movements through shape space to deform with the

image. This produces the increase in error due to the limiting factor of the

localised normal search.

Increasing the number of iterations produces a resulting reduction in cost up to a

certain threshold, at which point the cost begins to rise again. This can be

attributed to the finer iterations allowing the model to achieve poses from which

it can not easily extract itself and is a further drawback of using the least squares

iterative refinement approach to fitting a non-linear model. Although the

increased normal length allows the model to achieve the aforementioned

transition to the letter 'u', the resulting cost demonstrates a reduction in the

overall performance of the model. The larger normal search allows the contour to

affix to incorrect features in the image and hence results in degradation. Where

image sequences with heavy background clutter are considered, this problem

becomes more acute.

Another drawback of large normal searches is the resulting computational cost in

assessing the additional pixel intensity gradients. It is therefore necessary to use a

tracking paradigm that allows these quantum leaps in shape space to be made

while retaining the localised searching and constraints of the model.
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7.3.2 Finding the Optimal Ground Truth for Tracking

To locate the optimum solution (i.e. the closest allowable shape from the

Constrained Shape Space PDM, CSSPDM) for each iteration of the model, the

space was exhaustively searched. If the assumption is made that any local patch

of the CSSPDM can indeed be treated as a linear model, then the iterative

refinement procedure can be used to move locally within that patch to the closest

possible shape. Therefore, if the best match within each patch (cluster) is located

for each frame, the resulting lowest cost solution must be the (near) optimum.

This exhaustive search was performed on the 'gesture' image sequence. For every

frame, each of the 150 clusters were assessed in turn. The mean shape of the

cluster was used as a starting shape and the iterative refinement of the model,

within the cluster, performed until the model converged (typically 40 iterations).

The cluster that produced the lowest cost solution was deemed to be the optimum

and the resulting costs plotted in Figure 7.3.4 along with the lowest of the least

squares approaches from Figure 7.3.3.

The two smoothed plots are polynomial trendlines fitted to the data to help

visualise the overall efficiency of the approaches. The optimum solution

produces a lower error than that of iterative refinement, which would be

expected. However, both exhibit similar trends. From this it can be inferred that

some of the errors produced during tracking are not the result of the algorithm's

inability to track successfully but are due to the constraints of the model. The

higher error rates that result from letters such as 'g' and 'r' suggest that more

training examples for these letters are required so as to increase the ability to

model unseen shapes.

By analysing the optimum path through shape space and comparing this with the

path taken by the least squares approach, the notion of discontinuity within shape

shape can be confirmed.
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Graph showing the Distance Moved at each Iteration for the Least Squares and 
Optimum Trajectory through ASL Shape Space
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Figure 7.3.5 - Graph of Distance Moved at each iteration for Least Squares
Solution and Optimum Solution

Graph showing the Distance from the Mean Shape at each Iteration for the Least 
Squares and Optimum Trajectory through ASL Shape Space
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Figure 7.3.6 - Graph of Distance from Mean of Shape Space at each frame for
Least Squares Solution and Optimum Solution

Figure 7.3.5 shows the distance moved through shape space at each iteration for

both the optimum trajectory and the iterative refinement algorithm. From this it

can clearly be seen that the least squares iterative refinement algorithm makes

small incremental movements at each iteration, whereas the optimum trajectory
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makes large 'jumps' at every frame. During the letters 'e' and 't' the least squares

approach almost stops moving, which demonstrates that the model has converged

upon a stable solution. However, the lack of such trends for other letters shows

that the model is constantly struggling to better refine itself. Figure 7.3.6 shows

distance from the centre of shape space for the two trajectories at each iteration.

Again this demonstrates that the optimum path jumps violently within the space

whereas the least squares approach makes small movements. The high values

achieved by the least squares approach for the letters 'u' to 'e' show that the model

is at the extremity of shape space making small movements. However, the

relative movement of the model in Figure 7.3.5 for frames 100-150 show that it

is moving considerably at each iteration attempting to find a better solution.

The most interesting aspect of these figures is within Figure 7.3.6. The letter 'e'

occurs twice during the sequence. However, during the first occurrence the least

squares approach is at a distance of around 200 units from the mean whereas

during the second occurrence it is at around 500. This demonstrates two facts:

1. That there are at least two areas of shape space responsible for modeling the

letter 'e' and these are distinctly separated in shape space.

2. The least squares approach can only use the local 'e' part of shape space and

is incapable of jumping between them.

This confirms that not only is the non-linear shape space discontinuous but the

least squares iterative refinement approach is incapable of providing a robust

method for tracking. Instead a new method of applying CSSPDMs must be

devised.

7.3.3 Supporting Multiple Hypotheses

By taking advantage of the Markovian assumption, a similar model of temporal

dynamics can be generated for the ASL model as was constructed for the motion

capture data previously discussed, where the conditional probability ( )t
j

t
i CCP 1+  is

calculated. As has been discussed, the major discontinuities of the shape space

occur when landmark points jump around the boundary and hence result in a
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jump in shape space (Figure 7.3.5 and Figure 7.3.6). However, within each patch,

the model still makes small iterative movements. This can be confirmed by

visualising the resulting PDF as a grey scale image.

Figure 7.3.7 - Discrete Probability Density Function for ASL Model

Figure 7.3.7 shows the ASL PDF, which again has a heavy diagonal dominance.

This dominance is when ( )( )t
j

t
ii CCP 1+argmax  and ji =  i.e. the highest

probability is that the PDM will usually stay within the present cluster. The

assumption can therefore be made that within any local patch the model can

iterate to a local solution. This confirms the assumption used when calculating

the optimum model shape. This assumption also provides two benefits:
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1. The iteration to convergence of any global optimisation technique can be

enhanced by allowing each hypothesis to iterate to a better solution within the

present cluster.

2. A smaller population is required, as only global differences in hypotheses

need to be supported.

This is a common procedure in speeding up the convergence on solutions for

many optimisation techniques such as in neural networks  or clustering [Boyle

95]. By combining a gradient descent method with a global optimisation

approach the speed to convergence is increased and the problem of oscillating

down narrow energy wells to local minima reduced.

From the 'learnt' probability density function, a sample population can be

generated at each iteration of the model. Given a good initialisation of the model

(see section 3.3.2) and the associated cluster 0=tC , which encompasses that

shape, the procedure is summarised thus:

Algorithm 7-1 - Simple CSSPDM Condensation

•  From the PDF ( )1−t
j

t
i CCP , extract the probability vector ( )1=t

iCP , which is the

probability distribution of the first iteration, given 01 =− = tt
j CC .

• Generate a randomly sampled distribution of k hypothoses [ ]k,,1!=ρρx ,

where ρx  is the mean shape of cluster iC  and ( ) ( )1== t
ii CPCP

• While still tracking,

• Fit the k hypothoses to the image frame using the least squares gradient

descent algorithm (section 3.3) and iterate, applying CSSPDM constraints

and assess fitness using error metric (section 7.3.2)

• Sort hypothoses into descending order according to error

• Take lowest error solution and locate closest cluster c

• From the PDF ( )1−t
j

t
i CCP , extract the vector ( )tiCP , which is the

probability distribution of the next iteration, where cCt
j =−1
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• Generate a new randomly sampled distribution of k hypothoses

[ ]k,,1!=ρρx  where ρx  is the mean shape of cluster iC  and

( ) ( )tii CPCP =

By repeating this procedure for each frame, iteration allows the model to

converge in the least square sense upon local solutions. However, due to the

generation of a new population of hypotheses gained from the a priori

information about movement contained within the PDF, the models are permitted

to 'jump' within shape space at each new frame. This allows multiple hypotheses

to be supported simultaneously, where the current lowest cost hypothosis is

deemed to be the correct one. Figure 7.3.8 demonstrates the error rates produced

by this simplified form of the condensation algorithm (Algorithm 7-1).

Experiments were performed to assess the result of various parameterizations of

the algorithm, where

n is the length of the normal search on either side of the contour

I is the number of least squares iterations used for each hypothosis

k is the size of the population size or the number of hypothosis used

Varying these parameters produces dramatic variations in the resulting error rates

produced and the overall performance of tracking. Many of the higher error

parameterizations fail to track the image sequence completely producing a zero

success rate and hence consistently high error rates. With n=40 (as with least

squares iterative refinement) high failure rates are produced, as do small

populations and low numbers of iterations. It is important to note that a

population size of one (k=1) is effectively least squares iterative refinement due

to the diagonal dominance of the PDF.

The best results were achieved using a normal length of 20 pixels, a population

size of 10 multiple hypotheses and between 5 and 10 iterations per hypothesis

(i.e. n=20, k=10, I=5/10). These traces are shown in Figure 7.3.9 along with the

results of both the optimum trajectory and the iterative refinement approach for

comparison. The trend lines give a good indication of the overall performance of

the various approaches.
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Figure 7.3.9 shows that both the simple condensation approaches produce

significantly better results than the iterative refinement least squares tracking, but

not as low as the optimum which would be expected. Increasing the number of

iterations performed on each frame from 5 to 10 provides a slight increase in

performance but not significant enough to warrant the additional computational

overhead.

However, with such a low population size (p=10) and only five iterations

required per frame (i=5) a total of (p*i), 50 models are fitted to the image at each

frame. This provides a significant computational saving upon standard

condensation where typically much larger populations (in the order of hundreds

are required) to accurately track objects.

However, this approach, unlike condensation, does not recover well from

failures. As the new population is solely based upon the current best-fit cluster

the approach is highly sensitive to both an accurate PDF representation of the

expected movement and the assumption that the best-fit cluster is actually affixed

upon the object. To help overcome this drawback two factors must be addressed.

1. Less emphasis must be placed upon the current best-fit hypothesis being

the optimum (and hence correct) solution, thus providing more robustness

to failure.

2. The PDF must be an accurate and thorough representation of the expected

object movement and hence the training set from which it is constructed

must be general in both shape and movement. This is more difficult and

will be addressed in the section 7.4.1.

Point 1 can be addressed by creating a new population of hypotheses, not from

the current best fit model, but from the weighted sum of the best n hypotheses as

described thus:
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Algorithm 7-2 - Weighted Condensation

• From the PDF ( )1−t
j

t
i CCP , extract the probability vector ( )1=t

iCP , which is the

probability distribution of the first iteration, given 01 =− = tt
j CC .

• Generate a randomly sampled distribution of k hypothoses [ ]k,,1!=ρρx ,

where ρx  is the mean shape of cluster iC  and ( ) ( )1== t
ii CPCP

• While still tracking,

• Fit k hypotheses, applying CSSPDM constraints and assess fitness using

error metric

• Sort hypotheses into descending order according to error

• Iteratively refine first n hypotheses and resort

• Apply the CSSPDM constraints and determine the n clusters 1−tCη , where

n,,1 !=η  which produce the lowest error

• From the PDF ( )1−t
j

t
i CCP , extract the vector ( )ηt

iCP  using the n extracted

clusters. Take the weighted sum using a Gaussian weighting distribution

to form a new distribution ( )t
iCP′ , where

∑
=

=
n

t
i

t
i CPCP

1

)()('
η

ηηω  and 
( )








 −−=
2

2

2

19
exp

n

ηωη

• Normalise probability distribution ( )t
iCP′ .

• Generate a new random population of k hypotheses from the distribution

( )t
iCP′ .

The results of applying this weighted approach to condensation are shown in

Figure 7.3.10. This graph shows that, by using the best 5 models to generate the

new population, lower error rates are achieved. Using the best 6 models produces

less clear benefits but does provide increased ability to recover from failure.
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7.3.4 Conclusion

This section has demonstrated that the nature of shape space need not be

continuous. Under these circumstances it has been shown that the least squares,

iterative refinement approach to PDM tracking fails. It has also been shown how

the Markovian assumption can be applied to the CCSPDM to provide a fast

tracking paradigm, which is less computationally expensive than standard

condensation, while allowing multiple hypotheses to be supported.

7.4 Extending Temporal Dynamics to Classification

7.4.1 Introduction

It has been shown how, with the addition of a first order Markov chain to the

CSSPDM, a hybrid approach to condensation can be used to provide robust

tracking where either:

• The non-linearity of the PDM along with the discrete representation of the

non-linear approximation leads to a discontinuous shape space.

• Rapid movement of the object produces large changes in the model

parameters.

This Markovian model of dynamics can be used to explicitly constrain the

movement of the model within shape space, or implicitly, using the hybrid

condensation approach. However, the use of temporal constraints relies upon one

major assumption, as mentioned earlier:

The training set from which the model is built contains a

thorough representation of all-possible deformation and

movement.

For simple models this is often true. However, for ASL it is not, and it is

important to ask the question,

'What exactly is the temporal model representing?'
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The ASL PDF represents two aspects of motion,

1. The non-linear representation of shape space, how the individual clusters

relate and how the model moves throughout the space to form letters.

2. It also contains information about the English language and how letters relate

to form words and sentences.

As the PDF encodes both of these attributes it must be constructed from a

training set which has a good representation of how the model deforms and be

representative of the English language. This is however infeasible.

If the ASL image sequence used previously is considered, it took 165 frames to

record the 7 letter word 'gesture'.  Konheim reported a statistical study where the

1-state transition probabilities of the English Language were determined using

67,320 transitions between two successive letters [Konheim 82]. As the 165

frames previously used produced an average of 20 frames per letter, this would

constitute a training set in excess of 1.3 million frames not including transitional

shapes between letters. As each frame produces a training shape this results in a

training set which is of infeasible size. At 12.5 frames per second it would

require almost 30 hours of continuous video capture. Of course smaller numbers

of both transitions and frame sampling could be used but would result in a less

reliable PDF.

The current ASL PDF (see Figure 7.3.7) contains valuable information about

how the model moves within shape space, but due to the deficiency in training it

does not contain sufficient information to accurately model the transitions

between the letters of the English language. Fortunately, it is relatively simple to

gain a transition matrix for the English language as it can be constructed in a

similar manner to previously described PDF's by analyzing large samples of

electronic text and calculating the 1-state transitions. What is required is a

method of combining this knowledge of English into the ASL PDF, producing a

more generic and accurate model for tracking and classification.



146

7.4.2 The Temporal Model

The ASL PDF ( )1−t
j

t
i CCP , constructed from the training set, provides the

probability that the model will move to cluster iC  given it was at cluster jC  at

the last time step. This is illustrated by Figure 7.4.1, and provides the necessary

information of how the model moves within shape space. However, as discussed,

this information is incomplete and does not correctly contain the transitional

information about the letters and how they relate to form words.

Figure 7.4.1 - Temporal Constraints upon Shape Space for the ASL Model

Figure 7.4.2 - 1st Order Markov Chain in Gesture Space

Similarly a 1st order Markov Chain can be constructed for the English language

which provides a new PDF ( )1−t
j

t
i LLP  (see Figure 7.4.2). Figure 7.4.3 shows the

PDF gained from this Markov Chain as taken from Konheim and shows the 1-

Shape Space Shape Space

( )1−t
j

t
i CCP

a

b

c

d

Gesture Space

( )1−t
j

t
i LLP
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state transitions calculated from a sample text of over 67 thousand letters

[Konheim 82].

t
iL

a b c d e f g h i j k l m n o p q r s t u v w x y z

Figure 7.4.3 - Discrete Probability Density Function for the English Language

Figure 7.4.3 does not demonstrate a diagonal dominance, unlike previous PDF's.

This is because the English language has few occurrences of repetitive letters in

words whereas previous PDFs resulted from operations involving a high degree

of repetition. The main trend that can be seen are the vertical stripes that occur

for many of the letters. This shows letters which have a high occurrence and are

proceeded by almost any other letter in the alphabet. The highest probabilities

occur for the letter 'e' confirming that 'e' is the most commonly used letter in the

English language. Another observation is the single transition from the row 'q' to

the column 'u' as 'q' is always followed by a 'u' in standard English.

In order to incorporate this additional information learnt from sample text, a new

ASL PDF must be constructed ( )1−′ t
j

t
i CCP . To do this a mapping must be

achieved which allows shape space to relate to gesture space.

1−t
jL
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7.4.3 Extending to a Hidden Markov Model

It has already been shown how a mapping can be achieved between the gesture

space and shape space for use in classification (see section 6.5). Here the

conditional probability ( )t
j

t
i CLP  provides a probability of the occurrence of a

letter L given the model is in cluster C in shape space at any time.

Figure 7.4.4 - Conditional Probabilities Connecting Cluster Exemplars in

Shape Space to Specific Letters in Gesture Space

This conditional probability provides a mechanism to relate the shape space to

the gesture space where the constraints of the English language (as learnt) can be

applied. However, for this to be of use, a method that allows this information to

be mapped back into the shape space must be provided. This can be done using

the common form of Bayes theorum,

( ) ( ) ( )
( )

( ) ( )
( ) ( )∑

=
ABPAP

ABPAP
or

BP

ABPAP
BAP

Therefore, placing this in the context of the ASL CSSPDM

( ) ( ) ( )
( )t

j

t
i

t
j

t
it

j
t
i LP

CLPCP
LCP =

However, where ( )t
j

t
i LCP  and ( )tiCP  can both be gained from the training set,

( )t
jLP  (the probability of the occurrence of a letter) can only be gained from

analyzing English text. As it is known that the training set does not fully

represent the English Language this equation would lead to biasing of the final

a

b

c

d

Shape Space

Gesture Space

( )t
j

t
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conditional probabilities. Instead, a variation of Bayes Theorem can be used,

where

( ) ( ) ( )
( ) ( )∑

=
t
i

t
j

t
i

t
i

t
j

t
it

j
t
i

CLPCP

CLPCP
LCP

Using this form, ( ) ( ) ( )t
j

t
i

t
j

t
i LPCLPCP ≡∑  but all probabilities are gained from

the training set, and hence no bias occurs from mixing unrelated probabilities.

This is possible as, although the training set does not contain a thorough

representation of English, it does provide an accurate representation of the

mapping between the two spaces.

7.4.4 Augmenting the Hidden Markov Model to Increase Constraints

All the necessary tools are now available which allow a new ASL PDF to be

constructed which incorporates the 1-state transitions of the English Language.

• ( )t
j

t
i CLP , is the conditional probability that the model is representing a letter

L at time t, given the CSSPDM is in cluster C and time t.

• ( )tiCP , is the probability of the occurrence of cluster C.

• ( ) ( ) ( )
( ) ( )∑

=
t
i

t
j

t
i

t
i

t
j

t
it

j
t
i

CLPCP

CLPCP
LCP , is the conditional probability that the

CSSPDM is in cluster C at time t, given the current letter that is being

represented is L.

• ( )1−t
j

t
i LLP , is the 1-state transition that a letter Li will occur given the previous

letter was Lj.

A new ASL PDF can therefore be constructed which incorporates the 1-State

transitions of English, by

1. Taking the current cluster of the model

2. Calculating the corresponding letter(s) associated with this cluster

3. Applying the 1-state transition matrix to extract the most likely next letter

4. Then locating the cluster(s) associated with this transition.
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Where,

( ) ( ) ( ) ( )t
j

t
i

t
j

t
i

t
j

t
i

t
j

t
i LCPLLPCLPCCP 11 −− =′

This produces a new ASL PDF which is shown in Figure 7.4.5.

Figure 7.4.5 - Discrete Probability Density Function for derived ASL Model

Figure 7.4.5 demonstrates the same characteristic vertical strips seen from the

English Language PDF, which it has inherited, and as such differs from the

original ASL PDF in two ways.

1. Each cluster exhibits far more transition to other clusters.

2. The diagonal dominance, which is important to tracking, is missing.
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Diagonal dominance can be forced upon the PDF by imposing diagonal

dominance on either ( )1−t
j

t
i LLP  or ( )1−′ t

j
t
i CCP . However, this is haphazard and

risks over-biasing the hypothesis generated at each frame. An alternative is to

simply ensure that the population generated at each step always includes at least

one hypothesis from the current cluster.

In order to explore the validity of these assumptions and assess the success of the

derived PDF a new set of tests were performed upon the 'gesture' image

sequence.

The PDF used for each test was the weighted sum of the original PDF gained

from the training set and the derived PDF from English, where

( ) ( ) ( ) ( )111 1 −−− ′+−=′′ t
j

t
i

t
j

t
i

t
j

t
i CCPCCPCCP αα , for 10 ≤≤α

and hence

( ) ( ) ( ) ( ) ( ) ( )t
j

t
i

t
j

t
i

t
j

t
i

t
j

t
i

t
j

t
i LCPLLPCLPCCPCCP 111 1 −−− +−=′′ αα

Using this method, the performance of both approaches can be assessed. Figure

7.4.6 shows the results of varying α . When 0=α  the PDF is that gained from

the training set; but as α  increases, the resultant error rate decreases. When

6.0=α  the resulting error rate is only slightly higher than that produced by the

optimum path shown in Figure 7.3.4. However, as α approaches 1 an increase in

error rate results. This is attributable to the absence of diagonal dominance for

the derived PDF, and hence lack of support for hypotheses that remain static

within shape space. However, even in light of this fact, the overall error is still

lower than that gained form the original ASL PDF.

Original PDF
from

Training Set

Derived PDF
from English

Language
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7.5 Conclusions

This chapter has looked at augmenting statistical models with temporal dynamics

gained through the probabilistic analysis of the training set and how this relates

to movement within shape space. It has been shown how the discrete segregation

of shape space used in the CSSPDM directly lends itself to a Markov chain

approach to modeling temporal dynamics. This additional analysis has been used

to reproduce motion indicative of the training sets in the form of key frame

animations and how the motion of the CSSPDM can be further constrained

during tracking. It has been shown that the nature of shape space is often

complex and discontinuous and how, using these additional learnt temporal

constraints, tracking can be improved by supporting a population of multiple

hypotheses. Lastly a method of combining additional constraints into the model

was presented which provides more robust tracking and classification, while

reducing the necessity for large training sets.


