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5 Cluster Based Non Linear Point Distribution Models

5.1 Introduction

As was already mentioned in chapter 2, the major drawback with models which

rely upon principal component analysis to model deformation is the non-linearity

which is introduced either as natural curvature, inherent to the model, or

introduced during the alignment and construction process of the PDM. This non-

linearity within shape space (or PCA space) results in poor performance due to

the linear nature of the underlying mathematics.

Bregler and Omohundro proposed estimating non-linearity by breaking PCA

space down into piecewise linear clusters which could then be modelled with

multiple hyperplanes [Bregler 94]. More details on this technique are discussed

section 5.4. However, these Constraint Surfaces do not place any limits upon the

local linear patches within the model and hence the surface extends to infinity

producing un-specific models. The work of Bregler also concentrates on

extremely low dimensional shape spaces with minimum non-linearity, where

little concern is given to the application of computationally expensive

techniques. In practice, the technique does not perform well in high dimensional

spaces (as will be shown) due to both the computational complexity of cluster

Chapter 5
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analysis and PCA, in addition to the problems associated with discontinuous

shape spaces1.

The remainder of this chapter will propose an alternative approach, which,

although similar in nature, produces a more specific model. The construction of

such models along with the parameter selection will also be discussed. Section

5.3 will present the use of dimensional reduction techniques to disregard

redundancy in high dimensional data, allowing analysis to be performed in lower

dimensional spaces. Section 5.4 will discuss the method behind piecewise linear

approximations. Section 5.5 will then demonstrate the use of the technique with

example data sets. Section 5.6 will discuss the application of the model. Finally

the technique will be evaluated and compared to other approaches in section 5.7

and conclusions drawn.

5.2 An Example of non-linearity

One of the classic examples within the field of neural networks is that of a helical

data set. Helical datasets are often used to assess a neural network's ability at

creating a non-linear mapping. Figure 5.2.1 shows a helix in three dimensions

from a front and plan view. Although the helix exists in 3D, it is actually a one-

dimensional data set, and can be smoothly paramertised by a single value if the

primary non-linear axis, which follows the path of the helix, can be extracted.

                                                          
1 see Figure 5.4.5 and associated text for details
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Figure 5.2.1 - Linear PCA, three-dimensional helical data set

(a) a helix using three orthogonal axis, (b) a single non-linear axis

Figure 5.2.1(a) shows the helix represented using three primary axes as

determined by linear principal component analysis: x is the mean value and

exists outside the bounds of the helix, the vectors v1, v2 and v3 are the three

orthogonal axes as extracted through PCA. The helix does not lie on any single

axis and all three must be used in order to reproduce the path of the helix.

In terms of shape space, where the primary concern is to encompass the bounds

of a training set in the most compact and constrained way possible, this is an

extremely inaccurate representation as both the mean shape and primary modes

are not indicative of the training set shape (ie the helix). Using this linear

approach would not only allow paths to be produced which are indicative of the

helix but many other non-representative paths within the volume bounded by the

vectors v1, v2 and v3.
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Figure 5.2.1(b) shows the helix parameterised by a single non-linear axis which

closely follows the path of the helix. Any point on the helix can be represented

by a single parameter which indicates the distance along this primary axis from

some origin. In order to accurately represent the non-linear data set, a means of

extracting the non-linenear axis is required. Unfortunately the data set is seldom

parameterised by a single axis and the problem of extraction is compounded by

the high dimensional nature of computer vision applications.

Figure 5.2.2– Non-linear PCA, three dimensional helical dataset

(a) non-linear modes of variation (b) segmenting shape space with multiple

planes

Figure 5.2.2(a) shows a secondary axis fitted to the data set. Here, the secondary

mode changes dependent upon the position along the primary axis. The fitting,

therefore, becomes a computationally expensive process in even the lowest of
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dimensional spaces. Figure 5.2.2(b) shows how the space can be segregated

through the use of multiple hyper-planes. This is akin to the procedure used by a

neural network when fitting to a data set. Although faster than attempting to fit

true curved axis to the data, it is essentially estimating the curvature to a

specified degree and hence has a loss in accuracy. This procedure also becomes

an infeasible approach as the dimensionality of the space increases. In order to

find a suitable technique for performing non-linear PCA, two considerations

must be addressed: the dimensionality of the data set must be reduced to a

managable level; a means of estimating the non-linearity (while retaining a low

computational complexity in both analysis and run time implementation) of the

final model is required.

5.3 Reducing Dimensionality

It is often important to decide what is the actual dimensionality of a data set, as

the true dimensionality is often lower than the dimensionality of the space in

which the data lies. This statement is more accurate when large dimensional

spaces are considered. For example a data set may exist in two dimensions, but if

it lies along a straight line then the true dimensionality is 1D. If, in general, the

position Nx ℜ∈  of a point in N-dimensional space were representable by a

relationship of the form )(uxx = , where u  is a point in Mℜ , then the data is said

to be M-dimensional. The transformation NMx ℜ→ℜ: provides the mapping

between the two spaces and allows any point Nx ℜ∈ to be dimensionally reduced

to Mℜ  [Waite, 1992]

Using PCA, the value of M can be determined and the information loss

estimated. This procedure also provides the transformation matrix that facilitates

the projection NM ℜ→ℜ .

The process of principal component analysis realigns the axis to fit the major

deviation of the data set. These extracted axes can be used to describe the data in

a new co-ordinate frame, which is the principle behind the PDM. As is typically

the case, training data can be represented using fewer eigenvectors than the
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original dimensionality (see Chapter 2). This is itself a lossy dimensional

reduction technique and relies on transforming the shape space into a lower

dimensional space. In this reduced dimensional space the original data and its

deformation from the mean can be expressed using the fewest number of

parameters possible as determined from the eigenvectors of the covariance

matrix.

By transforming the eigenvectors into percentiles it can be quickly seen how the

dimensionality of the reduced space relates to the information loss of the

reduction technique. By using the same analysis of this information as is used in

the construction of the PDM (see section 3.2) a suitable mapping can be

determined which provides minimal loss of information, typically less than 1%.
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Figure 5.3.1- Table showing eigenvalues of co-variance matrix extracted via

PCA

Figure 5.3.1 shows an example bar chart of eigenvalues extracted from a co-

variance matrix, converted into percentiles and sorted into order. It can be seen

that the 1st mode contains the majority of the deformation within the data set

with the subsequent eigenvectors contributing in diminishing amounts. By

summing the percentage contribution of each of the eigenvectors, a suitable

dimensionality for the reduction can be determined (see section 3.2). For this

example 99% of the deformation is encompassed within the first 6 eigenvalues

with the last three contributing little to the information. These smaller 3 modes

can therefore safely be discarded without adversely affecting the information

content of the data set. It is also useful to note that these smaller modes are often



65

largely attributable to noise within the data set and hence discarding this

information can have benefits in smoothing the data.

Once the dimensionality, M, of the reduced space Mℜ  has been determined, the

M primary eigenvectors can be used to project the original data set into this lower

dimensionality. This is achieved by projecting the training examples onto each of

the eigenvectors in turn, and recording the distance from the mean. The resulting

transformed training set will therefore be represented in the lower dimensional

space (using the co-ordinate frame of the eigenvectors), while the important

information about the shape and size of the data remains preserved.

The dimensionally reduced vector is calculated as xr 
Mℜ∈ = (d1, d2, ....., dM),

where the jth component,

( )xxvd jj −•= Equation 5-1

or alternatively in matrix form where T
t ),,,( 21 vvvP !=  is a matrix of the first

t eigenvectors

( )xxPx −= T
r Equation 5-2

To reconstruct the original vector x, from the dj component of the reduced vector
xr,

∑
=

+=
nr

j
jj vxx d

1
Equation 5-3

Note that equation 5-2 is the formulation for the linear PDM, where each

component of the reduced vector is effectively the weighting parameter of the

final shape.

This does not provide a true dimensional reduction, as M eigenvectors Mv →1

must be stored for use in the transformation between the reduced and original

dimensional spaces. However, the primary concern, which is perfectly satisfied

by this technique, is to reduce the dimensionality of the training set for non-linear

analysis.
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5.4 Estimating Non-linearity

It has already been shown how non-linearity can be estimated by breaking the

shape space down through the use of multiple planes (Figure 5.2.2). A similar

procedure can be performed by breaking the curvature of the space up into

piecewise linear patches which estimate any curvature present. This is similar to

the polygonal representation of a parameterised surface. As the number of

polygons increase, so the visual accuracy of the resultant surface increases.

However, as in most graphical (polygonal) representations there is a trade-off

between the number of polygons (and hence render speed) and the accuracy of

the representation. This optimum number of polygons is easily selected for

graphical representation dependent upon simple visual criteria. For high

dimensional data sets this number is more difficult to determine.

Figure 5.4.1 - Cluster Based Approximation
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Figure 5.4.1 shows the helical data set broken down into smaller clusters which

themselves can be treated as linear patches. The centres of each of these clusters

when connected allow the estimation of the primary mode of the helix. Each

cluster contains local information on how the data set varies, and must be

analysed further in order to provide an accurate representation of the space.

However, providing the space is segregated into a sufficient number of clusters,

each can be treated as piecewise linear patches which encompass the major

curvature of the space. The assumption that each cluster is approximately linear

allows a local linear mathematical model to be used, such as principal component

analysis. To provide a smooth transition between these linear patches it is

important that there is a good overlap between them. This is important where a

gradient descent approach is to be used in tracking, as a single iteration of the

model may not be sufficient to allow the model to make the transition between

two adjacent, non-connecting clusters.

Figure 5.4.2 - Linear principal components of a curved data set

Figure 5.4.2 shows a synthetic data set with 2000 members in a two-dimensional

curve. Performing standard linear PCA on this data set gives two primary modes,

which are represented by the red arrows. Using suitable limits to bound these

modes (2.5 times the square root of the corresponding eigenvalue from the mean

shape) gives the bounding box shown in the diagram. It can be clearly seen that

the mean shape is only just within the training set and the boundaries encompass

15.2 b− 15.2 b+

25.2 b−

25.2 b+

x
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far more of the space than is inhabited by the data points. The blue lines show the

ideal primary and secondary non-linear axis of the data set.

Using this piecewise linear approximation to model the non-linear data set results

in a more constrained model which better represents the original shape space.

Figure 5.4.3 demonstrates the use of (a) cluster analysis to break down the

original space into linear patches, and (b) the resulting bounds of these patches

after linear PCA have been performed upon them for increasing number of

clusters. (c) shows the results of the fuzzy k-means algorithm.

2 CLUSTERS

3 CLUSTERS

4 CLUSTERS

5 CLUSTERS

6 CLUSTERS
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100 CLUSTERS

Figure 5.4.3 - Cluster analysis on shape space

(a) Cluster centres and bounds, (b) k-means (c) Fuzzy k-means

Figure 5.4.3(a) shows the results of running a k-means clustering (see Appendix

1) algorithm on the synthetic data set with curvature. The red points depict the

centres of the final extracted clusters and the circles show the approximate

bounds of these clusters. Using cluster analysis to segregate the space, PCA is

then performed upon each cluster and the results are shown in Figure 5.4.3(b).
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Each bounding box shows the extent of each linear patch, modelled as iλ5.2±

(as described earlier). It should be noted that as the number of clusters is

increased the resulting model better encompasses the curvature, although the rate

of increase in accuracy diminishes as more patches are used.

It is clear from the 2-cluster example that it performs significantly better than the

single linear PCA model and greatly reduces the redundant space, which is

incorporated into the final model. When the number is increased to 3 or 4

clusters there remains a visible benefit in the accuracy of the model. However, as

the number of clusters is increased further it becomes increasingly hard to

determine if the benefits in model specificity can be justified against the increase

in computational complexity. In the analysis of true data, where it becomes

impossible to visualise the high dimensionality of the space, such visual

assessment is not possible. An alternative method of assessment for choosing the

number of clusters can be provided through normal cluster analysis as described

in Appendix 1. From Figure 5.4.4 the natural number of clusters can be estimated

to be 5 which ties in with the visual observations discussed earlier.
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Figure 5.4.4 - Cost graph for synthetic curved data set

Figure 5.4.3(c) shows the results of using a fuzzy k-means clustering algorithm

(see Appendix 1) on the same data set. It can be clearly seen that using the fuzzy

algorithm significantly increases the overlap between adjacent clusters and

provides a smoother composite model for estimating non-linearity. This is

5 Clusters
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important during tracking, especially when using a gradient descent approach

(iterative refinement approach). This ensures there exists a smooth path between

the composite elements of the model.

Bregler and Omohundro [Bregler 94] made no provision for this problem when

separating the shape space into sub-clusters and hence this adds to the observed

model error which will be shown during comparison in section 5.7.

This technique also allows discontinuous surfaces to be modelled accurately,

which is an important consideration when attempting to model non-linearities for

computer vision applications. If a test example were to be considered in which a

break exists in the training set (see Figure 5.4.5), then existing techniques would

attempt to model this discontinuity by a single model. The resulting linear PDM

would be similar in nature to that shown in Figure 5.4.2(a).

 

 

Figure 5.4.5 - Modelling Discontinues Data Sets - Types of Model

(a) Linear PDM, (b) Polynomial Regression PDM,
(c) Constraint Surface (d) Composite NLPDM

Figure 5.4.5 shows an example discontinuous data set with various forms of

PDM model fitted: (a) shows the linear PDM which models the entire space as a

single rectangle, the mean within the central null space; (b) shows the non-linear

axis of a polynomial model smoothly parameterising the curvature, still with a

mean shape within the null space; (c) shows the constraint surface approach of

a b

c d
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Bregler which models the space as two finite thickness infinite hyperplanes; and

(d) shows the composite NLPDM technique proposed here.

If new points are considered and the closest valid shape found within the model,

the performance of each approach can be assessed.

 

 

Figure 5.4.6 - Modelling Discontinues Data Sets - Nearest Valid Shape

(a) Linear PDM, (b) Polynomial Regression PDM,
(c) Constraint Surface (d) Composite NLPDM

It can be seen from Figure 5.4.6 that the linear PDM performs poorly for both the

modelling of curvature and the discontinuity of the data set: many points remain

unconstrained within the central null area. The polynomial model works well at

modelling curvature; however, it performs poorly at modelling discontinuity.

Although points on the extremities are drawn closer to the original training set

shape, points within the null area remain unchanged. The constraint surface

models curvature to an extent, but draws all model points to lie along the

hyperplanes and does not work well for the discontinuity. In addition, the

unlimited extent of the hyperplanes introduces further errors at boundaries,

allowing points to be misclassified to the wrong hyperplane. The composite

NLPDM seems to be able to model both types of non-linearity correctly, and

misclassified
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only introduces boundary errors due to the rectangular assumption of linear

patches.

An example of complex discontinuous surfaces can be found in Section 7.3.

5.5 Composite NLPDM

This section presents two test cases to demonstrate the validity of the approach at
modelling non-linear data sets. The examples were chosen to represent both high
non-linearity and high dimensionality.  The construction of the composite non-
linear PDM is outlined below.

An algorithmic overview is given below.

1. Perform PCA on training set

2. For each training example do

Project training example onto eigenvectors, recording distance from

mean.

Concatenate these distances into a reduced dimensional vector.

3. Perform cluster analysis on dimensionally reduced data set to determine

natural number of clusters

4. Use this natural number to segregate the data set into multiple clusters using

fuzzy k-means

5. Perform PCA on each cluster of training set

5.5.1 Robot Arm

The first example that will be considered is of a relatively low dimensionality,

but with high non-linearity present. The robot arm example meets these criteria

as the nature of its hierarchical, pivotal construction guarantees a non-linear data

set. The training data for the robot arm example was constructed automatically

from a synthetic model used to generate examples that encompassed the total

possible movement of the arm. Figure 5.5.1 shows the construction of the arm

model. The 2D representation of a robot arm consists of four rectangles, each

rectangle described by four key points at its corners. This gives a total of 16 2D

key points which, when concatenated together, provide a 32 dimensional vector
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that describes the shape of the arm at any time. The model also incorporates 3

pivotal joints, which allow the constituent sections of the arm to rotate about

each other. Examples were generated for the arm in all its various positions by

taking examples of the model as the joints were rotated from °± 45 in °10

intervals. This resulted in a 32 dimensional training set containing 918 examples.

Figure 5.5.1 - The construction of a non linear robot arm data set

Figure 5.5.2 shows examples taken from the synthetic training set.

Figure 5.5.2 - A selection of training examples from the robot arm data set

As the dimensionality of the model is already low (i.e. 32D) it is not necessary to

perform dimensional reduction on the model and therefore k-means analysis can

be carried out on the raw data set. Performing standard cluster analysis (see

Appendix 1) the graph in Figure 5.5.3 is produced and indicates the natural

number of clusters to be approximately 20. Using this number of fixed clusters
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the fuzzy k-means algorithm is applied in order to segregate the data set into its

constituent linear patches.
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Figure 5.5.3 - Cluster analysis on raw robot arm data set

Figure 5.5.4 shows the resulting boundaries on the data set after PCA has been

performed on the extracted clusters projected into 2-dimensions. Note that

rectangles are skewed due to the projection of each model (m0-31) down from 32

to 2 dimensions. This figure clearly shows the non-linearity of the model and

how the linear patches estimate this curvature.

Figure 5.5.4 - Linear patches of the robot arm data set
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In order to validate the hypothesis that reducing the dimensionality of the data set

before analysis does not affect the information content of the resulting model, the

procedure was repeated upon the data set after dimensional reduction.

PCA was first performed upon the raw data set and from the eigenvalues a

suitable reduction was determined. 99% of the deformation is contained within

the first 4 eigenvectors, corresponding to the four largest eigenvalues. The data

set was then projected down into this 4 dimensional space using equation 5-1

(page 65). Cluster analysis was then performed to extract the natural number of

clusters and the fuzzy k-means algorithm performed to extract the membership of

each cluster. The results of cluster analysis can be seen in Figure 5.5.5. Apart

from the difference in the scale of cost, the graph is almost identical to that

previously produced and, as in Figure 5.5.4, provides a natural number of

clusters equal to approximately 20.
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Figure 5.5.5 - Cluster analysis on the reduced robot arm data set

Once the cluster membership has been extracted, each element of the clusters is

transformed back into the original space using the equation 5-2 (page 65) before

PCA is performed. This procedure leads to the loss of up to 1% information due

to the lossy compression technique used. As an alternative, the reduced vectors
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can be used merely as pointers to the original data set, since the 1st element of

the reduced data corresponds to the 1st element of the original data. Once this

reverse mapping has been completed, PCA is performed on each of the fuzzy

clusters to produce the composite model as done previously.

The lower cost solutions for the reduced dimensional data results from the

disregarded data no longer contributing to the overall cost of the k-means

function. However, although this makes little difference to the selection of the

natural number, it provides a huge computational saving as the analysis is

performed in a 4 dimensional space rather than one of 32. In fact, if the

assumption is made that the primary modes contain the largest contribution to the

separation of shape space (which is known), then this cluster analysis could

feasibly be performed with even higher dimensional reductions. However, it is

not obvious how this number would be selected.

Figure 5.5.6 - Primary modes of the linear robot arm PDM

Figure 5.5.6 shows the primary and secondary modes of variation of the linear

PDM. The non-linearity of the model is clear in the distortion of the dimensions

of the robot arm. The primary mode encompasses movement along the

horizontal, but also has distortion in the size of the arm, which must be rectified
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by other higher modes of variation. The second mode encompasses movement in

the vertical, with more extreme size distortions, especially at the head of the

model.  Below the mean on the second axis, the model takes on shapes which

were not present within the training set by inverting the arm back upon its self.

Figure 5.5.7 shows examples from the final composite non-linear model. It

demonstrates that much of the non-linearity has been removed except in the end

of the model where small abnormal deformations can still be seen. By increasing

the number of clusters this can be reduced further, but at a computational cost at

run-time.

Figure 5.5.7 - Examples from the non-linear robot arm PDM

5.5.2 Image Space

An image training set was constructed from a sequence of 200 images of a head

turning in the image frame. No alignment was performed so as to produce as

non-linear a problem as possible. Each frame is 80 by 60 pixels in size,

producing a 4800 dimensional training vector. PCA is first performed and the 33

eigenvectors corresponding to the 33 largest eigenvalues extracted. These vectors

account for 99.9% of the deformation in the training set. Figure 5.5.8 shows the

first and second modes of variation after linear PCA
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Figure 5.5.8 - Primary modes of the image PDM

 Each vector is then projected into this PCA space (using equation 5-1 page 65)

giving a new dimensionally reduced training set on which cluster analysis can be

performed. This generates a dimensional reduction of 4800 to 33.

Cluster analysis results in an estimate for the natural number of clusters, k=15.

PCA is performed on each of the 15 clusters in turn to generate the composite

non-linear model. Selected shapes reconstructed from the composite model are

shown in Figure 5.5.9. Notice that each model has reduced blurring, due to the

original data set being subdivided into smaller clusters. Each cluster now has less

information to encode and hence linear PCA can better estimate the deformation.

Figure 5.5.9 - Examples from the composite non-linear image PDM

As mentioned earlier the technique also has the advantage that the hyper surface,

or volume, on which the data lies need not be contiguous. For example, given an

image sequence of two people, one with glasses and one with a beard, both linear

PCA and the high order non-linear approaches will model the data set with a

principal mode which interpolates between the two. However, there is no

example in the training set where both glasses and a beard are present. The

cluster-based technique will separate these two distinct clusters, allowing the
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model to ‘jump’ between the two, better representing the training set. This issue

and its implications will be discussed in the following chapters.

5.6 Application of the Model

To apply the model to an image, a similar procedure to the linear PDM (see

section 2.3) can be used. After making an iterative refinement to the model

within the image frame, the closest possible shape within the learnt bounds of

the model is calculated. This constrained shape is then used as the model pose for

the next iteration.

In the case of the linear PDM, this constrained shape is found by projecting the

model into the PCA space and reconstructing the closest allowable model (point

in shape space) that is within the bounds of the linear model. The same procedure

can be used in the composite model. However, the closest allowable point may

exist in any of the clusters which constitute the non-linear model. The centre of

each cluster can be used to check for closest cluster in Euclidean distance from

the model point. However, using a Euclidean distance metric makes the

assumption that all clusters are of the same size. Figure 5.6.1 illustrates this

problem. Assuming a point p in shape space, it should be apparent that the point

belongs to the cluster C1. Using a Euclidean distance metric will result in the

point being assigned to the cluster C2 due to the size difference in the clusters.

However, the point p is actually closer to the cluster C1 even though in

Euclidean space the point is further from the centre C1 due to the standard

deviation of the clusters.

Figure 5.6.1 - Distance Metrics in Shape Space
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To overcome this problem a Mahalnobis distance metric can be used. However,

due to the simplicity of the k-means-clustering algorithm, it is a fair assumption

that if the selected natural number is correct then clusters will be similar in size.

It is important to bear this consideration in mind, especially when discontinuous

surfaces are considered. In these situations, many clusters may be of different

sizes and therefore the Mahalnobis approach should be used.

An algorithmic overview for model application is:

For a new shape S,

1. Transform S from image frame to PDM model basis eg. Normalise and align

(as in alignment of training set)

2. Locate closest cluster centre and hence linear patch Pi using either Euclidean

or Mahalnobis distance metric

3. Project S down onto linear patch Pi

4. Project back up to reconstruct closest allowable shape S'

5. Transform S' back into image frame co-ordinates

5.7 Evaluation and Performance

To asses the performance of the approach to the modelling of non-linear data sets

an error metric must be defined which provides a measure of the accuracy of an

approach. As has already been demonstrated, a common problem with the linear

representation of non-linear data is the tendency to over-generalise shape and to

incorporate non-valid deformations into the model. These non-valid

deformations often manifest themselves as the distortion in scaling of the model

as observed in the robot arm example (section 5.5.1). In this example, the robot

arm should remain constant in size and area as it rotates around its pivotal joints.

Since this size is the major artefact of the linear representation, it provides a

suitable error metric with which to assess non-linear performance.

Random points chosen from within the linear PCA space are selected and then

projected into the composite model. The constraints of the model are applied and

the resulting (supposedly valid shape) assessed by calculating the length of the

model perimeter (projected onto the image plane). Since the ideal length of a
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valid shape should remain constant (in this case 66 pixels), any deviation from

this constant can be used as a measure of the model's inability to reproduce valid

shapes.

A number of random shapes were generated and passed through the model, the

absolute difference from the ideal length recorded and the mean calculated over

the test set. This procedure was then repeated for the constraint surface, a nearest

neighbour approach and the cluster based NLPDM proposed here for varying

numbers of clusters between 1 to n (where n equals the number of training

examples). The procedure is outlined thus,

1. Take n random shapes rand
iX

2. Project each rand
iX into non-linear model and find closest reconstructed point

recon
iX

3. Calculate length in image plane of projected model recon
iX , recon

iL

4. Calculate length in image plane of any valid model X , 
validL

Calculate deformation error metric ∑
=

−=
n

i

validrecon
in LLe

1

1 Equation 5-4

This error metric provides a zero error if the resulting reconstructed model is

valid in shape. Therefore, the higher the error, the worse the performance of the

constraints and hence the worse the performance of the model. By repeating this

procedure for varying number of clusters between 1 (which is effectively a linear

PDM) and 912 clusters (the number of training examples and therefore nearest

neighbour), we can assess the advantage on model specificity as the number of

clusters increases. Figure 5.7.1 shows the resulting graph from this analysis.
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A Comparison of non-linear Models at Constraining Invalid Shapes
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Figure 5.7.1 - Graph showing error rates of non-linear approximation
techniques

The single hyper plane constraint surface, the nearest neighbour approach and the

cluster based NLPDM all perform comparably and provide far lower error rates

than either the multi-plane constraint surface or the linear PDM. However, the

cluster based NLPDM (CB-NLPDM) provides lower errors until 5 patches are

reached. With only a single linear patch the CB-NLPDM is effectively a linear

PDM and as such does not produce errors that exceed the linear PDM. However,

the other approaches produce significantly higher errors than even the linear

model until sufficient patches have been introduced. As the number of clusters

increases, so the error rate decreases, showing that the procedure does indeed

increase the model's ability at representing non-linearity. The yellow trace on the

graph shows the error results of the unconstrained surface approach of Bregler

[Bregler 94] which, although performing slightly better between 25 and 70

patches, produces higher error rates at the pre-chosen patch number of 20 which

was determined earlier from cluster analysis. It is important to note that this error

graph confirms the results of the cluster analysis for the natural patch number, as

further increases beyond 20 result in less significant results in the final model.
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This confirms the conclusion that the approach for the selection of the natural

number of clusters is valid, and hence the number of patches needed by the

model is correct.

As the number of clusters increases to 912 (which is the number of examples

within the training set) the error reaches zero. This is to be expected: when the

number of clusters is equal to the number of training examples, each cluster

contains only one member. The procedure then becomes a nearest neighbour

approach. Since each nearest neighbour is in fact a valid training example, the

validity of the shape is ensured, hence the zero error. This fact also explains the

error results of the nearest neighbour approach which performs comparably to

the other techniques. The question could be posed, why not use a nearest

neighbour approach to perform the procedure simply and accurately? However,

there are two issues, which have not as yet been considered.

1. The speed of the procedure increases as the number of linear patches

(clusters) increases, as each patch is itself a linear PDM.

2. A nearest neighbour approach is only valid if every possible model pose is

represented within the training set. This is often not the case and the power of

the linear PDM is the ability to model shapes not present within the training

set by linearly interpolating between examples.

It is therefore apparent that in order to consider the validity of any technique, two

questions must be posed.

Does the model stop non-valid shapes from being produced?

(which has already been addressed in Figure 5.7.1)

Does the model allow valid shapes which were not present within the training set

to be reproduced?

In order to answer this latter question a new set of experiments must be devised.
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By constructing a new set of n examples that are all valid in shape and

deformation not present within the training set (possible due to the synthetic

nature of the test case), the ability of the CBNLPDM at reproducing unseen,

valid shapes can be assessed. Using the same equation 5.4 (page 82) along with a

Euclidean distance measure between the 'original valid but unseen data' and the

'reconstructed shape' this feature of the model can be assessed.

1. Take n valid shapes not present in the training set new
iX

2. Project each new
iX into non-linear model and find closest reconstructed point

recon
iX

3. Calculate the length in image plane of projected model recon
iX , recon

iL

4. Calculate the length in image plane of any valid model X , 
validL

Calculate deformation error metric ∑
=

−=
n

i

validrecon
in LL

1

1

Euclidean distance error ( )∑
=

−=
n

i

new
i

recon
in XXD

1

1

Using these error metrics it would be expected that if the model were performing

perfectly any valid shape projected into the model would have zero deformation

error and zero Euclidean error. However, using the nearest neighbour approach

would result in a zero deformation error but produce a high distance error. The

result of performing this analysis on the data for both approaches is shown in

Figure 5.7.2, Figure 5.7.3 and Figure 5.7.4. The test set consisted of examples

generated from °± 38 angles and °17  intervals producing 135 valid, but unseen,

examples with which to test the various models.
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A Comparison of non-linear Models at Reproducing Valid Unseen Shapes
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Figure 5.7.2 - Graph showing error rates of non-linear approximation
techniques for Constraining Valid Unseen Data

Figure 5.7.2 shows the results generated via the deformation error metric for

valid, but unseen, shapes applied to the various models. From this graph it can

clearly be seen that the linear PDM produces a low baseline error of around 2.5

pixels deformation. This demonstrates the ability of the linear PDM to

encapsulate the deformation of the training set, allowing valid shapes to be

reproduced which were not present within the original data. It is not until in

excess of 85 linear patches are used that either the nearest neighbour or

constraint surface performs comparably to the linear PDM. The nearest

neighbour approach generates the highest error rates as was suspected. The

constraint surface with 4-hyperplanes produces the same results as the proposed

NLPDM technique, both of which produce by far the lowest errors. Using 20

linear patches, both techniques produce their lowest error rates of approximately

0.5 pixels deformation, which again confirms the selection of the natural number

of clusters for the data set.
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A Comparison of non-linear Models at Allowing for Valid Shapes
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Figure 5.7.3 - Graph showing error rates of non-linear approximation
techniques for Allowing Valid Unseen Data
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Figure 5.7.4 - Graph showing error rates of non-linear approximation
techniques for Allowing Valid Unseen Data

Figure 5.7.3 shows the results generated via the Euclidean distance error metric

for valid, but unseen, shapes applied to the various models. The figure uses a

logarithmic scale due to the extremely high error rates produced by the nearest
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neighbour approach. Figure 5.7.4 shows the same data (without the nearest

neighbour approach present) on a linear scale. It can clearly be seen that the

nearest neighbour approach produces error rates far in excess of any other

approach. The linear PDM produces a low baseline error, which could be

reduced further by increasing the number of modes of variation. The constraint

surface with 1-hyperplane produces much higher error rates than the linear PDM

and does not perform comparably with the linear PDM until around 450 linear

patches, where each patch effectively has only two members. If a patch has only

two members then it can have only one hyperplane, which means that more

planes are required to model the data. This is confirmed by the 4-hyperplane

approach which produces error rates identical to the NLPDM model, both of

which  produce errors of around 0.7-0.8 at the chosen number of clusters. If all

these graphs are considered, the lowest errors are produced at 20-30 linear

patches which suggests that the natural number may be slightly higher than was

chosen. However, changing this number would result in little gain in accuracy.

Model Approach Ability to
Constrain

Unseen Data

Ability to
Constrain Valid

Data

Ability to Allow
Valid Data

Linear PDM BAD POOR/GOOD GOOD
Nearest Neighbour GOOD BAD BAD
Constraint Surface 1
hyperplane

GOOD BAD POOR

Constraint Surface 4
hyperPlanes

POOR GOOD GOOD

Cluster Based
NLPDM

GOOD GOOD GOOD

Figure 5.7.5 - Table Showing Comparison of Techniques

If the performance of each technique is considered for each of the comparative

studies performed, the conclusions can be summarised in a table, as shown in

Figure 5.7.5. From this table it can be demonstrated that the proposed NLPDM

approach produces superior performance in all aspects of modelling.
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5.8 Conclusions

In conclusion, a NLPCA technique has been presented which models non-

linearity by breaking the problem down into a set of linear models, which

estimate high dimensional curvature. This has the advantages of the speed and

simplicity of linear PCA, whilst providing a robust solution to object modelling.

It has been shown how this technique performs in comparison to similar

techniques and how the simple selection of model parameters can produce

optimum solutions in the final model. These models have been shown to work on

both low dimensional, high non-linear, and high dimensional, high non-linear

problems where other procedures would fail.


