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4 Enhancing Tracking Using Colour

4.1 Introduction

The colour content of an image is an important attribute, which is often

discarded. Common practice in the processing of PDMs and snakes is to merely

assess the intensity of pixels, processing as if grey scale i.e. calculating the mean

intensity of the red, green and blue colour channels.

This chapter will discuss how colour can be used to enhance the appearance of

objects in tracking algorithms. It will also be demonstrated how colour alone can

provide a reliable feature for locating and tracking moving objects. Section 4.2

will demonstrate how the simple weighting of colour channels can be used to

enhance specific features within an image. Section 4.3 will discuss the use of

perceptual colour representations (alternative colour spaces to red-green-blue,

RGB). Section 4.4 will discuss the advantage of colour in delineating regions.

Section 4.5 shows how more complex colour models can be constructed and used

to locate and track a humans. Section 4.6 demonstrates how these ideas can be

extended to provide a reliable, computationally inexpensive solution to head and

hand tracking, although these techniques extend to any colour object. Finally

conclusions are presented.

Chapter 4
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4.2 Weighted Greyscale Images

In the previous chapter it was shown how high intensity edges could be located

locally along a boundary. These high rates of change in pixel intensity were

located by assessing the first or second derivative of the intensity along a normal

to a boundary. This calculation is normally performed upon the grey scale values

of pixels. However, as has already been mentioned, the ready availability of

colour provides a far more distinguishable difference between foreground and

background objects within an image. By performing processing upon a grey scale

representation, calculated from the colour channels (typically the average

intensity of the three colour channels) a considerable amount of information

about object boundaries is lost.

Figure 4.2.1- RGB image of iso-intensity

Figure 4.2.1 shows an image consisting of three colour regions. Each region has

the same intensity in its colour channel: the red area has r=255, g=0, and b=0; the

green area has r=0, g=255 and b=0; etc. By taking the average of the three colour

channels at each pixel, the resulting image would have a constant intensity of 85

and no distinction would be possible between the various areas. However, in the

colour image, it is visually apparent that such a distinction does exist and very

clear boundaries are defined.

It is clear that reducing the colour information to one channel literally 'throws'

information away, information which may be invaluable to the application at

hand. One solution to this would be to process each colour channel individually.

This can be done by assessing normals for each colour in turn, calculating three

second order derivatives, and taking the average, where
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 However, this is still an averaging approach and as such will smooth edges. In

addition, the approach effectively requires each normal to be assessed three times

and hence results in a significant decrease in speed.

If an object of interest is sufficiently prominent within one of the colour

channels, then the intensity of that channel can be used instead of the mean

intensity.

Figure 4.2.2 - The Separate Channels of a Colour Image

Figure 4.2.2 shows a colour image of a person in front of a blue backdrop, along

with the grey scale version of the image and the three separate colour channels

shown as grey scale intensity images. The grey scale image retains much of the

distinctions between regions seen in the colour image due to the small number of

highly distinct regions and the uniform background. The individual colour

channels, however, each emphasise certain aspects of the image. The blue

channel has a lighter background than red or green with a lower contrast figure.

This is to be expected, as the blue background will generate high intensities in

the blue channel. The red channel emphasises the skin regions of the subject, due

to the high red component in skin tones. If the object to be located or tracked

within the image were hands or head then using the red channel for image

processing would produce far superior results than tracking on the mean intensity

COLOUR IMAGE GREY SCALE IMAGE

RED CHANNEL GREEN CHANNEL BLUE CHANNEL
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(as the mean intensity effectively smoothes out this distinction). However,

simply processing upon the red channel may disregard other important features.

In addition, other channels could potentially be used to subdue features that are

not desirable, i.e. the background. As it is known that the background is depicted

best in the blue channel, subtracting this from the red channel will further

increase the distinction between regions.

Figure 4.2.3 - Enhancing features Using Colour Channels

(a) Blue channel subtracted from red (b) Inverse of (a)

Figure 4.2.3(a) demonstrates the results of subtracting the blue channel from the

red channel. Figure 4.2.3(b) shows the inverse of (a), which improves the

visualisation of the distinction between regions. Although the overall contrast

between skin and the surrounding area appears less, the segmentation of the skin

from the overall image is greatly enhanced. The background and body have

almost completely been removed.

If the simple conversion to grey scale is formulated as the average pixel intensity

of the three colour channels, this can be expressed as

3,
,,, yxyxyx bgr

yxI
++=

then subtracting the blue channel from red can be expressed as the weighted

average of the pixels,

( )χβα
χβα
++
++=

,1max,
,,, yxyxyx bgr

yxI

where

(a) (b)
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1,0,1 −=== χβα
by tailoring these colour coefficients for specific applications, features can be

enhanced or subdued as required. Figure 4.2.4 shows the results of further

enhancing the skin regions by applying the coefficients 2,0,2 ==−= χβα .

Figure 4.2.4 - Enhancing features Using Colour Channels

4.3 Perceptual Colour Spaces

The RGB-colour space (typically used in computer applications) allows three

primary colour channels to be used to specify up to 16.7 million colours by

representing the colour space as a 3D-colour cube (each channel having 256

discrete intervals). This provides a simple mechanism for constructing and

representing a broad spectrum of colours. However, this is not an intuitive

representation in terms of human perception, where similar colours (as judged by

the eye) may occupy completely different areas of rgb-space. This is confirmed

by the initial observations made from Figure 4.2.1. It has already been noted that

the intensity of each colour region has the same value, even through the

distinction between the areas is visually apparent. Furthermore, the central green

region looks brighter to the human eye than either the red or blue regions. The

notion of a perceptual colour space is to model the colour volume so to better

correspond with how the human eye perceives colour and relative intensities.
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Discussions of colour perception usually involve three quantities, known as hue,

saturation and lightness. Hue distinguishes among colours such as red, green and

purple. Saturation refers to how far colour is from a grey of equal intensity, i.e.

red is highly saturated, pink is not, although both have similar hue/red-

component. Lightness embodies the achromatic notion of the perceived intensity

of an object. These perceptual colour spaces include Hue, Saturation, Value

(HSV) (or HSB for Brightness); Hue, Lightness and Saturation, (HLS) (or HSL

for Luminosity); and Hue, Value, Chroma, HVC [Foley 1990].

Figure 4.3.1 - HSV and HLS Colour Spaces

Hue Saturation Value (HSV or HSB) colour space is a hexcone or six sided

pyramid where Hue is the angle around the vertical axis, S is the distance from

the central axis and V is the distance along the vertical axis. Colours along the

vertical axis have zero saturation and are therefore grey scale values. Hue,

Lightness Saturation (HLS or HSL) colour space is a double hexcone and can be

thought of as a deformation of the HSV space.

The notion of separating colour from intensity provides a more robust method for

colour feature extraction. Where colours change from shading or lighting

differences, it would be expected that this would result in changes in intensity

but not in colour.
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Figure 4.3.2 – Separate Channels of HSL Image

Figure 4.3.2 shows the same colour image from section 4.2 converted in hue,

saturation and luminosity with each channel shown as an intensity image. It can

clearly be seen that the difference between the areas of the image is far more

distinct in both hue and saturation than in any of the rgb colour channels (Figure

4.2.2). The saturation image provides excellent segmentation between the skin

and other areas of the image frame, producing a distinct boundary between the

skin and background elements.

Some devices provide colour space conversions in hardware. However, for the

most part this must be implemented in software. For real-time systems where

each pixel must be transformed independently, this overhead can become a

significant speed-limiting factor. However, with contour based approaches this

conversion does not produce a significant overhead, as only pixels along normals

to the contour are assessed and hence need conversion.

A similar coefficient weighted expression to that demonstrated for rgb space can

be used in HSL space, where

( )lsh

lsh

yx
yxyxyxI ++

++=
,1max,

,,, χβα

Provided hsl values are normalised to the range 10 → .

Further extensions can be made by combining both RGB and HSL weighted

techniques. However, coefficient selection becomes a complex task. Instead, a

more generic, automated method of enhancing/extracting features is required.

Hue Saturation Luminosity
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4.4 Colour Thresholding

As was demonstrated in the previous section, areas of skin produce high values

in the saturation channel of the HSL colour image (Figure 4.3.2). These high

areas can be used to threshold the areas of skin from the image in a similar

manner to grey level thresholding. This technique is not dissimilar to

chroma/luma keying.

Figure 4.4.1 – Thresholded HSL Image

Figure 4.4.1 shows the saturation channel of the colour image. As the areas of

skin produce high values of saturation, these areas can be extracted simply by

thresholding the colour saturation channel into a binary image mask. The white-

segmented areas correspond to the location of skin within the mask. Figure 4.4.1

shows the results of taking the logical AND of the binary image with the

luminosity channel and demonstrates how the head and hands can be extracted

using colour saturation instead of intensity to delineate colour regions of the

image while retaining the internal features of objects or regions.

It should be noted that although the head and hands consist of various colour

changes due to the features such as eyes, nose and the effects of non-diffused

lighting, few of these features are apparent (to the eye) in hue or saturation. This

is due to the separation of the colour information from the brightness or

luminosity. The luminosity contains the information of how bright a pixel is and

the hue-saturation h-s pair provides the information about colour. Rather than

performing thresholding in 3ℜ of rgb, it can be performed in 2ℜ  of h-s space.

This provides a slight computational saving but has the added advantage that

with the intensity component removed, much of the lighting/shading differences

are absent. This provides a more uniform colour space in which to work.

Saturation Thresholded Binary
Binary  AND’ed  with

Luminosity
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Discarding the luminosity component of the colour effectively compresses the hsl

colour space down onto a two-dimensional hexagon. In this space, consistent

colours of varying luminance will produce clusters on the h-s hexagon. By

discarding the luminosity for HLS and the value component of HSV spaces, both

spaces become compressed onto the two-dimensional hexagon and the

distinction between the two spaces is lost.

4.5 Gaussian Colour Models

For a number of years, research at the School of Computer Science, Carnegie

Mellon University has used normalised rgb colour spaces to probabilistically

label and segment regions of skin from image sequences for the location and

tracking of the human face [Waibel 94] [Hunke 94] [Yang 98]. They have

demonstrated that human skin clusters in a small region of colour space: Human

skin colours differ more in intensity than actual colour, and under certain lighting

conditions, a skin colour distribution can be characterised by a multivariate

normal distribution in a normalised colour space [Yang 95]. Rainer, Stiefelhagen

and Yang use this colour labelling to provide a rough estimate of the location of

a head within the image frame to initialise a model based gaze tracking system

[Stiefelhagen 97] [Stiefelhagen 98]. The normalisation of the colour space

removes much of the variability in skin colour between individuals and lighting

inconsistencies such as shadows [Yang 98]. Ivins and Porril used a normalised

rgb colour space to label and track, in real-time, various colour regions of an

industrial robot arm [Ivins 98].

McKenna, Gong and Raja have extended this work on colour labelling into the

HSV colour space [McKenna 97]. Using a Gaussian mixture model to represent

the colour space, they have shown how multiple models for individuals can be

used to probabilistically label an image and determine the most likely person

present. Azarbayejani and Pentland have used similar methods in HSV colour

space to automatically segment both the hands and head from stereo image pairs,

and using this, calculate the position and trajectory in 3D space [Azarbayejani

96].
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Work by these authors has shown that human skin naturally clusters in a small

region in colour space. Hunke and Waibel show that in a normalised rgb colour

space, statistical bounds can be approximated for colour clusters and used to

segment the human head from an image [Hunke 94]. Using colour as a feature

for tracking has several problems: firstly, the colour representation of a face

obtained by a camera is influenced by many factors such as ambient light, object

movement, and the effect of diffused and specular reflections of an object

moving relative to a light source. Secondly, different cameras produce

significantly different intensity responses for the same wavelength of light.

Thirdly, video signal encoding standards, such as PAL or NTSC, do not respond

to the full colour space and effectively flatten the resulting colour spectrums of

objects. Finally, human skin colours differ in rgb space from person to person

[Yang 98]. McKenna et al demonstrated how these problems could be partially

overcome by performing probabilistic classification in HS space, where

variations in intensity have been removed [McKenna 97].

Human skin actually occupies a small cluster in HS space regardless of race or

skin pigmentation. Differences in skin tone are primarily expressed by variation

in the intensity of the colour: once the intensity has been removed the h-s colour

space that they occupy is remarkably similar.

In order to verify this fact, four subjects were taken from different ethnic origins.

For each subject, pixels were sampled in rgb from the skin tones on the palm of

the hand. The results can be seen in the two graphs shown in Figure 4.5.1 and

Figure 4.5.2. These two graphs allow the visualisation of the volume of the rgb

colour cube in which the samples lie. It is clear that a fairly distinct single cluster

is generated by the samples. However, this sample occupies a relatively large

sub-volume of the total colour space. This is due to the difference in intensity of

the samples along its major axis i.e. the variation in intensity of the pixels across

any one sample.

Each sample pixel was then converted into HSL space, the luminosity discarded

and the results shown in Figure 4.5.3. The Hue-Saturation space shows a far

'tighter' cluster with little variation in either hue or saturation. It is also important
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to note that this colour 'fingerprint' of human skin is now 2 dimensional rather

than the original 3D-rgb space.

The large number of sampled pixels and similarity in each of the four ethnic skin

types makes the comparison of each difficult. To simplify, the mean and standard

deviations in each colour channel can be calculated by

∑
=

=
n
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r
0

1
 and  ∑
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Figure 4.5.4 demonstrates the colours generated for the skin of four subjects with

varying racial origin and pigmentation.
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Red Green Plot of Human Skin Samples
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Figure 4.5.4 - Colour distributions of four skin types in r-g and r-b colour

spaces

Figure 4.5.4 shows the mean value for each subject plotted with the error bars

representing σ2± . It can be seen in the Red/Green and Red/Blue plots that the

various skin tones represent relatively small, overlapping clusters in RGB space,

with subtle differences between subjects as would be expected. The darkest mean

intensities are produced by the Chinese sample which would seem to contradict
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any stereotypical observations about skin type. However, this is attributable to

the distance of the hand from the camera during sampling. The Chinese sample

was taken at a much closer distance than the other skin samples and hence

produced darker results. However, this variation in lighting makes little

difference to the results of the Hue Saturation plot.

Mean and Std Deviations of HS Skin Samples
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Figure 4.5.5 – Colour distributions of four skin types in HS space

The Hue Saturation plot shows the same statistical representation of the various

skin types in h-s space. It can clearly be seen that this results in a far tighter

colour cluster, which seems to vary little between skin types. Even the Chinese

sample that produces dark results due to lighting is indistinguishable in the HS

plot.

By using this single extracted cluster in HS space and fitting a multivariate

Gaussian to it, a probabilistic measure that any pixel is human skin can be

determined. A more accurate Gaussian PDF can be constructed by performing

PCA on the colour cluster, and approximating its primary axis in addition to its

bounds, or using the sum of Gaussians as used in chapter 5. If a sample pixel
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from a new image is within the Hue-Saturation bounds of the Gaussian cluster

then that pixel is marked as a probable location. Selecting a threshold for which

probabilities of lower values are set to FALSE, and higher TRUE produces a

binary image. By performing erosion then dilation, noisy points are removed and

clusters of probable skin location consolidated into blobs. A simple blobbing

algorithm can then be used to calculate approximate locations of skin artefacts

within the image.

Figure 4.5.6 – Extracting Blobs of Skin

Figure 4.5.6 shows a sample image frame after processing. The results from the

blobbing algorithm are used to calculate the centre of objects by finding the

mean pixel of the blob and the approximate size by assuming circular blobs and

calculating the radius of a blob from the area (i.e. the number of points in the

blob). This is used to place a cross over the segmented features for demonstration

purposes. In this instance the three largest blobs found within the image are

deemed to constitute the head and the hands. The largest connected blob

extracted from the colour labelled image can be used as a rough initial estimate

for the position of the head.
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4.6 Tracking Colour Features

Using a single Gaussian cluster to probabilistically segment skin tones from an

image leads to noisy segmentations for two reasons:

1. The assumption that a single bivariate Gaussian is a good representation of

the colour cluster is not completely valid.

2. Background clutter can be misclassified.

Specular reflections are particularly vulnerable to misclassification. Another

draw back with the technique is that all the pixels of the image must be

transformed into HSL space and colour classification applied. This process

quickly becomes a computational overhead and when real-time applications are

considered (25Hz or more) the approach becomes unfeasible.

One alternative is to locally search for skin using a Region of Interest (ROI) or

window. Only pixels that fall within the ROI need to be converted and classified

which significantly speeds up the procedure. In addition, background clutter,

outside the ROI, cannot be misclassified. This produces a much cleaner

segmentation without the need for erosion/dilation as previously described.

In order to limit processing to within the window (ROI), a mechanism for

moving the window must be devised. This is itself a colour tracker, as the

window must track the object in order to successfully segment the skin tones.

If the assumption is made that the binary-segmented object has a central white

mass surrounded by black background, then the centre of gravity of the blob

should be at the centre of the window.

Using a binary image window of size sx, sy where, Ix,y is zero for the background

and one for segmented skin, the centre of gravity for the segmented feature can

be calculated by
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A simple translation can then be calculated to position the centre of the window

at the centre of gravity for the next iteration of the algorithm.

This assumption about the shape of an object within the window can also be used

to calculate a new window size for the next iteration. Figure 4.6.1 shows a

window of size 45x77 pixels with a binary segmentation of a hand achieved

using the Gaussian probabilistic threshold described earlier. The figure also

shows the horizontal and vertical histograms of the image. If the earlier

assumption about the location of an object within the window holds true, then it

can be assumed that these histograms will be approximately Gaussian, with their

peaks at the centre of gravity previously calculated. By making this Gaussian

assumption, the standard deviation in both x and y can be calculated and the

bounds of the window for the next iteration estimated.  Figure 4.6.1 also shows

this fitted Gaussian curve superimposed upon both the x and y histograms. The

Gaussian curve is estimated by calculating the standard deviation of the

histogram in both x and y. Once done it is known that one standard deviation

from the mean (σ ) represents 34.1% of the information, 2σ  represent 47.7% of

the information and 3σ  represents 49.9% (See Chebyshev's theorem, Section

3.2). It is therefore known that σ2±  from the mean encompasses 95.4%. This

simple calculation can be used to resize the window ensuring that over 95% of

the information is encompassed by the ROI. In the Figure 4.6.1 the window is

resized to σ2.2±  where,
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Figure 4.6.1 – Approximating the bounds on an object using a Gaussian

Assumption

This simple procedure is iterated for each new image frame of a real-time image

sequence. It relies upon a good initial location of the window. However, this can

be achieved by performing the full image segmentation as described in section

4.5.
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An Algorithmic overview is:

1. Construct PDF for colour thresholding model

2. Assign probability to each colour pixel from PDF

3. If probability is greater than some threshold  mark pixel as TRUE else

FALSE

4. Search image for largest blob

5. Calculate centre of blob and initialise window to this position

6. Calculate the approximate size of the blob and use to initialise window size

π
areablob

yx ss 2==

7. While window size is greater than some threshold,

8. Capture new image

9. Segment window using PDF and threshold

10. Calculate mean white pixel in x and y

11. Move window to x,y

12. Calculate the standard deviation in x and y, yx σσ ,

13. Resize window to yx σσ 2.2,2.2

14.  Return to 1

If the object is much larger than the window, then the Gaussian that is fitted will

be far larger and hence the window will grow in size until equilibrium is

achieved. Conversely, if the window is too large, the resulting Gaussian will be

far smaller than the window and hence the window will reduce in size until

equilibrium has been achieved. This approach allows colour objects to be

segmented and tracked quickly as the minimum amount of processing is

necessary on each frame.

Figure 4.6.2 (a) and (b) shows the progress of applying this active sampling

window to a live image sequence. As the hand is moved and rotated in the image

frame, the window dynamically recalculates its parameters to retain the hand

within its ROI. Figure 4.6.2 (c) shows the same procedure applied to the head

with no change in parameters. Although the model is trained upon a single

human, it has proved a generic skin tracker for all subjects regardless of skin type

and without the need for relearning the colour space of skin. If however, the
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lighting is changed, this requires that a new skin model be learnt due to the large

variations in frequency for different sources of light (i.e. fluorescent tube or

daylight). This provides a generic tracking approach for applications with

consistent illumination.

Figure 4.6.2 – Tracking head and hand in the image frame using colour

4.7 Conclusion

This chapter has demonstrated how colour can be used without high

computational cost to enhance vision algorithms. Several colour spaces have

been discussed and the benefits of 'perceptual' colour spaces demonstrated. It has

been shown that object colour is a powerful feature capable of facilitating the

robust tracking of objects in its own right. It has also been shown that with

simple techniques, colour features can provide a fast, robust approach to tracking

any generic colour object.

Throughout the remainder of this work, many of the simple techniques presented

here will be used to enhance techniques in general. Chapter 10 will actively use

the colour tracker approach presented in Section 4.6 but throughout the

remainder of this work the use of colour in PDM tracking and boundary

segmentation is implicit.

(a) (b) (c)


