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3 Linear Point Distribution Models

3.1 Introduction

The principle behind the Point Distribution Model (PDM) [Cootes 95] is that the

shape and deformation of an object can be expressed statistically by formulating

the shape as a vector representing a set of points that describe the object. This

shape and its deformation (expressed with a training set, indicative of the object

deformation) can then be learnt through statistical analysis. The same technique

can be applied to more complex models of grey scale appearance or

combinations of these techniques [Cootes 93][Lantis 95][Cootes 98]; however,

the underlying linear mathematics for model representation remains the same.

This chapter will introduce the principle, construction and application of Point

Distribution Models. Section 3.2 will provide an overview of PDM construction.

Section 3.3 will discuss the use of PDMs in tracking deformable objects and

section 3.4 will briefly discuss the reconstructive ability of models. Lastly

conclusions will be drawn.

Chapter 3
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3.2 Constructing a Point Distribution Model

3.2.1 Overview

To construct a point distribution model the shape of an object is expressed

mathematically as a vector. For a simple 2D contour, each pose of the model is

described by a vector xi
n2ℜ∈  = (x1, y1, . . . ,xn ,yn), representing the set of points

specifying the path of the contour (see Figure 3.2.1). A training set E of N

vectors is then assembled for a particular model class. In each example, the

points which specify the shape of the contour are selected such that there is a

correspondence of features between examples, e.g. in the hand example, if the jth

point (xj,yj) is the tip of the middle finger, it should remain so throughout all

training examples. In order to achieve this it is often necessary to align the

examples with each other and resample the contour by identifying landmark

points to provide consistency throughout the training set.

Figure 3.2.1 - 2D Contour of a hand

As the vector, xi, is effectively a point in a 2n dimensional space (xi 
n2ℜ∈ ) and

each vector is similar in shape, each example will produce a similar point in this

2n dimensional shape space. In fact, it would be expected that the training set

will form a relatively tight cluster. By analysing the shape of this cluster, the

deformation contained within the training set can be learnt and generalised. This

is done by making the assumption that the shape of the cluster is hyper-elliptical

(x1,y1)

(x2,y2)

(x3,y3)

(x4,y4)

(xn-1,yn-1)

(xn,yn)
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and performing Principal Component Analysis (PCA) upon the mean zeroed

training set to discover the position and parameters of the ellipsoid in shape

space.

PCA projects the data into a linear subspace with a minimum loss of information

by multiplying the data by the eigenvectors of the covariance matrix constructed

from the training set. By analysing the magnitude of the corresponding

eigenvalues, the minimum dimensionality of the space on which the data lies can

be calculated and the information loss estimated.

The principle is demonstrated in Figure 3.2.2, where the primary orthogonal axis

and its bounds are determined which describe the 3D elliptical cluster. The

centeroid of the cluster (i.e. the mean vector) is the mean shape of the training

set. The vector v1 is the primary axis of the cluster with v2 the secondary

orthogonal axis and v3 the third. Once this analysis has been performed the shape

can be restricted to lie within this cluster so constraining the shape of the model.

From this learnt model of deformation, all shapes that were present in the

training set E can be reconstructed. In addition, many other shapes (hopefully

viable) not present within the original training set can also be constructed i.e. the

PDM generalises the shape space contained in E.

Figure 3.2.2 - Hyper-elipsoid in n Dimensional Space
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Unfortunately, for all but the most simple of PDMs this hyper-elliptical

assumption does not hold true and the linear mathematics behind the process

generates a weak/un-robust model. This will be discussed in more detail in

Chapter 5.

The construction of a Point Distribution Model can be summarised with the

following algorithm,

1. Assemble a training set of shapes that represent an object class and its

indicative deformation.

2. Resample each example to provide a consistent dimensionality

throughout the training set.

3. Minimise the difference between examples by aligning each training

example using rotation, scaling and translation.

4. Normalise the training set to provide numerical stability

5. Learn the shape space by performing Principal Component Analysis

(PCA)

N.B. Steps 2 and 3 can be reversed depending upon the schemes used.

The remainder of this section will consider each of these steps in turn.

3.2.2 Obtaining Training Examples

In order to learn the natural deformation of an object class, a training set is first

assembled. This training set must be indicative of the object deformation that is

to be learnt.

Typically, training examples are extracted by hand (as in [Cootes 95][Ferryman

95][Heap 95]) to ensure that a uniform and well-labelled training set is obtained.

However, for all but the most simple of objects this is an unfeasible approach.

Other approaches to the automatic and semiautomatic generation of training

examples are the use of snakes [Kass 88] to segment simple deformable objects
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from image sequences. In a temporal image sequence the pose of a converged

snake can be used as an initial estimate for the next frame reducing the

susceptibility of snakes to their initial location. Cootes et al have also proposed

using the PDM itself to locate new objects by bootstrapping the procedure and

using a partially 'learnt' PDM to constrain segmentation of future models.

Other researchers have shown how incremental eigen models can be used to

recalculate the deformation of a model in light of new training examples without

the need for a full decomposition on the co-variance matrix [Hall 98]. Although

it has not been demonstrated that this could be used in the construction of

examples, it is evident that this type of procedure could be invaluable in the

automated construction of deformable models. An initial PDM could be used to

locate and extract further examples which could then be added to the model,

without the need for a full recomputation of the model.

A simple but effective approach can be achieved by tracing by hand a 2D contour

representing features from an image and recording the path taken as the shape is

traced. Although this aids in the assembly of a model, producing a chain code

representation of the contour, it must be correctly labelled and resampled to put

training examples within a mathematical framework on which PCA can be

performed.

Automated methods produce similar results and can easily be achieved where

only external boundaries are required. Throughout this work a common

technique used to automatically extract contours is a simple boundary-tracing

algorithm on binary blobs to extract the external contour of objects. This is

facilitated through the use of a blue screen techniques to aid binary segmentation

and will be seen in later chapters.

3.2.3 Landmark Point Assignment

In order to perform statistical analysis on a training set the procedure assumes a

single cluster is formed in shape space by the training set. This assumption works

on the principle that common points along the contour boundary do not change
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between examples. Similar shapes therefore produce similar vectors which

occupy a tight cluster in shape space. However, in order for this assumption to

hold true, consistent points along the contour must be located.

The acquisition method for training data, as previously discussed, depicts the

extent of this problem. Where a simple chain code representation is generated,

there is no guarantee of consistency between examples. In fact, examples will

generally differ in length due the size, shape and orientation of the object and

how it projects onto the image plane. As the shape deforms, the number of pixels

constituting the contour varies. As PCA relies on learning a hyper-ellipsoid in n

dimensions, all examples must be n dimensional.

A simple form of resampling can be performed by equally spacing the new n

dimensional vector along the original point contour using linear interpolation.

However, this simple resampling scheme leads to a break down of the single

cluster assumption (see Chapter 6.5.5). To provide a better sampling scheme

landmark points are identified which correspond to specific features of the

contour and resampling performed between them. These landmarks could be

high curvature areas, corners or the physical features of an object. Whether

extracted manually or automatically, the number of successfully located

landmark points will increase the correspondence between training examples.

Techniques such as snakes and the bootstrap PDM methods mentioned in the

previous section help alleviate this problem as they produce examples which are

naturally within the PCA co-ordinate frame.

Other labelling techniques have been proposed such as Genetic Algorithms (see

Chapter 2).

3.2.4 Training Set Alignment

Cootes et al suggested aligning training examples by calculating the scaling,

translation and rotation of each model to minimise the sum of the squares of

distances between equivalent points for all examples. This exhaustive process
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although suitable for simple 2D contours of low dimensionality does not provide

a suitable approach for more complex high dimensional objects.

In order to reduce the computational complexity of the approach it is possible to

locate specific features of the object such as high points in curvature, or the

moments of the object, and minimise according to these features. This can be

done by analysing the constituent points of the contour and extracting specific

features. Figure 3.2.3 demonstrates an approach to alignment by calculating the

primary axis of the 2D contour: (a) The contour is first translated so the centroid

of the object is at the origin; (b) By performing PCA on the contour points, the

principal axis of the shape can be determined; (c) Finally the contour is rotated so

the moments of the shape are aligned with the axis of the co-ordinate system.

Figure 3.2.3 - Aligning the training set

(a) Move centeroid to origin, (b) Find Principal axis of shape
(c) Rotate to align object

It is necessary to rescale the training set to provide numerical stability during the

learning process. However, if each shape is simply normalised, important

information about the relative size of examples is lost. A suitable scaling for the

contour can be extracted by calculating the mean distance of contour points from

the origin (centroid) over the entire training set and scaling each accordingly,

where

Equation 3.2-1
x

x
x i

i =′  and ∑
=

=
N

j
jN 1

1
xx

(a) (b) (c)
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This gives a pseudo normalisation where all training examples are approximately

unit length while retaining the subtle size variation between examples. As this

procedure uses the moments of the contour as features, this alignment can be

performed prior to resampling and used to aid landmark point assignment.

3.2.5 Learning Shape Space

Once a resampled training set E of N examples, xi (i=1, ..., N), is assembled. The

training set E is aligned (using translation, rotation and scaling) and the mean

shape calculated by finding the average vector. To represent the deviation within

the shape of the training set Principal Component Analysis is performed on the

deviation of the example vectors from the mean using eigenvector decomposition

on the covariance matrix S of E where,

Equation 3.2-2 ∑
=

−−=
N

i

T
iiN 1

))((
1

xxxxS

The t unit eigenvectors of S (corresponding to the t largest eigenvalues) supply

the variation modes; t will generally be much smaller than 2n, thus giving a very

compact model. A deformed shape x is generated by adding weighted

combinations of vj to the mean shape:

Equation 3.2-3 ∑
=

+=
t

j
jjb

1

vxx

where bj is the weighting for the jth variation vector.

The formulation of the PDM can also be expressed in matrix form [Cootes 95]

Equation 3.2-4 Pbxx +=

where ),,,( 21 tvvvP !=  is a matrix of the first t eigenvectors where

n
i

2ℜ∈v and T
tbbb ),,,( 21 !=b  is a vector of weights.
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Chebyshev's theorem [Walpole 98] links the probability of the occurrence of data

lying within the area of a normal distribution from the mean. This theorem is

summarised by Table 3.2-1 [Elsayed 96] and demonstrates that there is a

probability of .998 that the data will lie within three standard deviations of the

mean. Principal Component Analysis makes the assumption that the training set

is a multivariate Gaussian. As 
jj σλ ≈  (the standard deviation of the variance

along vj), suitable limits for bj are between λ j
5.2±  and λ j

3± , where
jλ  is the

jth largest eigenvalue of S. Hence the multivariate Gaussian is bounded such that

it encompass in excess of 98% of the deformation.

u
uxxP +,

0 0
σ5.0 0.192

σ 0.341
σ5.1 0.433
σ645.1 0.450
σ96.1 0.475

σ2 0.477
σ5.2 0.494
σ575.2 0.495

σ3 0.499

Table 3.2-1 - The area probability under a normalised Gaussian distribution

When high dimensional data sets are considered, eigenvector decomposition

becomes a time consuming process, as the co-variance matrix is a square nn 22 ×

matrix for a 2n dimensional data set. The memory requirements needed to store

this matrix also become prohibitive as the size of the matrix approaches the size

of a computer’s physical memory. However, it is not always necessary to solve a

matrix for all eigenvectors. If the number of training examples, N, is less than the

dimensionality 2n, the number of eigenvectors that can be extracted from the co-

variance matrix cannot exceed the number training examples (N-1). For high

dimensional problems, this is often the case and significant computational

uxx +,P

x ux +

σ
399.0

( )xp

x
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benefits can be gained by solving for a smaller NN ×  matrix derived from the

same data. If the covariance matrix,

∑
=

−−=
N

i

T
iiN 1

))((
1

xxxxS

is rewritten as

T

N
DDS

1=

where D is a Nn×2  matrix with the examples as columns.

Cootes et al demonstrated that if a new matrix T is a smaller NN ×  matrix

DDT T

N

1=

and ei (i=1, ..., N) are the unit, orthogonal eigenvectors of T with the

corresponding eigenvalues iγ :

iii eTe γ=  (i=1, ..., N)

then

iii
T

N
eDeD γ=1

premultiplying by D yields

iii
T

N
DeDeDD γ=1

and therefore

( ) ( )iii DeDeS γ=

Thus if ei is an eigenvector of T, then Dei is an eigenvector of S and has the same

eigenvalue. The N unit orthogonal eigenvectors of S are then vi (i=1, ..., N),

where

Equation 3.2-5 i

i

i
N

Dev
γ
1=

with corresponding eigenvalues ii γλ = .
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3.2.6 Human Head Example

To demonstrate the construction of a 2D PDM a model of a human head was

constructed. Figure 3.2.4 shows the training set used to generate the model along

with the source image from which the contour was extracted. The contour is

selected such that it follows the high intensity edges of the face.

Figure 3.2.4 - Training Examples for 2D Head PDM

Figure 3.2.5 - Landmark points of the 2D Head PDM

Each 2D contour consists of 66 points (i.e. n=66), 40 for the external contour of

the face, 6 for the mouth and 10 for each eyebrow. As each point is a 2D point in

the image frame this generates an example 1322 ℜ⇒ℜ∈ nx . After the training

set has been aligned, PCA is performed to extract the primary modes of

deformation i.e. the eigenvectors. The eigenvalues provide bounds for the

deformation along any mode or eigenvector as previously discussed, but by

analysing the eigenvalues further the true dimensionality of the model can be

determined.
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Figure 3.2.6 shows the normalised eigenvalues sorted into descending order. As

there are 9 training examples, this results in 8 eigenvectors (i.e. N-1 modes,

where N=9). The larger the eigenvalue the more significant the corresponding

eigenvector or mode of variation. As the number of the mode increases, so the

significance of the mode decreases. By analysing these eigenvalues, the linear

subspace on which the data lies can be determined and the information loss

estimated.  The use of this technique is discussed further in section 5.3.

Graph showing Normalised Eigenvalues for 2D Head PDM
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Figure 3.2.6 - Graph showing Normalised Eigenvalues for the 2D Head PDM

Figure 3.2.6 also shows the sum of the normalised eigenvalues. As the number of

modes increase this sum of the normalised eigenvalues approaches 1. If this is

converted into a percentile, it provides an indication of the amount of

deformation contained within the accumulated modes. The combination of all 8

modes results in a sum of 1 or 100%. Therefore using all 8 modes of

deformation, the model is capable of representing 100% of the deformation in the

training set. It can be seen that the primary mode alone accounts for 40% of the

deformation represented within the training set. It can further be seen that the

90% of the deformation is contained within the first 6 modes. If the loss of 10%

of deformation is tolerable then the data can be said to lie upon a six dimensional

space and not 122 as originally formulated. This provides a dimensional

reduction of 122 to 6 and will be discussed further in section 5.3.
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Figure 3.2.7 - Primary mode of the 2D Head PDM

Figure 3.2.7 shows the primary mode of variation drawn at intervals along the

primary axis from λ 1
2±  from the mean. This primary mode has clearly picked

out the turning motion of the head. The model has generalised the training set and

learnt what is typical deformation for the object. By applying different weighting

combinations of bj to Equation 3.2-3 new examples of the face under deformation

can be generated.

3.3 Active Shape Models

3.3.1 Overview

The Point Distribution Model contains the constraints on deformation for a

model class that has been learnt from a training set of examples. Cootes et al

describe Active Shape Models (ASMs) as the application of this deformable

model (PDM) to tracking objects within the image frame. In order to facilitate

this, the object must be able to 'move' in addition to deform within the image. For

a 2D contour, this movement consists of a translation, scale and rotation.

Assuming a constant scaling in x and y this generates four parameters which

position and orient the model within the image frame, where an instance X of the

model is given by

( )[ ] csM XxX += θ, , where

T
ccccccc yxyxyx ),,,,,,( !=X

( )θ,sM  is a rotation by θ  and a scaling by s, and (xc,yc) is the position of the

centre of the model in the image frame.

−2
1λ +2

1λMean Shape
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The ASM assumes that the next pose of the model X', will be a small variation

on X (the initial pose) and requires that X be close to the desired feature. The

model is then iteratively refined by calculating a new pose for the model X' by

adjusting s, θ , xc, yc and the deformation parameters b in order to find the closest

pose to the desired model in a least squares sense.

Throughout the course of this text the term least squares gradient descent

tracking will be used to describe the common ASM tracking algorithm.

The ASM tracking algorithm can be summarised as

1. Initialise a model X, close to a desired feature in the image frame.

2. While still tracking,

3. Using a local feature detection scheme assesses the next best

movement of the model X'.

4. Update the parameters s, θ , xc, yc  to minimise the distance

between X and X'.

5. Update the shape parameter weightings b to mimise the distance

within the constraints of the model.

Each of these steps will now be considered in turn.

3.3.2 ASM Initialisation

Due to the local search method used when deforming the contour (see next

section) and the least squares parameter approximation, it is important that the

initial contour is placed close to the desired feature. Hill et al described how a

Genetic Algorithm (GA) search can be used to facilitate this [Hill 92a][Hill 92b].

Cootes et al have also demonstrated how multi-scale approaches to image

searching can be used to reduce this susceptibility to model initialisation and

providing more robust tracking [Cootes 98]. However, given an object of a

specific class, other indicative features can be used to initialise the model. As

these features are only required for initialisation or re-initialisation when the

contour is lost, the computational complexity of such strategies is less important.
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In chapter 9 it will be demonstrated how colour features, such as those discussed

in chapter 4, can be used to initialise a model within the image frame.

3.3.3 Feature Detection

A PDM which consist of a 2D contour, typically represents the edges of an

object within an image. An edge is a high rate of change in pixel intensity and

edge detection algorithms are commonplace in image processing [Ballard 92;

Russ 94]. However, as only a local search of the image is necessary and edges

must be perpendicular to the contour, hence normal convolution methods are not

necessary.

Figure 3.3.1 - Local edge detection along boundary normals

Figure 3.3.1 demonstrates a contour within a grey scale image with four key

points along the boundary. The intensities along the normal 3n
"

are shown in the

histogram along with the continuous approximation to this data and the first

derivative. The peak of this first derivative provides a position along the normal

for the best fit edge. Once found, the control point can be moved to this new

location.

If point along the contour Pm is denoted by ),( mmm yxP
#

, where (xm,ym) is the pixel

in the image frame, the normal of the contour can be estimated as

n
"

nd

dI
"

I

n
"

(x1,y1)

(x2,y2)

(x3,y3)

(x4,y4)
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( )2
)()(

2
)()( 1111 , −+−+ −+−−+− − mmmmmmmm xxxxyyyy

mn
#

 which can be rewritten as

( )2
)(

2
)( 1111 , −+−+ −− − mmmm xxyy

mn
#

The unit vector normal 
m

m
m n

n
n #

#
" =  is therefore a one pixel length vector

perpendicular to the contour at point m. Using this locally estimated normal, the

intensity of pixels either side of the contour can be examined and any high

intensity gradients (edges) located.

As the contour is designed to lie tangential to the high intensity edges within the

image a 2D convolution is not necessary. Therefore, only the contour normal

need be searched. This localised search provides a large computational saving

over other convolution based methods such as the original formulation of the

snake where an entire gradient image is pre-computed [Kass 87]. This also

demonstrates the applicability of the colour enhancement approaches described

in chapter 4, as they can be used without a significant computational overhead.

A pixel's intensity gradient along a 1D line can be estimated using a number of

schemes. The simplest is possibly the local difference in intensity 1−−= iii IIdI ,

where I is the intensity of a pixel. A 2nd derivative 1D Laplacian function

111
2 2 −++ +−=−= iiiiii IIIdIdIId  (which has a zero crossing value) provides an

indication of a strong edge when 02 =iId , or more realistically

when [ ]( )22min i
i

Id . However, these methods are susceptible to noise and best

results have been achieved using a 1D Gaussian derivative kernal which both

smooths (blurs) in addition to detecting edges where

321121 4554 +++−−− −−−++= iiiiiii IIIIIIGaussian

The best edge along a normal, and hence the movement for a point Pm upon a

contour can therefore be estimated as

wnPP mmm ×+=′ ˆ , where ( )inP

l

li
mm

Gaussianw ×+
−=

= ˆmaxarg
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Once a new position P'm has been located for each point m along the contour, a

new vector representing the model X' is constructed by concatenating the points

into a vector as done earlier. This provides a new (noisy) shape vector where

each contour point has been moved to its best match edge location where

XXX d+='

In order to calculate the constraints on the shape of the object, the contour must

be transformed into the PCA co-ordinate space. In doing this the parameters (s,

θ , xc, yc) which provide the mapping from the model space to image space are

derived.

3.3.4 Iterative Refinement

Once a model has been initialised in the image frame, the model need only make

small iterative refinements to its shape and position between frames. Providing a

high frame rate can be achieved (and hence this assumption holding true), local

search techniques can be used to reduce the computational complexity of model

tracking.

The parameters xc, yc are first calculated by finding the centeroid of the new

contour X',

∑
=

′==
n

i
ic x

n
xx

1

1

∑
=

′==
n

i
ic y

n
yy

1

1
, where ),,,,,,(' 2211 nn yxyxyx ′′′′′′= !X

therefore the mean point of the contour is equivalent to the contour position in

the image frame where

Equation 3.3-1 T
ccccccc yxyxyx ),,,,,,( !=X
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The rotational parameter θd  is calculated by taking the average dot product of

contour points ( )iii yxP ,′ with the model contour points ( )jjj yxP , .

Using  2121 cos vvvv •=θ

Equation 3.3-2 ( ) ( ) 




 ⋅= ∑

=
′−′
′−′

−
−−

n

i
PP
PP

PP
PP

ci

ci

ci

ci

n
d

1

1 1
cosθ

The scaling parameter ds  is calculated by taking the average difference of the

length of the contour from the centeroid between iterations.

Equation 3.3-3 ( )∑
=

′−′−−=
n

i
cici PPPP

n
ds

1

1

This can be performed in both x and y separately to allow shearing of the

contour.

This 'noisy' contour is then transformed into the PCA space and the residual

movements of the contour points, xd , calculated where

Equation 3.3-4
xXXxx −−++−+= − ]])[,())[(,))1((( 1

cddsMddssMd θθθ

As all rotation, scaling and translation has now been removed, the residual

movements, xd , can only be resolved by deforming the model. This is done by

projecting the residuals into the PDM and finding the set of weightings which

provide the closest 'allowable' point in space to xd .

From Equation 3.2-4

)( bbPxxx dd ++≈+

therefore

xPb dd 1−=

 or xPb dd T=  since 1−≡ PPT , as the columns of P are mutually orthogonal and

of unit length [Cootes 95].
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The weighting vector is then adjusted to ensure that each parameter lies within

the range learnt during PCA where

bbb d+=′ , and iii b λλ 33 ≤≤−

The procedure then repeats using these new parameters for the next iteration.

3.4 Reconstructive Ability

The PDM learns shape space and in doing so generalises what is valid

deformation, allowing valid unseen data to be reproduced in addition to the

original training examples. Figure 3.4.1 shows a PDM of the hand tracking a real

hand within the image. In this figure the first finger has been bent, however, the

model remains with the finger extended. This is due to the fact that during

construction no examples were provided in the training set that represented this

type of deformation of the model. As no deformation is learnt the model is

constrained to the extended pose. These constraints on shape provide a robust

model for tracking where occlusion or clutter is present. If part of the hand is

obscured the model will fill in the missing contour as the deformation of all

points are statistically linked together.

Figure 3.4.1 - Constrained PDM tracking hand
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To illustrate the reconstructive ability of the PDM a sample training set was

constructed which consisted of examples of leaf. Each leaf was segmented from

images using a colour threshold and boundary-tracing algorithm. The contour

was aligned as described in section 3.2.4 and four landmark points identified at

the horizontal and vertical extremities of the boundary. Further points were then

introduced at regular intervals between the landmarks. Before PCA is performed

all shape vectors are normalised to provide numerical stability. The resulting

PDM is shown in Figure 3.4.2. After PCA, 99.9% of the deformation contained

in the training set is encompassed by the 44 eigenvectors corresponding to the 44

largest eigenvalues. Figure 3.4.2 show the primary 5 modes of variation, which

corresponds to the 5 largest eigenvalues after PCA. The centre shape shows the

mean, and the deformation from left to right shows the effect of each mode of

variation.

It can be seen that the 1st mode of deformation encompasses the horizontal size

of the shape, i.e. how elongated the leaf is. The 2nd mode is partly responsible for

the curvature and size of the sample at its extremities, through their combination

all training leaf samples can be reconstructed.

Figure 3.4.2 - First Five Modes of variation of the leaf PDM

1ST MODE

2ND MODE

3RD MODE

4TH MODE

5TH MODE
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Using the primary 44 modes of variation the accurate reconstruction of shape is

possible. However, this is more information than is required for the purposes of

the investigation. By reducing the number of modes further, two objectives are

achieved. Firstly, the size of the model is reduced. Secondly, only the major

deformations of shape are modelled and the finer deformation disregarded, i.e.

the shape is smoothed while retaining the important information.

Figure 3.4.3 shows the results of using only the first nine modes of variation to

reconstruct the shape. Notice that although the overall shape of the leaf is

preserved the model is considerably smoothed.

Figure 3.4.3 - Training examples and the reconstructed shape using 9 modes
of variation

Although this smoothing is a lossy compression technique, the information that

is discarded is of little use. This is due to small leaf samples where their

extraction resulted in blobs of the order of tens of pixels rather than hundreds.

The resulting boundary is heavily ‘step-like’ due to the pixelisation of the shape.

During re-sampling, bilinear interpolation results in the boundary being
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smoothed into unrepresentative shapes which are indicative of the modality used,

and not the actual leaf sample. By using the minimum number of modes to

reconstruct the shape, the errors introduced into the shape by the image size are

discarded and a better estimation of shape provided. Figure 3.4.4 shows a small

leaf sample, with the interpolated/resampled boundary and the resulting

smoothing which comes from PDM reconstruction. It should be noted that the

smoothed boundary produced by the PDM goes some way to reconstructing the

information lost during acquisition. This is due to the statistical nature of the

PDM and its knowledge of what a leaf ‘should look like’.

(a) (b)        (c)

Figure 3.4.4 - Training examples and the reconstructed shape using 9 modes

(a) Original Image of leaf (b) resampled boundary of leaf  (c) reconstructed

boundary of leaf

3.5 Conclusions

The statistical constraints of the PDM provide several benefits over other model-

based approaches. Firstly, the model is taught to fit known objects and

deformations even when slightly different from those present within the training

set. However, it does not allow deformation for unseen/unfamiliar objects i.e. it

generalises shape. Secondly, the mean distance of constrained contour points to

detected/desired edges can be used as a valuable error metric for model fitting.

The constraints provide robustness to noisy, partially occluded object boundaries

as well as background clutter and lastly the constraints allow the contour to

statistically infer contour shape in the absence of local information from other

available information.


