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2 Literature Review

2.1 Introduction

An initial literature review was performed which surveyed the field of 3D

computer vision. The review covered types of image data from 2D images, range

data and depth maps to volumetric segmentation. Acquisition methods,

reconstruction and image segmentation were also covered and conclusions drawn

to support the remainder of the research. This initial survey was too general for

inclusion within this manuscript and hence is available as a separate technical

report [Bowden 96].

The conclusions of the report were that contour or surface based approximations

(specifically statistical contour models) are important for the following reasons:

• Image searching is localised along contour boundaries and hence

provides significant computational savings over more traditional low

level image processing techniques. This benefit is more apparent where

real-time processing of image sequences or large volumetric datasets

are considered.

• The ability to introduce a priori knowledge about object shape and

deformation into a contour provides a robust deformable template
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which can be applied to an image where the absence or occlusion of

object features and cluttered/complex backgrounds would result in the

failure of other techniques.

• The ability to accurately segment objects from images or sequences

provides smoothed object boundaries.

• The ability to aid in the classification of objects under affine

transformation.

The remainder of this chapter will present a more specific review of related

literature, namely in the area of statistical models of deformation and associated

approaches.

2.2 Contour Models

The seminal work of Kass et al on Snakes or the Active Contour Model (ACM)

presented a class of semi-automatic methods for segmentation using energy

minimising curves [Kass, 1988; Kass, 1987]. In these methods, a user draws the

approximate boundary of the region of interest in an image. Then, an elastic

contour is fitted to the boundary points and the curve is iteratively refined until

its internal energy defined by its curvature is minimised while responding to

external forces derived by image edges. Many researchers have shown how these

active contour models can be used to locate and track an object in an image

[Etoh, 1992; Ueda, 1992; Cipolla, 1992].

Zhou and Pycock segment cells from 2D images using statistical models applied

like snakes [Zhou, 1995; Zhou, 1995]. Models are built up for different forms of

cells; the interpretation process optimises the match between models and the data

using a Bayesian distance measure.  Lobregt and Viergever extend upon this

model, presenting solutions to the problems of unwanted deformation like

shrinking and vertex clustering [Lobregt, 1995]. There is a wealth of published

work on variations on the basic model proposed by Kass et al, all use the same

basic model with small constraints added to allow a priori knowledge of shape to

be imposed upon the model and hence provide better performance.
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Terzopolous and Vasilescu [Terzopoulos 91] extended the snake model to

include an inflation force that helps remove the need for initial contour

placement and thus avoid convergence on local minima. The inflation force

drives the snake model outwards towards the object boundary like an inflating

balloon. Terzopolous and Vasilescu formulated the model as a finite element

mesh and later extended the model to a thin plate spline, demonstrating

successful results in the reconstruction of range data and volumetric CT data

surface representations [McInery 93]. Bowden et al extended this work further

and is discussed in more detail in Appendix 2 [Bowden 97].

Several researchers have proposed B-Spline variations of the active contour

model [Rueckert, 1995; Schnabel, 1995; Blake 1998]. Schnabel and Arridge

looked at the problems associated with high curvature in active contour models,

proposing a curvature matching technique for isophoto curvature matching. They

look at the applications of using this approach to segment high curvature

contours of the brain from medical images. Blake and Isard have combined many

of their publications on the subject in the text ‘Active Contours’ which covers the

construction, tracking and applications of B-spline contour approximations

[Blake 1998].

It has been shown that these 2D models can be used to reconstruct 3D surfaces

from volumetric data by applying snakes to individual slices to extract contours

that can then be reconstructed into a 3D model [Carlbom, 1994; Goshtasby,

1995]. A typical implementation of such a system uses the final model from one

slice as an initial estimate for the next to reduce user intervention.

Ivins and Porrill presented Active Region Models [Ivins 98], an adaptation to

Kass's Active Contour Models where colour regions within an image are used to

locate and track the boundarires of regions within the image.

A Neural network approach was proposed by Chiou et al called the neural

network based stochastic active contour model  (NNS-SNAKE) which integrates

a neural network classifier for systematic knowledge building, and an active



8

contour model for automated contour location, using energy functions to

stochastically locate the most probable contour.

2.3 Statistical Models of Deformation

A Point Distribution Model (PDM)[Cootes 95] gets its nickname of ‘Smart

Snake’ from its obvious similarity to elastic snakes (Active Contour Models,

ACM [Kass, 1987]). The major difference is that while snakes retain shape

information in the elasticity and rigidity of their constituent points, a PDM uses a

statistical model to specify allowable deformations. This not only makes the

PDM less computationally expensive than the ACM but deformation is easier to

build into the model.

Since they were proposed by Cootes et al, a wealth of research has been

undertaken into Point Distribution Models. A PDM (the underlying mathematical

model) or Active Shape Model (the model’s applied name) is a statistical model

which can be constructed from a training set of correctly labelled images. A

PDM represents an object as a set of labelled points, giving their mean positions

and a small set of modes of variation which describe how the object’s shape can

change. These modes of variation are gained from Principal Component Analysis

(PCA) on the training set and represent the largest eigenvectors of the covariance

matrix. An Active Shape Model exploits the linear formulation of PDMs in an

iterative search procedure capable of rapidly locating the modelled structures in

noisy, cluttered images, even when partially occluded [Cootes, 1995].

Turk  and Pentland [Turk 91] present a method for extracting only the number of

eigenvectors equal to the number of training examples and not the dimensionality

of the set, in a similar manner to that of Cootes et al [Cootes 95] and this is

discussed in more detail in Chapter 3.

It has been shown by Bowden et al that the PDM provides sufficient dimensional

reduction inherent to the model to enable the simple classification of static shape

[Bowden, 1995; Bowden, 1996]. These authors outline a simple method for

using this dimensional reduction to classify shape deformation from the variation



9

weights from the mean. They show how static gestures can be recognised in real-

time for a PDM of the human hand.

Lantis, Taylor and Cootes have also extended their initial work from contour

models to shape and grey-level models [Lantis, 1994]. They use a combined

PDM that uses both shape and a grey scale maps to locate and identify human

faces.

Turk and Pentland use principal component analysis to describe face images in

terms of a set of basis functions or ‘eigenfaces’. Though valid modes of variation

are learnt from a training set, and are more likely to be more appropriate than a

‘physical’ model, the eigenface is not robust to shape changes, and does not deal

well with variability in pose and expression. However, the model can be matched

to an image easily using correlation-based methods [Turk 91].

Magee and Bole presented Vector Distribution Models, where points around a

connected contour are converted into a vector, and these vectors are concatenated

into a final training vector on which PCA is performed [Magee 98]. These

authors went on to discuss the use of Canonical Analysis, a similar procedure to

PCA where two co-variance matrices are formed, one describing Intra class

variation and one Inter class variation.  After extraction of a generalised eigen

system a new eigen space is extracted. Although this space may not necessarily

be optimised for dimensional reduction, it is useful for data classification as the

first components of the model represent inter-class variation [Magee 99].

Swets and Weng [Swets 96] presented a technique called a combined eigen-

canonical transform which combined canonical analysis with PCA to give data

reduction and improved classification. Canonical analysis was performed on data

after it had been projected down into the lower eigen space gained from PCA

similar to that outlined in section 6.

Initial work of extending the PDM (Active Shape Model) to 3D has already been

proposed by [Hill, 1995].
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Ferryman et al use PCA on 3D rigid models to build a deformable model for

various different car shapes which is used to locate and track moving traffic

[Ferryman, 1995]. The process is very similar to that of the PDM. However,

instead of modelling the object as points that make up the boundaries of the

object, points are chosen at landmarks such as corners, and the model built up

from the known interconnection of these points.

O’Toole et al presented work for 3D models of faces represented as a mean face

with weightings that can be used to deform the model [O’Toole 96]. Faces were

built up as 3D surfaces from a set of 65 male and 65 female heads. PCA analysis

was performed to provide a compact model. They show that the primary mode of

variation of the eigenface data set provides the mapping from a male head to a

female head.

2.4 Non Linear PDMs

The linear formulation of the PDM relies on the assumption that similar shapes

will produce similar vectors. This being the case, it is a fair assumption that the

training set will generate a cluster in some shape space. However, it is unfair to

assume that this cluster will be uniform in shape and size. As more complex

models are considered the training set may even generate multiple, separate

clusters in the shape space.

Under these circumstances the linear PDM will begin to fail as non-linear

training sets produce complex high dimensional shapes which, when modelled

through the linear mathematics of PCA, produce unreliable models. The nature

of non-linear shape spaces will be discussed in depth in later chapters but a

number of authors have addressed the problems associated with the construction

of non-linear PDMs.

Where rotational non-linearity is known to be present within a model this can be

removed/reduced by mapping the model into an alternative linear space. Heap

and Hogg suggested using a log polar mapping to remove non-linearity from the

training set [Heap 95]. This allows a non-linear training set to be projected into a
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linear space where PCA can be used to represent deformation. The model is then

projected back into the original space. Although a useful suggestion for

applications where the only non-linearity is pivotal and represented in the paths

of the landmark points in the original model, it does not provide a solution for

the high non-linearity generated from other sources.

Higher order non-linearity is often the result of incorrect labelling of training

examples. By carefully selecting landmark points by hand, a near optimum

labelling can be achieved which will minimise the non-linearity of a training set.

However, for all but the most simple of cases this is not a feasible solution. Often

semi-automated procedures are used where a user can speed up the process of

labelling example shapes for analysis. Fully automated procedures are rarely

used due to the problems of correctly assigning landmarks and the highly non-

linear models that this produces.

Work done by Baumberg and Hogg goes some of the way to solving non-

linearity in deformable models by using a B-Spline representation. Landmark

points for the Spline are represented as a PDM [Baumberg, 1995]. The curvature

of the B-Spline takes on some of the non-linearity of the model and therefore

reduces the problems presented with linear PDM representing non-linear models.

It has been proposed by Kotcheff and Taylor that non-linearity introduced during

assembly of a training set could be eliminated by automatically assigning

landmark points in order to minimise the non-linearity of the corresponding

training cluster [Kotcheff 97]. This can be estimated by analysing the size of the

linear PDM that represents the training set. The more non-linear a proposed

formulation of a training set, the larger the PDM needed to encompass the

deformation. The procedure was demonstrated using a small test shape and

scoring a particular assignment of landmark points according to the size of the

training set (gained from analysis of the principal modes and the extent to which

the model deforms along these modes, i.e. the eigenvalues of the covariance

matrix). This was formulated as a minimisation problem, using a genetic

algorithm. The approach performed well but at a heavy computation cost

[Kotcheff 97].
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As the move to larger, more complex models or 3D models is considered, where

dimensionality of the training set is high, this approach becomes unfeasible. A

more generic solution is to use accurate non-linear representations. As linear

PCA is used for linear PDMs, so, non-linear PCA can be used to model non-

linear PDMs and many researchers have proposed approaches to this end.

Sozou et al first proposed using polynomial regression to fit high order

polynomials to the non-linear axis of the training set [Sozou 94]. Although this

compensates for some of the curvature represented within the training set, it does

not adequately compensate for higher order non-linearity, which manifests itself

in the smaller modes of variation as high frequency oscillations. In addition, the

order of the polynomial to be used must be selected and the fitting process is

time consuming.

Sozou et al further proposed modelling the non-linearity of the training set using

a backpropagation neural network to perform non-linear principal component

analysis [Sozou 95]. This performs well, however the architecture of the network

is application specific; also, training times and the optimisation of network

structure are time consuming. What is required is a means of modelling the non-

linearity accurately, but with the simplicity and speed of the linear model.

Several researchers have proposed alternatives, which utilise non-linear

approximations, estimating non-linearity through the combination of multiple

smaller linear models [Bowden 97; Bregler 94; Cootes 97; Heap 97]. These

approaches have been shown to be powerful at modelling complex non-linearity

in extremely high dimensional feature spaces [Bowden 97].

The basic principle behind all these approaches is to break up any curvature into

piecewise linear patches, which estimate the non-linearity rather than modelling

it explicitly. This is akin to the polygonal representation of a surface. A smooth

curved surface can be estimated by breaking it down into small linear patches. In

the field of computer graphics this technique is performed to reduce render time.

There exists, of course, a trade off between visual accuracy and computation
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speed (where the minimum numbers of polygons are used to achieve the desired

appearance). The same problem is present in non-linear PDM estimation, where

the minimum number of linear patches that accurately represent the model must

be determined.

Bregler and Omohundro suggested modelling non-linear data sets of human lips

using a Shape Space Constraint Surface [Bregler 94]. The surface constraints are

introduced to the model by separating the space surface into linear patches using

cluster analysis. However the dimensionality of these 'lip' shape spaces is low as

is the non-linearity due to the simplified application of the work.

Cootes and Taylor suggested modelling non-linear data sets using a Gaussian

mixture model, which is fitted to the data using Expectation Maximisation

[Cootes 97]. Multiple Gaussian clusters are fitted to the training set. This

provides a more reliable model as constraints are placed upon the bounds of each

piecewise patch of the shape space, which is modelled by the position, and size

of each Gaussian.

Both of these estimation techniques become unfeasible as dimensionality and

training set size increase. However by projecting the training set down into the

linear subspace as derived from PCA the dimensionality and therefore

computation complexity of the non-linear analysis can be reduced significantly to

facilitate statistical and probabilistic analysis of the training set. This projection

relies upon the dimensional reduction of PCA while retaining the preservation of

the important information, the shape of the training set [Bowden 97; Bowden 98]

and will be discussed fully in the following Chapters.

2.5 Tracking

By treating the problem of model fitting and tracking as an optimization

technique the problems of discontinuity can be overcome. Hill et al proposed

using genetic algorithms to model the discontinuous changes in shape

space/model parameters [Hill 91][Hill 92]. Cootes et al present the use of genetic

algorithms for initial image search and initialisation of PDMs within the image
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frame [Cootes 95]. The use of genetic algorithms to overcome the complexities

of tracking with the piecewise non-linear model has been investigated. However,

the performance of such an approach relies largely on the formulation and

structure of the genetic algorithm itself.

Blake et al emphasised the advantage of using low-parameter descriptions of

deformable models in terms of B-Splines [Blake 93]. In this method, a

deformable model is regarded as a linear combination of basis templates, and the

state of the model is specified by a vector of coefficients for these templates. The

mode leads naturally to a Kalman filter formulation in which the model is driven

by an explicit local search for edges lying perpendicular to its boundary. These

suggested movements are then used to update the model via the Kalman filter.

Ivinns and Porrill suggested a similar approach but propsed an alternative to the

Kalman filter using an explicit least-squares approximation [Ivins 98].

Numerous approaches and variations exist on the subject of object tracking but a

recent development is that of CONDENSATION [Blake 98][Isard 98]. Blake and

Isard presented the Stochastic Conditional Density Propagation

(CONDENSATION) algorithm in which the location of a contour or object is

probabilistically tracked over time using a model of the object’s dynamics to

predict movement.  Objects are not represented by a single parameterisation but

instead by a probability density function (PDF) which represents all possible

parameterisations of the model. By generating multiple hypotheses from this

distribution at each iteration, and checking each hypothesis against the image for

supporting information, CONDENSATION allows objects to be tracked which

exhibit discontinues movement in complex noisy scenes.


