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Appendix A – K-means and Fuzzy K-means Clustering

11 

11.1 K-Means Clustering

Clustering algorithms attempts to segregate a dataset into distinct regions of

membership, this is widely performed by a gradient descent based iterative

algorithm that is known as k-means (or c-means) algorithm or the Generalised

Lloyd algorithm {Karayiannis 95]. The k-means algorithm begins with a set of k

initial exemplars, where the data is to be segregated into k distinct regions. Each

region is evaluated with the exemplar as the centeroid of the region. Data points

are assigned to the exemplar in a nearest neighbour fashion and the exemplars

moved to minimise the distance between the exemplar and its members. This

membership is reassessed at each iteration and repeated until the algorithm

converges upon a solution i.e. the movement of the exemplars approaches zero.

Figure 11.1.1 - K-means clustering
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( )MY yyy ,,, 21 !=  where n
j ℜ∈y  and kj ,,2,1 !=  is performed by

minimising the cost function D where,
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The K-means algorithm assigns each training vector to a certain cluster on the

basis of the nearest neighbour condition. According to this strategy, the training

vector xi is assigned to the jth cluster if ( ) ( ) ( )jiYiji ddd
j

yxxyx y ,min, min ∈== ,

where ( )jid yx ,  is the squared Euclidean distance between the training vector xi

and the exemplar yj, defined as ( ) 2
,, jijid yxyx =  [Karayiannis 95].

The nearest neighbour description can be described by the membership function
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The algorithm minimises this cost function D through the iterative refinement of

cluster centres where the exemplar yj is the mean of the vectors assigned to it,
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Although the k-means algorithm is simple and relatively fast to iterate it is a

gradient descent method and therefore only capable of finding local energy

minima. It will always converge on a low cost solution, but because the energy

surface that it traverses is full of local minima, it will not necessarily find the

global solution As such, it is extremely sensitive to the initial placement of

exemplars. Exemplars are commonly placed randomly within the data space or

randomly allocated from the data points themselves. It is therefore necessary to
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run the algorithm a number of times with different random initialisations to try

and find the best local minima possible.

11.2 Selecting the Natural Number of Clusters k

Often during clustering the natural number of distinct clusters is known. Under

these circumstances cluster analysis can be performed using k=5. However, more

often, little is known about the nature of the data and a method of estimating k is

required. Furthermore, the nature of the energy minimisation within the k-means

algorithm makes the assumption that clusters are hyper-spherical. Where

elongated hyper-elliptical clusters are present these may be better modelled using

multiple adjoining spherical clusters as demonstrated in chapter 5.2.

The cost function D is commonly used as a metric with which to assess the

performance of clustering. As the number of clusters is increased, so the resulting

overall cost diminishes in a characteristic way.

Number of Clusters against Resulting Total Cost Function
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Figure 11.2.1 - Characteristic Cost Graph for k-means for 1 < k < M

Figure 11.2.1 shows the characteristic graph produced for a training set by

plotting the resulting overall cost of a converged solution against the number of

clusters k, where 1<k<M.  The overall cost of a solution decreases as the number

of clusters increases, where k=1 produces the highest cost and k=M (the number
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of training examples) produces a cost of zero. However, as the number of k is

increased there becomes a point where increasing k further does not produce a

significant decrease in the resulting cost. This is said to be the natural number of

clusters of the data and is a simple but effective method for estimating k.

11.3 The Fuzzy K-means Algorithm (FCM)

Fuzzy set theory is a method of representing vagueness in every day life.

Bezdeck, Ehrlich and Full proposed a family of fuzzy k-means algorithms

[Bezdeck 84]. Fuzzy clustering algorithms consider each cluster as a fuzzy set,

while a membership function measures the possibility that each training vector

belongs to a cluster. As a result, each training vector may be assigned to multiple

clusters with some degree of certainty measured by the membership function.

Thus, the partition of the training set is based upon soft decisions [Karayiannis

95].

The fuzzy k-means algorithm uses a fuzzy membership rule where [Bezdeck84]
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The new cluster position yj is therefore calculated as

( )

( )∑

∑

=

==
M

i

m
ij

M

i
i

m
ij

j

u

u

1

1

x

xx
y  and kj ,,2,1 !=

The "fuzziness" of the clustering produced by these algorithms is controlled by

the parameter m, which is greater than 1 [Bezdeck84]. As this parameter

approaches 1, the partition of the data is nearly the binary decision used in the k-

means algorithm. However, as the parameter m is increased the membership

degrades towards a fuzzy state [Bezdeck84].
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Results comparing the partition of space using the k-means algorithm and the

FCM algorithm can be found in section 5.2, Figure 5.4.3.


