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Abstract

This paper presents a variety of probabilistic models for tracking small-area targets which are common objects of interest in outdoor visual

surveillance scenes. We address the problem of using appearance and motion models in classifying and tracking objects when detailed

information of the object’s appearance is not available. The approach relies upon motion, shape cues and colour information to help in

associating objects temporally within a video stream. Unlike previous applications of colour and complex shape in object tracking, where

relatively large-size targets are tracked, our method is designed to track small colour targets commonly found in outdoor visual surveillance.

Our approach uses a robust background model based around online Expectation Maximisation to segment moving objects with very low false

detection rates. The system also incorporates a shadow detection algorithm which helps alleviate standard environmental problems

associated with such approaches. A colour transformation derived from anthropological studies to model colour distributions of low-

resolution targets is used along with a probabilistic method of combining colour and motion information. A data association algorithm is

applied to maintain tracking of multiple objects under circumstances. Simple shape information is employed to detect subtle interactions such

as occlusion and camouflage. A novel guided search algorithm is then introduced to facilitate tracking of multiple objects during these events.

This provides a robust visual tracking system which is capable of performing accurately and consistently within a real world visual

surveillance arena. This paper shows the system successfully tracking multiple people moving independently and the ability of the approach

to maintain trajectories in the presence of occlusions and background clutter.

q 2003 Published by Elsevier B.V.
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1. Introduction

There has been extensive work on the subject of tracking

multiple point targets, typically in the arena of radar

tracking. The main components of which are the tracking

process itself and data association. Tracking deals with

maintaining motion models of the objects being tracked

whereas data association uses the motion model which

summaries all past measurements of a target to predict a

position for the next time step. Data association is then

responsible for matching or assigning measurements at the

current time to targets. As a number of objects move

independently, target observations may fall in other targets’

predicted areas. False or undetected measurements further

introduce ambiguity to this assignment problem. Unlike

Radar tracking systems, visual-based systems require

preprocessing to obtain measurements of a target motion

state. Targets may be occluded by some stationary objects in

the scene as well as by other targets. Occlusions do occur in

Radar tracking systems, however, they are few and do not

last long. Therefore, standard tracking and data association

algorithms are sufficient. In visual surveillance, targets

consisting of pedestrians and vehicles can have relatively

slow non-linear motions. The occlusions tend to happen

more frequently and last for longer periods. Standard

tracking and data association algorithms may terminate

their tracks sooner to reduce the chance of incorrect

assignment (as the prediction uncertainty grows with

time). In appearance-based tracking systems, a reliable
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model is required to facilitate tracking an object through

background clutter that overcomes these aforementioned

difficulties.

This paper addresses the problem of using appearance

and motion models in tracking low-resolution colour

objects. Instead of relying solely upon a motion model

and maintaining multiple hypotheses, simple shape and

colour information can be useful in data association

resulting in reducing the number of hypotheses that need

be supported. However, the number of pixels constituting

an object can be too small to be able to build a reliable

appearance model for either shape or colour tracking. An

example of targets used in systems by many authors is

shown in Fig. 1(a) while our method monitors targets in

the scene similar to Fig. 1(b). In such cases, the colour

distribution learnt from the scene is deemed unreliable

due to the limited supporting evidence obtained from the

scene. The number of pixels supporting the object is too

few to train a complex shape or colour model. As the

model becomes more complex, the number of required

training samples increases exponentially. This not only

leads to overfitting, but some algorithms may converge

upon singular solutions leading to an unstable system.

Under these circumstances, most systems treat the colour

information as unreliable and use motion cues and simple

shape features alone to track objects [10,18,25]. This

paper utilises both simple shape and motion along with a

colour model based on transformations derived from

psychophysical studies [24,26]. This transformation

provides the ability to construct a simple colour profile

based upon a small sample data set which overcomes

colour consistency issues while providing sufficient

discrimination to distinguish between different colours.

This paper is organised as follows: Section 2 provides a

survey of related work. The system components are

described in Section 3. Sections 4 and 5 outline the main

parts of the tracker; object detection and object tracking

modules. Experimental results are presented in Section 6

along with discussions and possible further improvements.

It is followed by a conclusion in Section 7.

2. Related work

The topic of tracking non-rigid objects by appearance has

been tackled using various image cues. Colour, motion,

shape, depth are the common appearance modalities used in

such work. As mentioned in Section 1, most of them

designed to deal with relatively large-scale objects.

Birchfield [4] used colour cues and intensity gradients to

control acamera’s panand tilt to track ahumanhead aroundan

untextured and static room where the head is modelled as an

ellipse. The attributes of the ellipse are the colour contents

inside the ellipse and the intensity gradient around the

perimeter. The colour histogram and histogram intersection,

introduced by Swain [27], was used as a colour model and

similarity measure. The colour model consists of a histogram

with eight bins for chrominance elements, ðG 2 RÞ and ðB 2

GÞ and four bins for the luminance ðR þ G þ BÞ: A matching

score which is a combination of gradient and colour cues is

presented. Bradski tracked a person’s face to form part of a

perceptualuser interface [7].Themodelwasbuiltbysampling

skin-coloured pixels, converting to the HSV colour space and

constructing a histogram of hues if their saturation and value

are greater than a predefined threshold. The Pfinder system

[28] models parts of a person’s body with Gaussian

distributionscalledblobs.Theco-ordinateof theblobcentroid

and YUV colour components are encoded and used to track

constituentbodyparts.McKennaetal. [19–21]usedamixture

of Gaussian distributions to model and track a multi-colour

object. At each time step, the model is fitted by semi-

parametric learning based on the responsibility of each model

component and a cross-validation method. The training and

validation sets are sampled hue and saturation pairs from

pixels with values within a predefined band. W4 [11] uses

relatively complex shape and intensity to track people,

identifying poses and separating individuals during occlu-

sion. Koller et al. [17] used contour and camera placement

assumptions to track objects during occlusion. The tracking

process in this system is by proximity or simple 2D motion

models and a similarity measure of object appearance. These

systems require a high-quality representation or a reasonably

large number of pixels on the targets, for example, at least 250

Fig. 1. (a) Scene with a high-resolution target, (b) scene with a low-resolution target.
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pixels per blob are required for the W4 approach. On the other

hand, systems as in Refs. [10,18,25] employ simple shape

information and motion models to classify and track multiple

objects. Moving objects are classified into categories such as

people or cars. Since the camera has a wide-angle lens and is

mounted at a great distance from most targets, the extracted

objects in this situation have low resolution and a small

number of supporting pixels.

3. System overview

The system consists of two main parts, an object detection

module and a target tracking module as show in Fig. 2. The

object detection module deals with detecting moving objects

from a stationary scene, eliminating shadows and removing

spurious objects. The target tracking module takes detected

objects from the current frame and matches them to the target

models maintained in the target model library. The tracking

process is performed in 2D; therefore, a geometric camera

calibration is not required. Each target model summaries all

past measurements into its appearance and motion models.

The target tracking module maintains these target models to

facilitate the matching process as well as eliminate spurious

trajectories. The outputs of this module are target trajectories

that exhibit temporal and spatial consistency.

4. Object detection module

The module for object detection consists of three parts.

First, each pixel in the input images is segmented into

moving regions by a background subtraction method. The

background subtraction uses a per pixel mixture if

Gaussians for the reference image to compare with the

current image. The outcome is fed into a shadow detection

module to eliminate shadows from moving objects. The

resulting binary image is then grouped into different objects

by the foreground region detection module.

4.1. Background modelling

This section discusses the background model used by

our method. The model operates within a similar frame-

work to that introduced by Stauffer and Grimson [10,25].

The difference lies on the update equation of the model

parameters and the initial weight of a new Gaussian

component (will be explained later in this section). In

previous work we have demonstrated the superior

performance of update equations derived from sufficient

statistics and L-recent window formula over other

approaches [15,16]. The derivation of the update

equations is given in Appendix A. This provides a system

which learns a stable background scene faster and more

accurately than that of Stauffer and Grimson. Fig. 3 shows

Fig. 2. Outline architecture of our system.

Fig. 3. Flowchart of background subtraction and maintenance.
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a flowchart of the background subtraction and mainten-

ance used in this paper.

In this system, each pixel in the scene is modelled by a

mixture of K Gaussian distributions (K is a small number

from 3 to 5). Different Gaussians are assumed to represent

different colours. The probability that a certain pixel has a

value xN at frame N; can be written as

pðxNÞ ¼
XK
j¼1

wjhðxN ; mj; SjÞ ð1Þ

where wk is the weight parameter of the kth Gaussian

component which represents the time proportions that the

colour stays in the scene. Its value also has to satisfy the

following stochastic conditions:

XK
j¼1

wj ¼ 1 and wk $ 0; k ¼ 1; 2;…;K: ð2Þ

hðx;mk;SkÞ is the Gaussian distribution of kth component

or kernel represented by

hðx;mk;SkÞ

¼
1

l2pSkl
1=2

exp 2 1
2
ðx 2 mkÞ

TS21
k ðx 2 mkÞ

� �
ð3Þ

where mk is the mean and Sk ¼ s2
kId is the covariance

of the kth component. d is the dimensionality of the

vector x [ Rd: This simplification reduces model accu-

racy but provides a significant increase in efficiency as it

removes the need for matrix inversions on a per pixel

level.

The background components are determined by assum-

ing the background contains the B highest probable colours.

These probable background colours are the ones that remain

static for a large portion of time. (Static single-colour

objects tend to form tight clusters in the colour space while

moving ones form wider clusters due to different reflecting

surfaces during movement). A parameter called fitness value

as wk=sk is introduced to quantify this degree of similarity to

be a part of the background for each mixture component. To

identify background components, the K distributions are

ordered based on the fitness value and the first B distribution

is determined by

B ¼ arg min
b

Xb

j¼1

wj . th

0
@

1
A: ð4Þ

{w1;w2;…;wK} are now the weight parameters of the

mixture components in descending orders of fitness values.

The threshold th is the minimum fraction of the background

model. In other words, it is the minimum prior probability

that the background is the scene, i.e. th ¼ 0:8 is the prior

probability that 80% of the scene variation is due to the

static background processes.

Background subtraction is performed by marking any

pixel that is more than 2.5 standard deviations away from all

B distributions as a foreground pixel; otherwise a back-

ground pixel.

If the above process identifies any match to the existing

model, the first Gaussian component that matches the test

value will be updated with the new observation by the

update equations,

ŵðNþ1Þ
k ¼ ŵðNÞ

k þ aðNþ1ÞðMðNþ1Þ
k 2 ŵðNÞ

k Þ ð5aÞ

m̂ðNþ1Þ
k ¼ m̂ðNÞ

k þ rðNþ1ÞðxNþ1 2 m̂ðNÞ
k Þ ð5bÞ

ŜðNþ1Þ
k ¼ ŜðNÞ

k þrðNþ1ÞððxNþ1 2 m̂ðNÞ
k ÞðxNþ1 2 m̂ðNÞ

k ÞT 2 ŜðNÞ
k Þ

ð5cÞ

where

aðNþ1Þ ¼max
1

N þ1
;

1

L

� 	

and rðNþ1Þ ¼max
1XNþ1

i¼1

MðNþ1Þ
i

;
1

L

0
BBBBB@

1
CCCCCA:

The membership function which attributes new obser-

vations to a model component is

Mðtþ1Þ
k ¼

1; if wk is the first matched Gaussian component;

0; otherwise:

(

Here wk is the kth Gaussian component, aðNþ1Þ is the

learning rate and 1=a defines the time constant which

determines change. N is the number of updates since system

initialisation. Eqs. (5a)–(5c) is the approximation of those

derived from sufficient statistics L-recent window to reduce

computational complexity (see Appendix A).

If no match is found to the existing components, a new

component is added. If the maximum number of com-

ponents has been exceeded the component with lowest

fitness value is replaced (and therefore, the number updates

to this component is removed from N). The initial weight of

this new component is set to aðNþ1Þ and the initial standard

deviation is assigned to that of the camera noise.

This update scheme allows the model to adapt to changes

in illumination and run in real-time.

4.2. Shadow elimination

In order to identify and remove moving shadows, we

need to consider a colour model that can separate chromatic

and brightness components. It should also be compatible

and make use of our mixture model. This can be done by

comparing non-background pixels against the current

background components. If the difference in both chromatic

and brightness components are within some threshold, the

pixel is considered as a moving shadow. We use an effective

computational colour model similar to the one proposed

by Horprasert et al. [12] to fulfil these needs. It consist of

P. KaewTrakulPong, R. Bowden / Image and Vision Computing 21 (2003) 913–929916



a position vector at the RGB mean of the pixel background,

E; an expected chromaticity line, kEk; a chromatic

distortion, d; and a brightness threshold, t: For a given

observed pixel value, I; a brightness distortion, a; and a

colour distortion, c; the background model can be calculated

by

a ¼ arg min
z

ðI 2 zEÞ2 ð6Þ

and

c ¼ kI 2 aEk: ð7Þ

With the assumption of a spherical Gaussian distribution

in each mixture component, the standard deviation of the

kth component sk can be set equal to d; The calculation

of a and c are trivial using a vector dot product. A non-

background observed sample is considered a moving

shadow if a is within, in our case, 2.5 standard deviations

and t , c , 1:

Fig. 4 shows an example of applying our background

subtraction with shadow suppression to an outdoor scene. In

the sequence, reflection from building glass doors develops

long shadows from the foreground objects. It can be seen

that most of the moving shadows from the foreground

objects. It can be seen that most of the moving shadows can

be identified and eliminated from the foreground objects.

Another example of our algorithm used in an indoor

environment can be found in Ref. [6].

4.3. Postprocessing

Although we have maintained a good model for the

background scene, the effects of camera jitter,

moving vegetation, camouflage and occlusions cannot be

eliminated by background subtraction alone. By analysing

the characteristics of these events, we can lessen the

problem

† Camera noise normally produces regions with small

areas. These can be eliminated by applying morpho-

logical operations or simply by discarding objects of a

small number of supporting pixels.

† The multi-colour background model can reduce errors

resulting from camera jitter, moving vegetation and

secularity. However, if some part of the background (a

tree branch for example) exhibits an unseen motion (due

to a strong gust of wind), a false detection occurs, as there

is no part of the model that represents the pixel colour.

These problems share similar characteristics to those of

the first point and can be discarding objects with small

ration of area to boundary length.

† Camouflage and occlusion from stationary objects

presents difficulties in segmentation that can not be

simply overcome. In our system, the object-tracking

module handles these problems.

The binary image from background subtraction and

shadow detection still contains noise. It is passed into a size

filter to remove small noise artefacts. A connected

component analysis is then performed to detect foreground

regions. The results from this module are list of detected

foreground regions. The results from this module are list of

detected foreground objects, their characteristics as well as a

noiseless binary image. These results are used by the data

association and stochastic sampling search modules.

5. Target tracking module

The target tracking module deals with assigning

foreground objects detected from the object detection

Fig. 4. Background subtraction with shadow suppression. The top row show a sample sequence at different time instances. The second row shows the results

from background subtraction with moving shadows detected. Black pixels are deemed parts of foreground objects of interest and the shadows are shown in

grey.
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module to models maintained in the target model library.

It also handles situations such as new targets, lost or

occluded targets, camouflaged targets and targets whose

appearance merges with others. This task incorporates all

available information to choose the best hypothesis to

match. The following sections describe the target tracking

model used in our system. It consists of data association,

stochastic sampling search and the trajectory maintenance

modules.

5.1. Target model

In our system, multiple objects are tracked based on

information of their position, motion, simple shape

features and colour contents. The characteristics of an

object can be assumed to be uncorrelated, as we place no

constraints upon the types of objects that can be tracked.

Therefore, separate probabilistic models are employed for

motion, simple shape and colour contents. The following

subsections explain each model and the method to update

the statistics of its state.

5.1.1. Motion model

The co-ordinates of the object’s centroid are modelled by

a discrete-time kinematic model. Kalman filters are

employed to maintain the state of the object. The centroid

is modelled by a white noise acceleration model. This is to

correspond with the assumptions that objects move with a

near constant velocity. The object manoeuvring ability is

encoded in the process covariance matrix as described

below. The state equation for the centroid x co-ordinate is

derived from the piecewise-constant white acceleration

model [1] by

xðk þ 1Þ ¼ FðkÞxðkÞ þ vðkÞ ð8aÞ

vðkÞ ¼ MðkÞvðkÞ ð8bÞ

where

xðkÞ ¼
xðkÞ

_xðkÞ

" #
; FðkÞ ¼

1 Dt

0 1

" #
;

MðkÞ ¼

1
2
Dt2

Dt

" #
:

xðkÞ; FðkÞ and MðkÞ are the state, state transition matrix and

acceleration gain matrix of the x co-ordinate at time

instance k: The process noise vðkÞ is a sequence of zero-

mean, white, Gaussian acceleration noise with covariance

QðkÞ and Dt represents the time difference between frame

k þ 1 and k: The measurement equation for this co-ordinate

is written as

zðk þ 1Þ ¼ Hðk þ 1Þxðk þ 1lkÞ þ wðk þ 1Þ ð9Þ

with the measurement matrix, HðkÞ ¼ ½1 0� and wðk þ 1Þ

a zero-mean, white, Gaussian noise with measurement

covariance Rðk þ 1Þ: The process noise covariance

and measurement variances are

QðkÞ ¼

1
4
Dt4 1

2
Dt3

1
2
Dt3 Dt2

2
4

3
5s2

p

and

Rðk þ 1Þ ¼ s2
m

where s2
p and s2

m represent the uncertainties of acceleration

and measurement, respectively. The centroid y co-ordinate

is modelled in the same way.

Since the object is tracked through outdoor back-

ground clutter, the problems of camouflage and occlusion

frequently occur. Partial occlusions may provide motion

measurements that can be used to update the motion

model if they are detected. If no measurement satisfies

a tracking model, the state variables can still propagate

through time. This results in the spreading of

the probability density function of the state variables.

To help the data association module reduce the

chance of false matching, a model-switching

Kalman filter is introduced. It is based on different

process noise levels for normal, occluded and lost tracks

where

s2
p;normal # s2

p;occlused # s2
p;lost:

The y co-ordinate centroid is modelled with the same

equations.

The track formation is based on 2/2 logic procedure [2]

with the initial process noise set to s2
p;normal: More details of

this track formation are given in Section 5.4.

These variables can be assumed uncorrelated and the

final equations can be obtained by augmenting the vectors

blockwise and the matrices block-diagonally. The model is

initialised by the two-point differencing method [1] after the

formation, as

xð1l1Þ ¼
zð1Þ

zð1Þ2 zð0Þ

Dt

2
64

3
75; and ð10aÞ

Pð1l1Þ ¼
1

1

Dt

1

Dt

2

Dt2

2
6664

3
7775s2

m: ð10bÞ

where P is the state covariance matrix, zð0Þ and zð1Þ are the

position measurements obtained at the first and second

instances that the object appeared to the field of view

respectively.

5.1.2. Shape model

Simple shape information about the object is useful in

identifying what type of tracking is applied for each

detected foreground region in the current frame. It can be

represented by the height and width of the minimum

bounding box of the object. The extensive change of
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the shape size from an average size may indicate an object

under camouflage or partial occlusion.

The average-height estimate, ĥ is maintained as follows

(and similarly for width ŵÞ:

ĥðk þ 1Þ ¼ ĥðkÞ þ bðk þ 1Þðhðk þ 1Þ2 ĥðkÞÞ ð11Þ

where bðmÞ ¼ maxð1=L; 1=mÞ; ĥð0Þ ¼ hð0Þ and hðk þ 1Þ is

the instantaneous height measurement at frame k þ 1 of the

object’s life.

5.1.3. Colour model

Most colour tracking systems model multi-coloured

objects using a colour histogram or a mixture of Gaussian

distributions. If only a small set of samples is available,

most of the bins in the histogram are empty and the

solution of fitting data to a mixture model tends to

converge to a singular solution. One answer to this is to

increase the bin size or limit the number of Gaussian

components in the mixture. This leads to the question of

how large the bin size should be or how many

components in the mixture is sufficient to represent the

colour distribution of the object. Too large a bin size or

too few mixture components can result in no discernible

difference between objects. Too small a bin size or too

many mixture components may not only cause singular

solutions but also be unable to cope with changes

resulting from objects passing over different regions in

the scene (lighting condition can change from one region

of the image to another). Our colour model utilises a

colour transformation obtained from consensus colours in

Munsell colour space by converting observed colours into

eleven basic colours [3]. This consensus colour was

experimentally developed by Sturges et al. [26]. Fig. 5

and Table 11 display the Sturges’ consensus areas and

focal points of chromatic and achromatic colours,

respectively. The ill-defined regions of the colour space

shown in Fig. 5 depict the colours which are ambiguously

interpreted by human subjects. The colour conversion for

this region is obtained by the nearest neighbour from the

colour point to the edge of the consensus area. The colour

histogram therefore contains eleven normalised bins. The

L-recent instantaneous histograms will be maintained in

the model by

B̂iðk þ 1Þ ¼ B̂iðkÞ þ bðk þ 1ÞðBiðk þ 1Þ2 B̂iðkÞÞ ð12Þ

where bðmÞ ¼ maxð1=L; 1=mÞ; B̂ið0Þ ¼ Bið0Þ; i ¼ 2;…;M

and Biðk þ 1Þ is the ith bin of the instantaneous histogram

at frame k þ 1:

An example of the result from the conversion is shown in

Fig. 6(d). In the figure, only foreground pixels are converted

into consensus colours via a look-up table. It can be seen

from Fig. 6(d) that several pixels do not have colours as

would be expected by the human eye. This is because the

conversion was performed on the individual pixels rather

than the spatial relationship within a neighbourhood.

Ambiguous pixels are classified on a nearest neighbour

basis. Since the consensus colours were obtained by

presenting homogenous colour patches to the subject [26],

colour segmentation is poorer than human perception.

Improvements could be made by segmentation and

Table 1

Location of consensus areas and focal points of achromatic colours

Colour Focal point Consensus range

White 9.5 V $ 9

Grey 5.5 4 # V # 7

Black 0.5 V # 1

Fig. 5. Location of consensus areas and focal points on a two dimensional representation of the Munsell space.

1 In Table 1, the focal points for white and black are not V ¼ 10 and

V ¼ 0; respectively, as they are not achievable using conventional

pigments in the original experiments.
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classifying the colour of the region according to the

majority.

5.2. Data association module

This module makes use of both the motion and

appearance models of the targets. Each tracking model

includes motion and appearance models. The motion

model gives an ellipsoidal prediction area called the

validation gate [5]. This area is represented by a squared

Mahalanobis distance of less than or equal to a gate

threshold from the predicted measurement with a

covariance matrix being the Kalman innovation covari-

ance matrix, S: The squared Mahalanobis distance is a

chi-squared distributed with the number of degrees of

freedom equal to the dimension of the measurement

vector. Hence, the probability of finding the measurement

in the gate, i.e. having the Mahalanobis distance less than

the gate threshold can be obtained from the chi-squared

distribution. The gate probability, which is the probability

of mass that the true measurement will fall in the gate, is

obtained from the cumulative probability distribution

tables of the chi-square distribution for various values of

gate threshold and dimensions of the measurement vector,

shown in Table 2. Fig. 7 shows an example of

the locations of gates and measurements. As the targets

come close to each other, a measurement generated from

one target may fall within more than one gate and an

optimal assignment sought.

The purpose of data association is to assign the

measurements detected in the current frame to target

models. Targets whose parts cannot be detected due to a

colour spectrum matching that of the background are

deemed to be camouflaged. Objects whose appearances

merge (in perspective view) normally have a sudden

increase in size in either or both horizontal and vertical

directions. As camouflaged and partially occluded objects

share the same characteristic of having a rapid reduction/

growth in size and shape, this can be used to identify its

occurrence. These are dealt with using the Stochastic

Sampling Search (SSS) in Section 5.3. However, the search

Table 2

Gate probability with various gate thresholds and measurement dimensions

Dimensionality of measurement Gate threshold

1 4 9 16

1 0.68269 0.95450 0.99730 0.99994

2 0.39347 0.86466 0.98889 0.99967

3 0.19875 0.73854 0.97071 0.99887

Fig. 6. The consensus colour conversion. (a) the original image, (b) the result from background subtraction and shadow elimination, (c) the foreground region

detection, (d) the colour-converted objects over the background image (cyan colour).
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is relatively more computationally expensive and data

association can be used to reduce this complexity in normal

cases.

The assignment process begins with the calculation of

a validation matrix (or hypothesis matrix) whose rows

represent all detected foreground objects and columns all

targets in the model library. Observations which are

within this gate, will have their appearance similarity

calculated. This starts by determining the shape of the

object. If the shape does not change extensively, its colour

similarity is calculated. If its similarity score exceeds a

predefined threshold, the matching score is placed in the

validation matrix. The score is based on a combination of

model similarities for both motion and appearance,

represented by

Tij ¼ Mij þ Hij: ð13Þ

The motion score Mij is represented by

Mij ¼ PrðZ . zijÞ ð14Þ

where zij is the Mahalanobis distance of the ith

measurement ðziðk þ 1ÞÞ to the estimated position pre-

dicted from the jth target ðẑjðk þ 1lkÞÞ:

zij ¼ ððziðk þ 1Þ2 ẑjðk þ 1lkÞÞTSjðk þ 1Þ21ðziðk þ 1Þ

2 ẑjðk þ 1lkÞÞÞ1=2:

PrðZ . zijÞ is the standard Gaussian cumulative prob-

ability in the right-hand tail which gives the maximum

value of 0.5 if the measurement coincides with the

predicted (mean) location. (This can be implemented in a

look-up table to increase speed of operation.)

The colour similarity Hij between the object i and the

target j is calculated by histogram intersection

Hij ¼
1
2

X11

k¼1

minðBik; B̂jkÞ ð15Þ

where {Bi1;Bi2;…;Bi11} is the normalised colour histogram

of the object i and {B̂i1; B̂i2;…; B̂i11} is the normalised

colour histogram of the target j:

The total score can be thought of as a combination of two

histogram intersections. In the calculation of the motion

score, a continuous intersection of two Gaussian distri-

butions, each of the same variance is utilised. However,

approximation of the two-dimensional Gaussian inter-

section by a one-dimensional intersection is made to reduce

the computation load. This is done using the Mahalanobis

distance to represent the normalised standard deviation in

the calculation of the one-dimensional standard Gaussian

cumulative probability (as seen in Eq. (14)). Therefore, the

total score ranges from 0 to 1 with increasing values

representing increasing similarity of a particular object to a

target.

The search for the best solution is called the assignment

problem. The best solution can be defined as the assign-

ments that maximises the hypothesis score which is

w ¼
X

ði;jÞ[H

Tij ð16Þ

where the hypothesis is represented by an unordered set of

measurement-to-track assignments, H ¼

{ðtrk1;mea1Þ; ðtrk2;mea2Þ; · · ·; ðtrkr ;mearÞ}: The tracks and

measurements in the hypothesis must not be repeated. One

simple solution is to modify the existing validation matrix

by adding new hypothesised targets or undetected measure-

ments to form a square matrix and run an assignment

algorithm such as the Hungarian algorithm2 [8].

Fig. 8 shows over a sequence of images. To make a better

contrast, colour lines and boxes are plotted over a low

contrast image as shown in Fig. 8(b). In the figure, the

validation gate of the target’s centroid of each Kalman filter

is the maximum inscribed ellipse of the black box. The

trajectories are shown in different grey levels.

After the data association process, all assigned measure-

ments are removed from the binary map. The binary map

is then passed to the SSS (described in Section 5.3) to

extract measurement residuals available for the unassigned

targets.

5.3. Stochastic Sampling Search

If camouflages and occlusions occur, measurements of

some observations may not be assigned a target. All

unassigned targets are then passed to the SSS along with

the binary map obtained from the object detection module

with all assigned measurements removed. The SSS is a

method that incorporates measurement extraction, motion

tracking and data association in the same process.

It begins by sorting the unassigned target models

according to y co-ordinate. The search for the optimal

Fig. 7. Example of validation gates (measurements are displayed by O’s).

2 Other less expensive algorithms as well as the ones which do not

assume square matrix are available. (See Ref. [5] pages 342–346 for more

details.)
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foreground region for each target model starts from the

target with maximum value of y co-ordinate of the image

space.3 This is based on an assumption that targets move in

a ground plane in perspective view. (This assumption may

be dropped for general cases and other methods of selecting

a target according to depth order can be used.) A number of

patches with approximately the same size as the target are

generated.4 The locations of these patches are randomly

sampled from the probability density function (pdf) of the

motion model. In this case, the two-dimensional Gaussian

distribution has a mean at the predicted measurement

ẑjðk þ 1lkÞ and a covariance matrix being the innovation

covariance matrix Sjðk þ 1Þ: In each patch, only the pixels

marked by the binary image are considered and converted to

consensus colours and a colour histogram derived from the

result. However, this patch normally includes pixels

generated from other targets. Normal histogram intersection

would not give optimal results. Instead of normalising the

histogram, each bin in the histogram is divided by the

estimated number of pixels in the target before the colour

similarity is calculated. The patch i generated from target j

is represented as

Pi
j ¼ {zi

j;Bi1;Bi2;…;Bi11} ð17Þ

with

zi
j , hðẑjðk þ 1ÞlkÞ; Sjðk þ 1ÞÞ: ð18Þ

zi
j is the centre of the patch and {Bi1;Bi2;…;Bi11} are bins

1–11 of the unnormalised histogram. The colour similarity

can then be calculated by

HjðP
i
jÞ ¼

1

2

X11

k¼1

min
Bik

N̂j

; B̂jk

 !
ð19Þ

where N̂j is the current estimated number of pixels of the

target j:

The motion score of each patch is also calculated from

the motion model by

MjðP
i
jÞ ¼ PrðZ . zi

jÞ ð20Þ

where zi
j is the Mahalanobis distance of the ith patch ðzi

jÞ to

the predicted position from the jth target ðẑjðk þ 1lkÞÞ;
written as

zi
j ¼ ððzi

j 2 ẑjðk þ 1lkÞÞTSjðk þ 1Þ21ðzi
j 2 ẑjðk þ 1lkÞÞÞ1=2:

The model similarity of the patch and the target based on

both motion and appearance models can be calculated by

Ti
j ¼ MjðP

i
jÞ þ HjðP

i
jÞ: ð21Þ

This score is similar to the one found in Section 5.2 which is

based on the model similarity measures. One point worth

noting is that the colour similarity, calculated by Eq. (19),

unlike Eq. (15) does not possess scale-invariance. This

is acceptable, as the occlusions or camouflages are rela-

tively short compared to the change in size of the targets

over time.

The optimum patch can be obtained as

n ¼ arg max
i

Ti
j ð22Þ

and can be used to update the motion model (however, not

the appearance model) provided that the similarity of the

patch exceeds a predefined threshold. This threshold is

the approximate percentage of the visible area of the target.

The acceleration noise variance of the matched models from

this module is set to sp;occlused and the unmatched to s2
p;lost:

At the end of each target search, the matched optimum

patch will have its contents removed from the binary map.5

The binary map is then passed to the track maintenance

module to identify new targets.

Fig. 8. Multiple target tracking by data association. (a) Original image, (b) reduced contrast image with tracking.

3 The image space has its origin at the top corner and positive axes point

to the right and down directions.
4 In our experiments, patches with a pixel in each larger than the average

size of the target gave the best results.

5 The SSS cannot be used to track any target at the beginning of its

appearance. It only operates after a visual model of the target has been

established.
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Fig. 9. The Stochastic Sampling Search. (a) The original image, (b) the binary map from the foreground region detection, (c) the patches generated by the

Stochastic Sampling Search, (d) the optimal patches selected.

Fig. 10. Tracking through occlusion. (a) The targets are being tracked by tracking and data association, (b)–(c) tracking by Stochastic Sampling Search, (d) the

tracking and data association resumes its operation.

P. KaewTrakulPong, R. Bowden / Image and Vision Computing 21 (2003) 913–929 923



Figs. 9 and 10 show the process of SSS and the result of

tracking through occlusion, respectively.

In Fig. 9(c), a number of patches were randomly

generated from a two dimensional Gaussian distribution

with the mean and covariance obtained from the Kalman

prediction. The patch with the maximum score for each

object was selected as a measurement for the correction step

of the Kalman filter and shown with white boxes.

Fig. 10 shows an example of tracking targets through

occlusion. Each target was tracked by the tracking and data

association before the occlusions occur as shown in

Fig. 10(a). The bouncing boxes are the extents of the

targets. In Fig. 10(b), the image of both targets merged into

a single large object. Since the shapes of both targets

changed significantly, this object was not assigned to any

track. (However, if the shapes do not change sufficiently, the

data association will identify that the number of competing

targets is more than the number of objects and assignment

will be left for the SSS.) The objects were extracted by the

SSS and are shown with white boxes. As the object

dynamics of each target was maintained, the data associ-

ation resumed its operation after the occlusion.

5.4. Trajectory maintenance module

The track maintenance module is designed to deal with

trajectory formation, trajectory deletion as well as to

eliminate spurious trajectories that occur from unpredicted

situations in outdoor scenes such as trajectories resulting

from noise and small repetitive motions. By performing

connected component analysis on the residual binary image,

a list of new objects which have a suitable number of pixels

is extracted. This provides evidence of all objects not

already accounted for by the tracking system. As the system

is running in real time, an object’s appearance may not be

fully visible within the first few frames of its introduction.

The formation of the object’s appearance model can be

deferred using some specific number of frames or some

heuristics about the scene (such as objects at the edge of the

camera view).

Track formation is based on 2/2 logic [1]. The process is

described as follows. First, every unassigned measurement

is used to form a track, called a tentative track. At the next

frame, a gate is formed by propagating the process and

measurement uncertainties from the last position of the

target. If a measurement is detected in the gate, this tentative

track becomes a normal track; otherwise this tentative track

is discarded. The construction of an appearance model for

the new target is deferred (as the object’s appearance is

normally unstable.) For example, a person who has just

come out from the building is composed of not only

his body but also the door as it is swinging.

The tracking process during this period relies solely on

the motion model.

If no measurement has been assigned to a normal track, it

is then changed to a lost track. If a normal track is not

assigned a measurement during the data association process,

it is changed to an occluded track. Any type of track can be

changed back to normal track if it is assigned a

measurement during the data association process. Tracks

that have been lost for a certain number of frames or time

period Tlost will be deleted. This also applies to occluded

tracks with Tocclude as the allowable number of occlusions

before terminating the track. Both Tlost and Tocclude are used

to reduce the chance of drifting and mismatching during and

after occlusion. Fig. 11 depicts the process as a state

diagram.

Fig. 12 shows the tracking of multiple independent

targets moving within the scene. Some measurements are

assigned to their targets by data association while others are

Fig. 11. State diagram of track maintenance.
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assigned by the SSS as occlusions and camouflages

occurring from time to time. The search areas are identified

by black boxes while the white boxes indicate the optimal

patch from the SSS. Trails are drawn with different grey

levels. It can seen that a group of people are tracked as a

single object. This is due to all members of the group

appearing at the same time when they entered the scene.

Some close objects are identified as a single large object due

to imperfections in shadow elimination. In Fig. 12(c), one of

the targets entered the building; however, the search

continues for a certain period before being terminated.

6. Experimental results

Some results of applying the proposed technique for

tracking low-resolution targets are presented in this section.

Fig. 13(a) and (b) show the cumulative trajectories of

objects tracked during one hour of operation from two

cameras. The cameras were set to monitor two different

locations of the campus. The tracker runs on a PC Pentium

III 450 MHz at approximately 5 frames per second. It is

evident that many spurious trajectories are constructed

during the period. This is mainly due to insignificant

movements of vegetation and occlusions/deocclusions of

the clouds in the scenes.

Table 3 summarises the results of tracking through

occlusions from the experiment. It can be seen that the SSS

performed sufficiently well. However, as limited by Tlost and

Tocclude; tracking over too an long occlusion terminates

prematurely. This is caused by people stopping moving and

engaging in long conversations where parts of them have

been incorporated into the background model. The main

problem for the algorithm is group interaction. This includes

the case that silhouettes of individual members are joined at

the beginning of their appearance then they separate due to

different speeds or directions. To identify individual

members of unknown classes in a group requires knowl-

edge-based or computationally complex algorithms; how-

ever, these mechanisms have not been addressed in this

work.

The idea of using a guided random search in visual

tracking is utilised by many researchers. The Conditional

density propagation (CONDENSATION) algorithm or

particle filter [13,14] and Joint Likelihood Filter (JLF)

[22,23] are examples of guided random search approaches

in computer vision. The main application of these

algorithms is in the area of large-target tracking where

features on the targets are reliable. However, background

clutter plays an important role in distracting the tracker. The

primary goals of using a random search are to cope with

rapid movement, occlusion of targets due to static objects or

Fig. 12. Tracking multiple independent targets. (a)–(d) tracking with a combination of the data association and Stochastic Sampling Search.
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other targets and distraction by background clutter. The

search provides a mechanism of jumping out of local

minima in the image space to hopefully find a global

solution which corresponds to the correct target assignment.

While in CONDENSATION and JLF, the motion infor-

mation is implicitly incorporated in the search, explicit

inclusion of this information is made in our system. The

reason behind this is that colour information obtained from

small objects is not a reliable as for that of large objects. On

the other hand, distraction is small in our system since only

foreground pixels are considered in the process. Another

advantage of using a random search is that is constrains the

classification between targets to local regions. Unlike

methods based only on pixel classification of the merged

regions [19] which classifies pixels into targets using the

posterior probability of the pixels corresponding to the

targets before the merge, pixels which exceed the possibility

of being a single target will never be assigned to the target

being examined.

Table 4 summarises the results of tracking through the

field of view of each camera. Number of successes are

counted only for the targets that can be tracked throughout

the field of view. It can be seen that most of errors are due to

camouflage which was caused by the imperfection of the

foreground object identification. The effect was severe in

the sequence from Camera1. This was caused by the

perspective view in that camera. The objects further away

from the camera were very small and camouflage made the

objects smaller so that they could not pass the size filter and

could not be detected from the start of their appearances.

Although, we could set the size filter to pass in smaller

objects, it could generate a larger number of false detections

due to insignificant movements from the trees (as two

sizable trees were close to the camera). The second camera

does not suffer from perspective size; in contrast, the two

large black walls of the building in the scene do cause

camouflage when people wearing black clothes walk close

to them. Target stopping moving is also a problem inherited

from the background subtraction. Even though the tracker

can deal with most kinds of movements in the scene, agile

movements exhibited by few targets could not be handled.

This is due to the low-order kinematic model and the low

levels of noise variances used in our tracker.

Fig. 13. Tracking results from two cameras. (a) trajectories of objects moving over an hour period in the first camera (with short-lived trajectories removed), (b)

trajectories obtained from the second camera.

Table 3

Results of tracking through occlusions from two locations over one hour

period

Items Camera1 Camera2

Number

of objects

% Number

of objects

%

Total number

of occlusions

60 100 81 100

Successes 51 85.00 65 80.25

Failures due to

long occlusions

3 5.00 4 4.94

Failures due to

group interactions

6 10.00 12 14.81

Table 4

Results of tracking through the field of views in two cameras over one hour

period

Items Camera1 Camera2

Number

of objects

% Number

of objects

%

Objects in the field

of view

407 100 198 100

Successfully tracked

through the view

320 78.63 153 77.27

Failures due to

camouflage

66 16.22 18 9.09

Failures due to targets

stop moving

11 2.70 9 4.55

Failures due to group

interactions

6 1.47 12 6.06

Failures due to agile

movements

4 0.98 6 3.03
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7. Conclusions

We have presented a method to track low-resolution

moving objects mainly for outdoor surveillance appli-

cations, using colour, simple shape and motion information.

The key strength of this method is the use of robust

background modelling, the colour mapping used and a novel

guided random search. The update equations used in

the background subtraction method provide a model

which can adapt to scene content and quickly converges

upon a stable reference image. The addition of shadow

suppression greatly enhances the performance of the basic

tracker. The use of the perceptualised colour model to

model low-resolution colour targets provides robustness to

small objects with minimal colour information and over-

comes problems with colour consistency and lighting

variation. To use this we have proposed an effective

probabilistic measure that combines motion and appearance

information. We also introduce a scheme which utilises

different degrees of computational complexity dependent on

the reliability of the information obtained from the

measurement extraction process. Due to the robust back-

ground modelling, few false detections are produced.

However, some errors in segmentation, for instance

camouflages, are inherent to the background subtraction

method. These limitations can be overcome by modelling

both the static scene and the motion and appearance of the

foreground object. A data association process is used in less

ambiguous cases. Occlusions are dealt with in much the

same way as camouflage as they share some characteristics.

This is done by a random search algorithm which utilises

both motion and colour information of the target models to

track targets through occlusions and camouflage. We have

demonstrated the technique on image sequences of

unconstrained external environments and have successfully

operated the tracker for long periods with no user

intervention where the adaptive nature of the approach is

capable of overcoming changes in time of day, weather,

seasons and activity.

Appendix A. Stochastic on-line approximation

This appendix presents a set of update equations based

upon the batch EM algorithm for learning a Gaussian

mixture model [9]. From these, a number of incremental

(on-line) EM algorithms are proposed.

A.1. Standard batch EM algorithm

The standard EM algorithm is an iterative optimisation

algorithm for maximising the likelihood function of several

probabilistic models such as Gaussian mixture models and

Hidden Markov Models. It gains popularity among

researchers due to its simplicity, efficiency and the ability

to handle the stochastic constraints (Eq. (2)) naturally. In the

case of the Gaussian mixture model, the EM algorithm

comprises of two steps and is described as follows.

Expectation:

pðwklxiÞ ¼
ŵ½t21�

k hðx; m̂½t21�
k ; Ŝ½t21�

k ÞXK
j¼1

ŵ½t21�
j hðx; m̂½t21�

j ; Ŝ½t21�
j Þ

: ðA:1Þ

Maximisation:

ŵ½t�
k ¼

r½t�k

N
ðA:2aÞ

m̂½t�
k ¼

XN
i¼1

pðwklxiÞxi

r½t�k

ðA:2bÞ

Ŝ½t�
k ¼

XN
i¼1

pðwklxiÞðxi 2 m̂½t�
k Þðxi 2 m̂½t�

k ÞT

r½t�k

ðA:2cÞ

where

r½t�k ¼
XN
i¼1

pðwklxiÞ:

ŵ½t�
k ; m̂½t�

k and Ŝ½t�
k are the estimates of weight, mean and

covariance of the kth component at iteration t; respectively.

pðwklxiÞ is the posterior probability that xi is generated from

the kth component. The data set D ¼ {x1; x2;…; xN} is

assumed to be available before the optimisation process.

The Eqs. (A.2b) and (A.2c) can be rewritten in a

shorthand notation as

ĵk ¼

XN
i¼1

pðwklxiÞzkðxiÞ

XN
i¼1

pðwklxiÞ

: ðA:3Þ

In the case of m̂k;

zkðxiÞ ¼ xi:

In the case of Ŝk;

zkðxiÞ ¼ ðxi 2 m̂kÞðxi 2 m̂kÞ
T
:

A.2. Incremental EM algorithms

Unlike the batch algorithm, incremental algorithms

process data from a sequential stream. The incremental

EM algorithm based on expected sufficient statistics can be
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derived as follows

ŵðNþ1Þ
k ¼

1

N þ 1

XNþ1

i¼1

pðwklxiÞ

¼
1

N þ 1

XN
i¼1

pðwklxiÞ þ pðwklxNþ1Þ

 !

¼ ŵðNÞ
k þ

1

N þ 1
ðpðwklxNþ1Þ2 ŵðNÞ

k Þ: ðA:4Þ

Here, ŵðNþ1Þ
k represents the weight parameter estimate at the

data instance N þ 1:

Similarly,

ĵðNþ1Þ
k ¼ ĵðNÞ

k þ
pðwklxNþ1ÞXNþ1

i¼1

pðwklxiÞ

ðzkðxNþ1Þ2 ĵðNÞ
k Þ: ðA:5Þ

The incremental EM algorithm based upon an L-recent

window can be derived as follows.

ŵðNÞ
k ¼

1

L

XN
i¼N¼Lþ1

pðwklxiÞ:

At frame N þ 1;

ŵðNþ1Þ
k ¼ ŵðNÞ

k þ
1

L
ðpðwklxNþ1Þ2 pðwklxN2Lþ1ÞÞ: ðA:6Þ

For L q 1; pðwklxN2Lþ1Þ can be approximated by ŵðNÞ
k ;

therefore we have

ŵðNþ1Þ
k ¼ ŵðNÞ

k þ
1

L
ðpðwklxNþ1Þ2 ŵðNÞ

k Þ ðA:7Þ

and

ĵðNþ1Þ
k ¼

XN
i¼N2Lþ1

pðwklxiÞ

XN
i¼N2Lþ2

pðwklxiÞ

ĵðNÞ
k

þ
pðwklxNþ1ÞzkðxNþ1Þ2pðwklxN2Lþ1ÞzkðxN2Lþ1ÞXN

i¼N2Lþ2

pðwklxiÞ

:

ðA:8Þ

In the same way as ŵðNþ1Þ
k ; we approximate pðwklxN2Lþ1Þ by

ŵðNÞ
k and zkðxN2Lþ1Þ by ĵðNÞ

k : Eq. (A.8) now becomes

ĵðNþ1Þ
k ¼

ŵðNÞ
k

ŵðNþ1Þ
k

ĵðNÞ
k þ

1

LŵðNþ1Þ
k

ðpðwklxNþ1ÞzkðxNþ1Þ

2 ŵðNÞ
k ĵðNÞ

k Þ ðA:9Þ

Further approximations can be made, for example ŵðNÞ
k <

ŵðNþ1Þ
k ; however, as the occurrence of objects may be

sequential, it may be possible to obtain an L-size sequence

generated from only a few mixture components. In this

situation the resulting weight parameters of the other

components can become very small. Therefore, the ratios

of weight parameters at frame N to those at frame N þ1 can

be significant.

A.3. Proposed update scheme

To maintain the accuracy of the estimated parameters

when the learning process starts and to allow slow changes

in the underlying probability density function, we utilise the

Eqs. (A.4) and (A.5), derived from expected sufficient

statistics in the first L frames and the Eqs. (A.7) and (A.9)

from an L-recent window after that. In many cases where the

parameters of the mixture do not change too fast, a simple

exponentially decaying form can be applied for the

equations from an L-recent window. This provides replace-

ments of equations derived from both methods as

ŵðNþ1Þ
k ¼ ŵðNÞ

k þ aðNþ1ÞðpðwklxNþ1Þ2 ŵðNÞ
k Þ ðA:10Þ

ĵðNþ1Þ
k ¼ ĵðNÞ

k þ rðNþ1ÞðzkðxNþ1Þ2 ĵðNÞ
k Þ ðA:11Þ

where

aðNþ1Þ ¼ max
1

N þ 1
;

1

L

� 	

and rðNþ1Þ ¼ max
pðwklxNþ1ÞXNþ1

i¼1

pðwklxiÞ

;
1

L

0
BBBBB@

1
CCCCCA:

This has an added advantage that it reduces the compu-

tational complexity of the algorithm. In the case of updating

only the matched component as applied in our tracker, the

update scheme is given in Eqs. (5a)–(5c).
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