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Abstract. This paper presents a scalable solution to the problem of
tracking objects across spatially separated, uncalibrated, non-overlapping
cameras. Unlike other approaches this technique uses an incremental
learning method, to model both the colour variations and posterior prob-
ability distributions of spatio-temporal links between cameras. These op-
erate in parallel and are then used with an appearance model of the ob-
ject to track across spatially separated cameras. The approach requires
no pre-calibration or batch preprocessing, is completely unsupervised,
and becomes more accurate over time as evidence is accumulated.

1 Introduction

The aim of this paper is to automatically track objects between cameras (inter
camera). This is often termed object "handover”, where one camera transfers a
tracked object or person to another camera. To do this we need to learn about the
relationships between the cameras, without colour, or spatial pre-calibration. In
summary, an ideal tracking system could be described as one that, upon initiali-
sation is able to work immediately, as more data becomes available will improve
performance, and is adaptable to changes in the camera’s environment.

To achieve this the system needs to be able to learn both the spatial and
colour relationships between non-overlapping cameras. This allows the system
to determine if a newly detected object has previously been tracked on another
camera, or is a new object. The approach learns these spatial and colour re-
lationships, though unlike previous work it does not require pre-calibration or
explicit training periods. Incremental learning of the object’s colour variation
and movement, allows the accuracy of tracking to increase over time without
supervised input.

The paper firstly gives a brief background of inter camera tracking and cal-
ibration. With section 3 describing the intra camera tracking and its use in
creating the inter camera links is described in section 4. Sections 5 and 6 explain
the spatial block subdivision to improve the representation of links and how the
links and an object appearance model is used to track inter camera. Incremental
camera colour calibration is explained in section 7, with experiments and results
that combine both approaches presented in Section 8.



2 Background

Early tracking algorithms [1][2] required both camera calibration and overlap-
ping fields of view (FOV). These are needed to compute the handover of tracked
objects between cameras. Additionally Chang [3] required a 3D model of the
environment using epipolar geometry, to allow for the registration of objects
across the different overlapping cameras. The requirement that cameras have an
overlapping FOV is impractical due to the large number of cameras required and
the physical constraints upon their placement.

Kettnaker and Zabih [4] presented a Bayesian solution to track people across
cameras with non-overlapping FOVs. However the system required calibration,
with the user providing a set of transition probabilities and their expected dura-
tion a priori. This means that the environment and the way people move within
it must be known. In most surveillance situations this is unrealistic.

Probabilistic or statistical methods have seen some of the greatest focus to
solve inter camera tracking. They all use the underlying principle that through
accumulating evidence of movement patterns over time it is likely that com-
mon activities will be discovered. Huang and Russel [5] presented a probabilistic
approach to tracking cars on a highway, modelling the colour appearance and
transition times as gaussian distributions. This approach is very application spe-
cific, using only two calibrated cameras with vehicles moving in one direction
in a single lane. Javed, et al [6] present a more general system by learning the
camera topology and path probabilities of objects using Parzen windows. This is
a supervised learning technique where transition probabilities are learnt during
training using a small number of manually labeled trajectories. Dick and Brooks
[7] use a stochastic transition matrix to describe patterns of motion both intra
and inter camera. For both systems the correspondence between cameras has to
be supplied as training data a priori. The system required an offline training pe-
riod where a marker is carried around the environment. This would be infeasible
for large systems and can not adapt to cameras being removed or added ad hoc
without recalibration.

KaewTraKulPong and Bowden [8] or Ellis et al [9] do not require a priori
correspondences to be explicitly stated, instead they use the observed motion
over time to establish reappearance periods. Ellis learns the links between cam-
eras, using a large number of observed objects to form reappearance period
histograms between the cameras. Bowden instead uses appearance matching to
build up fuzzy histograms of the reappearance period between cameras. This al-
lows a spatio-temporal reappearance period to be modelled. In both cases batch
processing was performed on the data which limits their application.

Colour is often used in the matching process. Black et al [10] use a non-
uniform quantisation of the HSI colour space to improve illumination invari-
ance, while retaining colour detail. KaewTraKulPong and Bowden [11] uses a
Consensus-Colour Conversion of Munsell colour space (CCCM) as proposed by
Sturges et al [12]. This is a coarse quantisation based on human perception
and provides consistent colour representation inter-camera. Most multi cam-
era surveillance systems assume a common camera colour response. However,



even cameras of the same type will exhibit differences which can cause signif-
icant colour errors. Pre-calibration of the cameras is normally performed with
respect to a single known object, such as the 24 main colour GretagMacbeth
[13] ColorCheckerTM chart used by Ilie and Welch [14]. Porikli [15] proposes
a distance metric and model function to evaluate the inter camera colour re-
sponse. It is based on a correlation matrix computed from three 1-D quantised
RGB colour histograms and a model function obtained from the minimum cost
path traced within the correlation matrix. Joshi [16] similarly proposes a RGB
to RGB transform between images. By using a 3x3 matrix, inter channel effects
can be modelled between the red, green, and blue components.

3 Object Tracking and Description

The test environment consists of 4 non-overlapping colour cameras in an office
building, with the layout shown in Figure 1. The area between cameras contains
doors and corners removing smooth motion inter camera. The video feeds are
multiplexed together to form a time synchronized single video, fed into a P4
windows PC in real time. To detect objects the static background colour dis-

.Cameri 2

Fig. 1. (Left)The top down layout of the camera system, (Right) The tracking envi-
ronment used.

tribution is modelled [11] in a similar fashion to that originally presented by
Stauffer and Grimson [17]. A gaussian mixture model on a per-pixel basis is
used to form the foreground vs background pixel segmentation, learnt using an
online approximation to expectation maximisation. Shadows are identified and
removed by relaxing a models constraint on intensity but not chromaticity, and
the foreground object is formed using connected component analysis on the re-
sulting binary segmentation. Objects are linked temporally with a Kalman filter
to provide movement trajectories within each camera, illustrated in Figure 1.



3.1 Colour Similarity

Once the foreground objects have been identified, an object descriptor is formed
for inter camera correlation. The colour histogram is used to describe the objects
appearance as it is spatially invariant and through quantisation, some invariance
to illumination can be achieved. Several colour spaces and quantisation levels
were investigated including the HST (8x8x4) approach proposed by Black et al
[10], the Consensus-Colour Conversion of Munsell colour space (CCCM) [12] and
differing levels of conventional RGB quantisation. Without calibrating camera
colour responses, CCCM produced marginally superior results and was selected
for initial object correlation, for further details see [18]. CCCM works by breaking
RGB colour into 11 basic colours. Each basic colour represents perceptual colour
category established through a physiological study of how human’s categorise
colour. This coarse quantisation provides a consistent colour representation inter-
camera prior to quantisation. With calibration, quantised RGB performs best
as will be seen in Section 7.

4 Building the Temporal links between Cameras

To learn the spatial links between cameras, we make use of the key assumption
that, given time, objects (such as people) will follow similar routes inter camera
and that the repetition of the routes will form marked and consistent trends in
the overall data. These temporal links inter camera can be used to link camera
regions together, producing a probabilistic distribution of an objects movement
between cameras.

Linking all regions to all others is feasible in small scale experimental sys-
tems. However, as the number of cameras increase, the number of possible links
required to model the posterior increases exponentially. With each camera in
a system of 20 cameras having 3 entry or exit regions, a total of 3540 links
would be required to ensure that all possibilities are covered. As links increase,
the amount of data required to learn these relationships also increases and the
approach becomes infeasible. However, most of the links between regions are
invalid as they correspond to impossible routes. Thus to use the available re-
sources effectively a method is required to distinguish between valid and invalid
links. Most solutions to this problem require either batch processing to identify
entry/exit points or hand labeling of the links between regions (impractical in
large systems). Both of these approaches are unable to adjust to changes in the
environment or camera position. This section proposes a method that is initially
coarsely defined but then refines itself over time to improve accuracy as more
data becomes available. It has the ability to adjust to any changes that might
occur in the environment without a complete system restart.

4.1 Region links

The system starts by identifying links at the basic camera-to-camera level, dis-
carding unused or invalid links. Valid links can then be subdivided to provide a



higher level of detail. The tracking algorithm automatically tracks objects within
the camera’s FOV and forms a colour appearance model for the object or per-
son. The colour histogram B = (by,bs....b,) is the median histogram recorded
for an object over its entire trajectory within a single camera. All new objects
that are detected are compared to previous objects within a set time window,
T. The colour similarity is calculated and combined together, to form a discrete
probability distribution over time based on this reappearance period T'. Thus
the frequency f of a bin ¢ is calculated as:
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where 517 and tf”d are the entry and exit times of object i respectively, T is
the maximum allowable reappearance period. H;; is the histogram intersection
of objects ¢ and j given by H;; = Z,lglzl min(Bg, Bji). Frequencies are only
calculated for an object 7 that disappears from region y followed by a reappear-
ance in region z (f*¥). Normalising the total area by Z;‘F fgfo, an estimate
to the conditional transition probability P(O, ;|O,) is obtained. An example of
P(04,|0y) is shown in Figure 2 where O, is object = at time ¢. The distinct
peak at 6 seconds indicates a link between the two regions.
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Fig. 2. An example of a probability distribution showing a distinct link between two
regions

5 Incremental Block subdivision and recombination

This section explains how the system identifies valid links and therefore when
to subdivide the connected blocks. Eventually, adjacent neighbouring blocks can
be recombined to form larger blocks if found to have similar distributions.

The system is based on a rectangular subdivision. Initially, at the top level,
the system starts with one block for each of the four cameras. This allows tracking
to start immediately with links initially uniformly distributed. The twelve links
(ignoring self transitions) between the blocks are learnt over time using the



method described in the previous section. After sufficient evidence has been
accumulated, determined by the degree of histogram population, the noise floor
level is measured for each link. This could be determined with statistical methods
such as the average and standard deviation, however, through experimentation,
double the Median of all the values of the probability distribution was found to
provide consistent results. If the maximum peak of the distribution is found to
exceed the noise floor level, this indicates a possible correlation between the two
blocks (eg Figure 2).

If a link is found between two blocks, they are both subdivided to each create
four new equal sized blocks. The previous data is then reused and incorporated
with future evidence to form links in the newly subdivided blocks. It is likely that
many of the blocks will not form coherent links, and if a link has no data in it, it
is removed to minimise the number of links maintained. Figure 3 shows how the
blocks are removed and subdivided over time. Table 1 shows the number of links

Iteration 0 Iteration 2 Iteration 4

Iteration 1

Fig. 3. The iterative process of splitting the blocks on the video sequence

maintained and dropped at each iteration, along with the amount of data used.
It can be seen that with each iteration, the number of possible links increases
dramatically, whereas the number of valid links maintained by the system are
considerably less. The policy of removing unused and invalid regions improves
system scalability.

As the process proceeds the blocks start to form the entry and exit points
of the cameras, Figure 3 (interation 4) shows the result after 4 subdivisions.
The lighter blocks have a higher importance determined by the number of sam-
ples each link contains. As the number of iterations increase, the size of the
linked blocks decrease and thus reduce the number of samples detected in each
block. Low numbers of samples result in unreliable distributions. To counter this,



Table 1. Table of number of links maintained and dropped in each split

Iteration|Amount of|| Total | Total ||Number of| Total |Initial|Dropped| Links
Data Possible|Possible|| Blocks |Possible| links | links |maintained
Blocks | Links |{maintained| Links

1 1000 4 12 4 12 12 0 12
2 5000 16 240 16 240 240 45 195
3 10000 64 4032 60 2540 | 1631 688 943
4 10000 256 65280 191 36290 [36134| 34440 1694

blocks which are found to have similar distributions to neighbouring blocks are
combined together to increase the overall number of samples within that block
(as illustrated in the right image in Figure 3(recombination)). This reduces the
number of blocks and therefore links maintained, and increases the accuracy of
those links. Should new evidence be identified in previously discarded blocks,
eg if a door is suddenly opened, the affected blocks can be recombined to the
previous level of subdivision.

6 Calculating Posterior Appearance Distributions

This section describes how the weighted links between blocks can be used to
weight the observation likelihood of tracked people. Over time the posterior
becomes more accurate as the iterative block splitting process (described previ-
ously) takes place. Given an object which disappears in region y we can model
its reappearance probability over time as;

PO0,) = 3 w0, P(0,,]0,) (2)
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where the weight w, at time ¢ is given as
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This probability is then used to weight the observation likelihood obtained
through colour similarity to obtain a posterior probability of a match, across
spatially separated cameras. Tracking objects is then achieved by maximising
the posterior probability within a set time window.
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7 Modelling Colour Variations

The CCCM colour quantisation descriptor used in the previous section, assumes
a similar colour response between cameras. However this is seldom the case. In-
deed the cameras of Figure 1 show marked difference in colour response even to



the human eye. Therefore, a colour calibration of these cameras is proposed that
can be learnt incrementally as with the distribution previously discussed.

The system uses the initial CCCM colour descriptor to form posterior dis-
tributions, in parallel to forming the colour transformation matrices between
cameras. Novelly, the tracked people are automatically used as the calibration
objects, and a transformation matrix is formed incrementally to model the colour
changes between cameras. However, the people used are not identical sizes, there-
fore a point to point transformation is unavailable. We therefore use the colour
descriptor matched between regions in different cameras to provide the calibra-
tion. Equation 4 shows the transformation matrix between image I and the
transformed image T using 2 bin RGB quantisation in this simple example.
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tyy is the term that specifies how much the input from colour channel  con-
tributes to the output of colour channel y. Transformation matrices are formed
between the four cameras. Six transformations along with their inverses provide
the twelve transformations required to transform objects between the four cam-
eras. As camera calibration is refined the illumination changes that affected the
success of the original correlation methods investigated in [18] and section 3, are
reduced. This allows other less coarse quantisation (such as RGB) to be used
with improved performance as will be shown.

The six transformation matrices for the four cameras are initialised as iden-
tity matrices assuming a uniform prior of colour variation between camera. When
a person is tracked inter camera and is identified as the same object, the differ-
ence between the two colour descriptors, is modelled by the transform matrix ¢
from Equation 4. The matrix ¢ is calculated by computing the transformation
that maps the person’s descriptor from the previous camera I to the person’s
current descriptor T'. This transformation is computed via SVD. The matrix ¢ is
then averaged with the appropriate camera transformation matrix, and repeated
with other tracked people to gradually build a colour transformation between
cameras. This method will introduce small errors, however it is in keeping with
the incremental theme of the paper. Allowing the system to continually update
and adapt to the colour changes between cameras as more data becomes avail-

able.

To form the transform matrices a number of different quantisations were
examined. A 3x3 matrix of the median colour of a person, was found to be
too coarse, losing too much colour information. The 11 bin CCCM quantisation
used to create the posterior distributions is an arbitrary labeling, not metric and
therefore cannot be represented by a linear transformation. However it is more
accurate than RGB without calibration. With calibration RGB performs better.



A number of RGB quantisations were investigated with varying accuracy, how-
ever a parzen window gives a stable accuracy of 77% over a range of quantisation
levels.

8 Results

The final system starts uncalibrated with uniform priors for all distributions and
identity matrices for colour transforms. It uses no supervised learning of its envi-
ronment, instead automatically adding information as it becomes available. This
section demonstrates the performance of the incrementally constructed spatio-
temporal weights, the inter camera colour calibration and the result of combining
both approaches. The data used consisted of 10,000 objects tracked over a pe-
riod of 72 hours of continuous operation. Evaluation was performed using an
unseen ground-truthed 20 minute sequence with 300 instances of people tracked
for more than 1 second

Initially, the experiment has no a priori information of the environment, us-
ing only the CCCM colour similarity between objects to correlate inter camera.
The posterior probability of the object match is gained by multiplying the colour
similarity by the reappearance probability (3). At each refinement the accuracy
increases as indicated in Table 2. After 5 days and 10,000 tracked objects each
camera has been split 4 times resulting in a possible 64 regions per camera. At
this point accuracy has increased from the base 55% of colour similarity alone
to 73%. Equally our incremental learning scheme for colour calibration can be
applied. Again as additional objects are added into the colour transformation
matrices the accuracy of colour similarity for RGB increases from 42% to 67%.

Table 2. Table of results of using CCCM colour similarity alone, colour calibration
alone, posterior distribution weighting of CCCM similarity and a combination of all
three. With an increasing number of refinements of the blocks

Accuracy:

Block split Total Data Posterior 4 bin RGB Colour|Combined weight
Used Distrib Weights Calib alone + colour model

CCCM Colour only 0 55% 42% 55%

1 500 60% 55% 68%

2 1000 63% 60% 69%

3 5000 68% 60% 76%

4 10000 73% 67% 78%

Obviously it would be beneficial to combine both of these methods to further
increase performance. The first level of block refinement and reappearance period
estimation is constructed and the posterior appearance of objects used for colour
calibration. This provides a boost in performance as apposed to using colour



similarity alone. Once a colour transformation is available, a transformed RGB
colour descriptor can be used in learning the second level of block refinement.
This process can be repeated where colour calibration can further increase the
accuracy of block refinement and vice versa. This is indicated in Table 2 where
using this interative scheme raises detection performance from 55% to 78%.

Of course this process can be continued until performance converges to a
stable level. Table 3 shows a further 3 iterations without additional data or block
refinement providing a final accuracy of 81% which is a significant improvement
upon colour similarity alone. This is the stable point for this system without
more data being added.

Table 3. Looking at iterations of the colour calibration to further improve accuracy

Accuracy:

Iteration Total Data Posterior 4 bin RGB Colour|Combined weight
Used Distrib Weights Calib alone + colour model

Inital results from| 10,000 73% 67% 78%

block splitting

1 10,000 73% 69% 80%

2 10,000 73% 70% 81%

3 10,000 73% 70% 81%

The graph in Figure 6, shows how the accuracy increases both over block
splits (shown in Table 2), and program iterations (shown in Table 3). The
greatest overall increase in accuracy is in the combination of both posterior dis-
tribution weights and colour calibration of the cameras. The increase in accuracy
allows the system to fulfill the three ideals stated in the introduction, of work-
ing immediately, improving performance as more data is accumulated, and can
adapt to changes in its environment.

The main entry/exit blocks and links after 4 iterations are shown in Figure
5, along with a spatial map of the blocks.

9 Conclusions

We have described an approach to automatically derive the main entry and exit
areas in a camera probabilistically using incremental learning, while simultane-
ously the colour variation inter camera is learnt to accommodate inter-camera
colour variations. Together these techniques allow people to be tracked between
spatially separated uncalibrated cameras with up to 81% accuracy, importantly
using no a priori information in a completely unsupervised fashion. This is a
considerable improvement over the baseline colour similarity alone of 55%. The
spatio-temporal structure of the surveillance system can be used to weight the
observation likelihood extracted through the incrementally calibrated colour sim-
ilarity. The incremental colour calibration and posterior distribution weighting
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Fig. 4. Comparing the accuracies of; the baseline colour CCCM similarity, colour cal-
ibration alone, posterior distributions weights alone (space) and the combination of
spatio-temporal weighted colour calibration over a number of program iterations

Fig. 5. Both the main entry and exit points and a top down layout of the camera
system environment with these blocks marked

are both completely automatic, unsupervised and able to adapt to changes in the
environment. The incremental technique ensures that the system works imme-
diately but will become more accurate over time as additional data is acquired.
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