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Abstract

This work presents a piecewise linear approximation to non-linear Point
Distribution Models for modelling the human hand. The work utilises the
natural segmentation of shape space, inherent to the technique, to apply
temporal constraints which can be used with CONDENSATION to support
multiple hypotheses and quantum leaps through shape space. This paper
presents a novel method by which the one-state transitions of the English
Language are projected into shape space for tracking and model prediction
using a HMM like approach.

1  Introduction
Previous work by the author and other researchers have investigated statistical

models of deformation [1-8]. These deformable models have been used to learn a priori
shape and deformation from a training set of examples which, represent the shape and
deformation of an object or a class of objects. Models are typically constructed that
know what is valid deformation but not when deformation is valid. This important
temporal constraint is beneficial in disambiguating models.

A large body of work has been performed on the temporal mechanics of tracking.
Many researchers have attempted to use predictive methods such as those based within a
Kalman filter framework [1]. Hill et al proposed using genetic algorithms to model the
discontinuous changes in shape space/model parameters [6][7]. Of particular interest to
the work presented in this paper is the CONDENSATION algorithm [1][8] which is a
method for stochastic tracking, where a population of model hypotheses are generated at
each iteration. These populations are generated from pre-learnt Probability Density
Functions (PDFs) generated over the model parameter space to provide a hypothosis-
and-test approach to model prediction and tracking.

The key to this approach is an a priori model of motion from which populations are
generated. Where motion is relatively uniform, such as the motion of an object within an
image, the learning stage can be bootstrapped to the tracking process [8]. However, for
the movement of the model within shape space (the deformation parameter space) this is
not possible [4]. Instead, motion models must be pre-learnt in much the same way as
deformable models; the temporal model merely augments that of deformation.
Unfortunately, although a relatively small sample of training data can be used to



construct a model of deformation, considerably more examples are required to achieve
an accurate representation of motion.

This paper addresses the problem of constructing a non-linear deformable model of
the human hand for gesture recognition. It is demonstrated that the temporal model
cannot be constructed from training data alone and a method which, allows temporal
information about the English language to be projected down into shape space is
presented. This generates a 1st order temporal model which, incorporates both
information about shape space and the English Language.

Section 2 discusses the construction of a non-linear Constrained Shape Space Point
Distribution Model (CSSPDM [4]) using a piecewise linear approximation. Section 3
demonstrates how the CSSPDM naturally lends itself to a CONDENSATION like
approach to tracking. Section 4 presents a method by which the 1st order transition of the
English Language are propagated into shape space. Finally the approaches are compared
and conclusions drawn.

2 Constructing a CSSPDM for Gesture
Recognition

3.1 American Sign Language
American Sign Language or ASL has a finger spelt alphabet similar to other national

sign languages. These simple gesture alphabets are used to spell names or words (letter
by letter), for which there is no sign either known or present in the vocabulary. ASL
provides a more suitable problem domain over British Sign Language, as the BSL finger
spelt alphabet is a two-handed system. This presents added difficulty for computer
vision approaches due to the problems associated with occlusion. Figure 1 shows the
ASL alphabet with the corresponding hand pose for each letter of the alphabet.

3.1 The linear ASL PDM

Figure 1 - The American Sign Language Finger Spelling Alphabet



Several image sequences were recorded which encapsulated numerous occurrences
of each of the letters of the alphabet. These sequences included three 'runs' through the
alphabet, along with a small selection of simple sentences and words. Once these
sequences had been extracted, the hand was segmented to produce a binary image, and a
contour-tracing algorithm initiated to extract the external contour of the hand for each
image frame. After a standard alignment and resampling of the contour to 200 points (as
described in [4]) a training set of 7441 examples was produced where each example

400ℜ∈ix .

The Linear ASL model is generated by performing principal component analysis
upon the training set [5]. Figure 2 shows the primary modes of the linear ASL PDM and
how these modes deform the model from the mean shape.

By analysing the eigenvalues of the covariance matrix it can be determined that the
first 30 eigenvectors corresponding to the 30 largest eigenvalues encompass 99.6% of
the deformation within the model. However, due to the non-linearity of the model the
linear PDM is insufficient for tracking as it encompasses too much deformation.

Figure 2 – First two primary modes of the ASL model

3.2 Applying non-linear Constraints to Shape Space
To further constrain the model the approach presented in [2][3][4] is applied. Non-

linear constraints to the model are added by performing cluster analysis on the
dimensionally reduced data set after it has been projected down into PCA space. From
the linear model it has been determined that the 30 primary modes encompass 99.6% of
the deformation, by projecting each of the training vectors down into this lower
dimensional space, a dimensional reduction of 400 to 30 is achieved. Cluster analysis is
now performed upon the dimensionally reduced data set.
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Figure 3 - Constrains on PCA space for
the ASL Model
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Figure 4 - ASL model Tracking an Image
Sequence of the word 'gesture'
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primary modes) of the linear patches (clusters) extracted via PCA. By constraining the
model to lie within a linear patch the non-linearity of the shape space is estimated and a
robust model produced.

3 A hybrid PDF for CONDENSATION

3.1 Least Squares Gradient Descent Tracking
From figure 3 it can be seen that shape space is segregated into at least two separate

regions due to the movement of landmark points. Furthermore, connected patches of the
model may not represent consistent movement of the model in the image frame. This
leads to the model jumping between patches, even when within region 2. Under these
circumstances it is not possible for the iterative refinement algorithm used for the classic
PDM/ASM [5] to provide the 'jump' between regions.

An image sequence was recorded of a hand signing the word 'gesture' which
consisted of 170 frames. Figure 4 shows the model attempting to track the image
sequence for the letters 'e' and 'u'. The model successfully tracks the letter 'e' but when
the image sequence reaches the letter 'u' and the fingers elongate, the model is unable to
make the jump to the new cluster responsible for modeling this letter. This problem is
fundamental to the operation of the least squares iterative refinement algorithm and is
due to two reasons:

1. Only a small section of the contour (marked in frame 'u') is responsible for 'pulling'
the contour up to follow the elongated fingers. As this section is relatively small,
compared to the remainder of the contour, it has less influence over the overall
movement.

2. The maximum movement of the contour per iteration is governed by the length of the
normal used to search around the contour. Hence this factor limits the distance the
model can move through shape space at each iteration.

An obvious solution to these problems is to increase the search length along normals.
However, larger normal searches allow the contour to affix to incorrect features in the
image and hence results in degradation and additional computational complexity.

3.2 Finding the Optimal Ground Truth for Tracking
To locate the optimum solution (i.e. the closest allowable shape from the

Constrained Shape Space PDM, CSSPDM) for each iteration of the model, the space
was exhaustively searched. If the assumption is made that any local patch of the
CSSPDM can indeed be treated as a linear model, then the iterative refinement
procedure can be used to move locally within that patch to the closest possible shape.
Therefore, if the best match within each patch (cluster) is located for each frame, the
resulting lowest cost solution must be the (near) optimum.

By analysing the optimum path through shape space and comparing this with the path
taken by the least squares approach, the notion of discontinuity within shape shape can
be confirmed.
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Figure 5 – (a) Graph of Distance Moved at each iteration for Least Squares Solution and
Optimum Solution, (b) Graph of Distance from Mean of Shape Space at each frame for
Least Squares Solution and Optimum Solution

Figure 5a shows the distance moved through shape space at each iteration for both
the optimum trajectory and the iterative refinement algorithm. From this it can clearly be
seen that the least squares iterative refinement algorithm makes small incremental
movements at each iteration, whereas the optimum trajectory makes large 'jumps' at
every frame. During the letters 'e' and 't' the least squares approach almost stops moving,
which demonstrates that the model has converged upon a stable solution. However, the
lack of such trends for other letters shows that the model is constantly struggling to
better refine itself. Figure 5b shows distance from the centre of shape space for the two
trajectories. Again this demonstrates that the optimum path jumps violently within the
space whereas the least squares approach makes small movements.

The most interesting aspect of these figures is Figure 5b. The letter 'e' occurs twice
during the sequence. However, during the first occurrence the least squares approach is
at a distance of around 200 units from the mean whereas during the second occurrence it
is at around 500. This demonstrates that there are at least two areas of shape space
responsible for modelling the letter 'e' and these are distinctly separated in shape space.
It also shows that the least squares approach can only use the local 'e' part of shape space
and is incapable of jumping between them.

This confirms that not only is the non-linear shape space discontinuous but the least
squares iterative refinement approach is incapable of providing a robust method for
tracking. Instead a new method of applying CSSPDMs must be devised.

3.2 Supporting Multiple Hypotheses
Due to the discrete nature of the piecewise linear method of modelling non-linearity,

the approach directly lends itself to a discrete PDF with the addition of a Markovian
assumption. A 1st order model of temporal dynamics can be derived where the
conditional probability ( )t

j
t
i CCP 1+  provides the probability that the model will move to

cluster Ci given it was at Cj at the last time step. This conditional probability can be
calculated from the training sequence and produces a 2D PDF of motion within shape
space.

Figure 7a shows the ASL PDF, which has a heavy diagonal dominance. This
dominance is when ( )( )t

j
t
ii CCP 1+argmax  and i = j i.e. the highest probability is that the

PDM will stay within the present cluster. The assumption can therefore be made that
within any local patch the model can iterate to a local solution. This confirms the
assumption used when calculating the optimum model trajectory. This assumption also
provides two benefits:



1. The iteration to convergence of any global optimisation technique can be enhanced
by allowing each hypothesis to iterate to a better solution within the present cluster.

2. A smaller population is required, as only global differences in hypotheses need to be
supported.

From the 'learnt' probability density function, a sample population can be generated at
each iteration of the model. Given a good initialisation of the model and the associated
cluster 0=tC , this can then be used to predict the future movement.

However, this approach, unlike condensation, does not recover well from failures. As
the new population is solely based upon the current best-fit cluster, the approach is
highly sensitive to both an accurate PDF and a good fit to the current object pose. To
help overcome this drawback less emphasis must be placed upon the current best-fit
hypothesis being the optimum (and hence correct) solution, thus providing more
robustness to failure. This can be addressed by creating a new population of hypotheses,
not from the current best fit model, but from the weighted sum of the best n hypotheses
as described thus:

Algorithm 1 - Weighted Condensation

• From the PDF ( )1−t
j

t
i CCP , extract the probability vector ( )1=t

iCP , which is the

probability distribution of the first iteration, given 01 =− = tt
j CC .

• Generate a randomly sampled distribution of k hypothoses [ ]k,,1 !=ρρx , where

ρx  is the mean shape of cluster iC  and ( ) ( )1== t
ii CPCP

• While still tracking,
• Fit k hypotheses, applying CSSPDM constraints and assess fitness using
error metric
• Sort hypotheses into descending order according to error
• Iteratively refine first n hypotheses and resort
• Apply the CSSPDM constraints and determine the n clusters 1−tCη , where

n,,1 !=η  which produce the lowest error

• From the PDF ( )1−t
j

t
i CCP , extract the vector ( )ηt

iCP  using the n extracted

clusters. Take the weighted sum using a Gaussian weighting distribution to

form a new distribution ( )t
iCP′ , where

∑
=

=
n

t
i

t
i CPCP

1

)()('
η

ηηω  and ( )







 −−=
2

2

2

19
exp

n

ηωη

• Normalise probability distribution ( )t
iCP′ .

• Generate a new random population of k hypotheses from the distribution

( )t
iCP′ .

4. Extending Temporal Dynamics
It has been shown how, with the addition of a first order Markov chain to the

CSSPDM, a hybrid approach to condensation can be used to provide robust tracking
where either:



• The non-linearity of the PDM along with the discrete representation of the non-linear
approximation leads to a discontinuous shape space.

• Rapid movement of the object produces large changes in the model parameters.

This Markovian model of dynamics can be used to explicitly constrain the movement
of the model within shape space, or implicitly, using the hybrid condensation approach.
However, the use of temporal constraints relies upon the assumption that the training set
from which the model is built, contains a thorough representation of all-possible
deformation and movement. For simple models this is often true. However, for ASL it is
not, and it is important to ask the question, 'What exactly is the temporal model
representing?'

The ASL PDF represents two aspects of motion,
1. The non-linear representation of shape space, how the individual clusters relate and

how the model moves throughout the space to form letters.
2. It also contains information about the English language and how letters relate to form

words and sentences.

As the PDF encodes both of these attributes it must be constructed from a training set
which has a good representation of how the model deforms and be representative of the
English language. This is however infeasible. If the ASL image sequence used
previously is considered, it took 165 frames to record the 7 letter word 'gesture'.
Konheim reported a statistical study where the 1-state transition probabilities of the
English Language were determined using 67,320 transitions between two successive
letters [9]. As the 165 frames previously used produced an average of 20 frames per
letter, this would constitute a training set in excess of 1.3 million frames not including
transitional shapes between letters. As each frame produces a training shape this results
in a training set which is of infeasible size.

The current ASL PDF (see Figure 7a) contains valuable information about how the
model moves within shape space, but due to the deficiency in training it does not contain
sufficient information to accurately model the transitions between the letters of the
English language. Fortunately, it is relatively simple to gain a transition matrix for the
English language by analyzing large samples of electronic text and calculating the 1-

t
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Figure 6 - Discrete Probability Density Function for the English Language
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state transitions. What is required is a method of combining this knowledge of English
into the ASL PDF, producing a more generic and accurate model for tracking and
classification.

4.1 The Temporal Model
The ASL PDF ( )1−t

j
t
i CCP , constructed from the training set, provides the probability

that the model will move to cluster iC  given it was at cluster jC  at the last time step.

Similarly a 1st order Markov Chain can be constructed for the English language which
provides a new PDF ( )1−t

j
t
i LLP . Figure 6 shows the PDF gained from this Markov Chain

as taken from Konheim and shows the 1-state transitions calculated from a sample text
of over 67 thousand letters [9].

Figure 6 does not demonstrate a diagonal dominance, unlike Figure 7a. This is
because the English language has few occurrences of repetitive letters in words whereas
the previous PDF resulted from operations involving a high degree of repetition. The
main trend that can be seen are the vertical stripes that occur for many of the letters.

In order to incorporate this additional information learnt from sample text, a new
ASL PDF must be constructed ( )1−′ t

j
t
i CCP . To do this a mapping must be achieved

which allows shape space to relate to gesture space.

4.2 Mapping Between Spaces
By labelling each training example with an associated letter a PDF can be generated

which relates clusters in shape space to gestures. Here the conditional probability

( )t
j

t
i CLP  provides a probability of the occurrence of a letter L given the model is in

cluster C in shape space at any time. This conditional probability provides a mechanism
to relate shape space to the gesture space where the constraints of the English language
(as learnt) can be applied. However, for this to be of use, a method that allows this
information to be mapped back into the shape space must be provided. This can be done
using the common form of Bayes theorem where

( ) ( ) ( )
( )t

j

t
i

t
j

t
it

j
t
i LP

CLPCP
LCP =

However, where ( )t
j

t
i LCP  and ( )t

iCP  can both be gained from the training set, ( )t
jLP

(the probability of the occurrence of a letter) can only be gained from analyzing English
text. As it is known that the training set does not fully represent the English Language
this equation would lead to biasing of the final conditional probabilities. Instead, a
variation of Bayes Theorem can be used, where

( ) ( ) ( )
( ) ( )∑

=
t
i

t
j

t
i

t
i

t
j

t
it

j
t
i

CLPCP

CLPCP
LCP

Using this form, ( ) ( ) ( )t
j

t
i

t
j

t
i LPCLPCP ≡∑  but all probabilities are gained from the

training set, and hence no bias occurs from mixing unrelated probabilities. This is
possible as, although the training set does not contain a thorough representation of
English, it does provide an accurate representation of the mapping between the two
spaces.



4.3 The Hybrid ASL PDF
A new ASL PDF can now be constructed which incorporates the 1-State transitions

of the English language by treating the system like a Hidden Markov Model and
projecting the transitions of the observation layer down into the Hidden (parameter
space). Taking the current cluster of the model the corresponding letter(s) associated
with this cluster is determined and the 1-state transition matrix applied to extract the
most likely next letter. The cluster(s) associated with this transition are then calculated.

Where,

( ) ( ) ( ) ( )t
j

t
i

t
j

t
i

t
j

t
i

t
j

t
i LCPLLPCLPCCP 11 −− =′

This produces a new ASL PDF which is shown in Figure 7b.

     

Figure 7 – (a) Discrete Probability Density Function for ASL Model, (b) Discrete
Probability Density Function for hybrid ASL Model

Figure 7b demonstrates the same characteristic vertical strips seen from the English
Language PDF, which it has inherited, and as such differs from the original ASL PDF in
two ways.

1. Each cluster exhibits far more transitions to other clusters.
2. The diagonal dominance that is important to tracking, is missing.

Diagonal dominance can be forced upon the PDF by imposing diagonal dominance on
either ( )1−t

j
t
i LLP  or ( )1−′ t

j
t
i CCP . However, this is haphazard and risks over-biasing the

hypothesis generated at each frame. An alternative is to simply ensure that the
population generated at each step always includes at least one hypothesis from the
current cluster.

Figure 8 shows the results of three of the techniques discussed, namely that of the
least squares gradient descent (ASM, algorithm[5]) the optimal solution gained through
an exhaustive search of shape space and that of the hybrid condensation approach. The
error metric is the euclidean distance of a shape to the closest allowable point within
shape space as gained from the different algorithms. It can clearly be seen that the
optimum solution does indeed give the lowest results with the hybrid condensation
producing only slightly higher error rates, both of which are significantly lower than
those from the Least squares appraoch which fails catastophically.



Comparison of Optimum and Least Squares Solutions against hybrid Condensation
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5 Conclusions
This paper has presented the augmentation of statistical models with temporal

dynamics gained through the probabilistic analysis of the training set and how this
relates to movement within shape space. It has been shown how the discrete segregation
of shape space used in the CSSPDM directly lends itself to a Markov chain approach to
modelling temporal dynamics. It has been shown that the nature of shape space is often
complex and discontinuous and how, using these additional learnt temporal constraints,
tracking can be improved by supporting a population of multiple hypotheses. However,
the key to this paper is the ability to project observation probabilities into a hidden shape
space using an approach akin to a Hidden Markov Model where the simple acquisition
of observation layer transitions can be propagated into the hidden parameter space to
overcome the inadequacies of training. It has been shown how, using a hybrid
CONDENSATION tracker, successful tracking can be achieved while maintaining a
considerable lower population size to that of standard CONDENSATION.
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