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Abstract

Sign language representation learning presents unique
challenges due to the complex spatio-temporal nature of
signs and the scarcity of labeled datasets. Existing methods
often rely either on models pre-trained on general visual
tasks, that lack sign-specific features, or use complex mul-
timodal and multi-branch architectures. To bridge this gap,
we introduce a scalable, self-supervised framework for sign
representation learning. We leverage important inductive
(sign) priors during the training of our RGB model. To do
this, we leverage simple but important cues based on skele-
tons while pretraining a masked autoencoder. These sign
specific priors alongside feature regularization and an ad-
versarial style agnostic loss provide a powerful backbone.
Notably, our model does not require skeletal keypoints dur-
ing inference, avoiding the limitations of keypoint-based
models during downstream tasks. When finetuned, we
achieve state-of-the-art performance for sign recognition
on the WLASL, ASL-Citizen and NMFs-CSL datasets, us-
ing a simpler architecture and with only a single-modality.
Beyond recognition, our frozen model excels in sign dic-
tionary retrieval and sign translation, surpassing standard
MAE pretraining and skeletal-based representations in re-
trieval. It also reduces computational costs for training ex-
isting sign translation models while maintaining strong per-
formance on Phoenix2014T, CSL-Daily and How2Sign.

1. Introduction
Sign language is an important means of communication
for millions of people worldwide. Sign languages have
complex visual characteristics, which include intricate hand
shapes, motions, body poses and facial expressions that
models need to accurately interpret and process [5]. Fur-
thermore, the computational demands of processing long
video sequences add considerable challenges, making it dif-
ficult to scale these systems effectively. As a result, current
approaches to sign recognition and translation often rely on
general pretrained vision models [1, 7, 19, 22, 28, 49, 57].
Creating robust, label-free sign language representations

that generalize across diverse datasets is challenging, yet
essential for scalable sign language modeling.

Most existing methods for sign recognition rely on multi-
modal or an ensemble of specialized models to achieve
state-of-the-art recognition results. These models often re-
quire multi-channel inputs (e.g. RGB, depth and skeleton
data) or specialized architectures to capture the complex in-
teractions of hand, body or facial expressions [17, 20, 22,
23, 52, 57]. With each country having its own sign lan-
guage and linguistic study expensive, currently available la-
beled datasets are sparse with typically under 2000 unique
signs [1, 19, 26, 28, 41]. Collecting annotated sign language
data is costly and time-consuming, making it infeasible to
rely solely on labeled datasets for sign representation learn-
ing. This highlights the need for methods that can learn sign
language representations from large-scale, unlabeled data.

Newer methods for pretraining sign language trans-
lation models often require sentence-aligned annotations
[25, 37, 49, 53, 55]. While these prior approaches jointly
learn individual sign representations and inter-sign relation-
ships, they are not scalable to unlabeled datasets as they re-
quire sentence-aligned annotations. We therefore focus on
building a scalable and generalizable individual sign rep-
resentation framework using self-supervised learning. A
strong foundation in individual sign embeddings is an im-
portant step before building effective inter-sign models, as it
ensures robust feature representations before incorporating
complex long range temporal information.

Our main contributions are as follows: (1) We propose
a scalable self-supervised Masked Autoencoding (MAE)
framework which leverages sign priors, adversarial loss and
feature regularizations for sign representation learning. (2)
We introduce a method for analyzing sign class similari-
ties in unseen datasets, introducing an auxiliary class prob-
ability distribution loss, which enhances recognition per-
formance. (3) Our single pretrained model achieves state-
of-the-art sign recognition, surpassing complex architec-
ture and multimodal models. (4) We demonstrate the ef-
fectiveness of our sign representations for sign dictionary
retrieval, achieving strong performance without any down-
stream training. (5) We demonstrate that using our pre-



trained model as a frozen feature extractor, training is more
tractable by reducing memory requirements and improving
the performance of existing sign translation models.

2. Related Work
Supervised Sign Recognition. Isolated Sign Recognition
involves identifying a single sign within a given video.
Sign recognition models often rely on pretrained spatio-
temporal models from action recognition datasets such as
Kinetics [8], fine-tuned for specific sign recognition tasks
[1, 19, 22, 28, 57]. This transfer learning approach faces a
domain shift problem, as sign videos have unique temporal
dynamics and subtle gestures not well-represented in gen-
eral action datasets, leading to performance degradation. To
leverage invariance, some methods use skeletal keypoints
instead of full-frame RGB models [10, 17, 20, 48, 52].
While keypoint-based models are more memory-efficient,
they typically underperform relative to RGB models
[2, 11, 36] and require complex architectural modifications
to Graph Convolutional Networks (GCNs) [30] or trans-
formers [46], to model the spatial-temporal relationships.
Moreover, keypoints are prone to errors, such as missing or
misdetected points [31, 32]. To solve these issues, recent
state-of-the-art methods have combined keypoint and RGB
modalities through branching or ensembling techniques
[22, 23, 57]. While they achieve higher accuracy, they
increase computational complexity due to the need for
multiple models or support for multi-modal inputs.

Self-Supervised Sign Representation Learning. Self-
supervised learning for vision [3, 33, 38, 44] and language
[12, 35] has demonstrated substantial benefits by leveraging
unlabeled datasets for various tasks. In sign language,
approaches such as Skeletor [24], SignBERT [17], Sign-
BERT+ [20] and BEST [52] focus on keypoint-based
self-supervised learning, employing masked learning
similar to BERT [12]. However, these methods depend on
keypoints as inputs and therefore requiring ensembling with
RGB models to achieve competitive performance, resulting
in increasing complexity and limited pretraining benefits.
This highlights the need for a simple and efficient model
which capturing sign-specific information and retains the
pretraining advantages.

Paired Sign-Text Pretraining for Sign Translation. Su-
pervised pretraining approaches for sign translation, such as
GFSLT-VLP [53], Sign2GPT [49], SignHiera [37], MSLU
[55] and VAP [25], use sign video–spoken language pairs
to enhance sign translation. Sign2GPT employs a pre-
trained DinoV2 [33], which is effective for general vision
tasks but requires LoRA [16] fine-tuning for sign transla-
tion to achieve strong performance, significantly increas-
ing computational costs. This highlights the domain gap

between pretrained foundation vision models and sign lan-
guage. SignHiera [37] demonstrates success with large-
scale training on YT-ASL [45] using Hiera MAE [38] with
language-supervised pretraining. However, they acknowl-
edge that SignHiera requires significant computational re-
sources (64 A100 GPUs for two weeks), emphasizing the
need for more accessible and cost-effective video pretrain-
ing on large-scale datasets. These methods also face scala-
bility challenges due to their reliance on sentence-aligned
annotations. In this paper, we introduce a scalable self-
supervised pretraining framework that learns sign represen-
tations without paired sign-text annotations, aiming to sig-
nificantly reduce computational costs for pretraining and
improve efficiency in downstream sign tasks.

3. Sign Priors
Sign language communication relies on hand shapes, body
posture and interactions. To guide the model toward mean-
ingful sign representations, we introduce “sign priors”, a
set of cues that we know capture essential sign features.
These priors (P) serve as the primary targets for our model,
as detailed in Sec. 5.1. Using a human pose estimation
model specialized for sign language videos [21], we extract
joint angles and 3D keypoints. We categorize our priors
into keypoint, angle, distance and signer activity.

Keypoint Priors define the spatial structure of signing, we
divide this into two priors:

Hand Keypoint Prior (P{h,k}): This prior is designed to
capture hand shapes and orientations. We normalize the 3D
coordinates of the 21 hand keypoints by setting the wrist as
the origin, thereby eliminating positional variations in the
body space. The resulting vector, P{h,k} ∈ R21×3, rep-
resents the configuration of the left or right hand, where
h ∈ {LH,RH} denotes the left or right hands.

Full Body Keypoint Prior (P{b,k}). This prior captures
the positioning of the body and hands within the body
space. We use all 61 3D keypoints (21 for each hand and
19 for the body), resulting in P{b,k} ∈ R61×3.

Joint Angle Priors capture finger flexion, extension and en-
code upper-body posture variations:

Hand Joint Angle Prior (P{h,a}). This prior captures
hand joint orientations. We extract 41 hand joint angles,
yielding a vector R41×1. To handle the continuous nature of
angles, we apply sine and cosine transformations, resulting
in the final angle prior P{h,a} ∈ R41×2.

Body Angle Pior (P{b,a}). To capture the body’s joint
orientations, we extract the 22 body joint angles. These
angles are transformed using sine and cosine functions to
handle their continuous nature, resulting in the body angle
prior P{b,a} ∈ R22×2.



Figure 1. (Left): The pretraining process for SignRep, which leverages masked representation learning to predict sign priors such as hand
keypoints and joint angles. This is achieved through a Hiera encoder and a lightweight sign decoder. The representation is further refined
with regularization losses, including variance, covariance and adversarial style loss. (Right): An example setup for the discriminator to
obtain a representation pair to predict a style-representation match.

Distance Priors capture fine-grained differences between
signs and the interactions of hands in the signing space:

Fingertip Distance Prior (P{h,d}). Since fingertip inter-
actions are a key component in sign language, we compute a
distance matrix by measuring the distances from the finger-
tip keypoints to each of the knuckle, wrist and other finger-
tip keypoints. This produces the prior P{h,d} ∈ R5×11×3.

Hand-Interaction Distance Prior (P{b,d}). Similar to
the fingertip distance prior, we calculate a distance matrix
using the wrist and five fingertip keypoints from each
hand, resulting in a 6 × 2 set of keypoints. The distance
between the hands, body and facial keypoints is computed
to capture the interactions between the hands and other
body parts, resulting in the final hand-interaction prior
P{b,d} ∈ R12×22×3.

Signer Activity. Some signs require only one hand or the
signer may be in a resting pose. To enable the model to
capture this information, we develop a simple heuristic. We
define the active prior P{h,act}, where a hand is considered
inactive if it remains below the middle of the stomach and
has not moved over the course of a video clip. This results
in a prior P{h,act} ∈ [0, 1], indicating whether each hand is
active (1) or inactive (0).

4. SignRep Architecture

To learn the sign priors, we introduce a novel adaptation of
the Hierarchical Vision Transformer (Hiera) [38], designed
with a pretraining task specifically tailored for sign repre-
sentation learning without requiring labeled sign data. We
choose the Hiera model as it aligns with our objective of
being efficient, simple and effective. It has demonstrated
strong performance in masked representation learning while
eliminating the need for complex architectures and special-

ized modules. We aim to develop a single spatio-temporal
sign model that enhances performance without relying on
multi-branch or ensemble methods, instead improving the
representation learning process.

The standard Hiera MAE framework processes a video
clip represented as V = {v1, v2, . . . , vt, . . . , vT }, where vt
denotes the frame at time step t, and T is the total number
of frames. The video is first divided into spatiotemporal
patches. A masking strategy is then applied, with a subset
of patches randomly masked according to a masking ratio
M . The unmasked patches are fed into the encoder fenc,
which processes them to generate an output representation
zemb = {zemb

0 , zemb
1 , . . . , zemb

K }, where K is the number of
output tokens from the encoder. The representation zemb

is then passed to a decoder, along with learnable masked
tokens as input. The pretraining objective is to reconstruct
the masked patches through pixel-level prediction, allowing
the model to learn contextual relationships and enhance the
visual representation.

Rather than pixel reconstruction, we use sign priors to
learn meaningful sign representations, replacing the pixel
reconstruction decoder with a lightweight sign decoder.

Sign Decoder (fdec). As shown in Fig. 1, instead of pass-
ing zemb to the decoder, we take the average across zemb

tokens, which is then processed through layer normaliza-
tion followed by a fully connected layer. This produces an
output representation zavg ∈ R1×D, where D is the dimen-
sionality of the representation. The representation zavg is
then upsampled temporally to match the sequence length
T of the input video. The upsampling module is imple-
mented using a lightweight network consisting of a 1D con-
volution with a kernel size of 1, followed by a GELU ac-
tivation function, and then a transpose convolution with a
kernel size of T to match the number of input frames and



an output dimension of D′. This results in an upsampled
vector zup ∈ RT×D′

, where zup = [zup1 , zup2 , . . . , zupT ].
We can then incorporate prediction heads for each sign

prior to the network as follows:

ŷPt = gP(z
up
t ) (1)

where each sign prior, P ∈ {P{h,k},P{h,a},P{h,d},
P{b,k},P{b,a},P{b,d}} has a corresponding fully con-
nected layer (gP ) with an associated output ŷPt which
matches the flattened dimension of the corresponding sign
prior. For the activity prior we simply use an MLP layer
using zavg as input which produces an output of 2 to match
the dimension of [P{LH,act},P{RH,act}].

The decoder is completely removed during downstream
tasks and only the encoder is used as the sign representation
model. As a result, the target sign priors are not required
during downstream tasks, allowing the use of a single model
that inherently captures sign knowledge. This approach en-
sures computational efficiency by leveraging masked repre-
sentation learning while directly learning the essential sign
priors.

5. Sign Representation Objectives
5.1. Sign Priors Reconstruction
In the previous section, we identified the sign priors that our
model needs to learn. Since the sign decoder applies upsam-
pling to match the number of input frames, each frame’s
prior has an associated output prediction. For each pre-
dicted sign prior output, ŷPt , we train the model to regress
to the corresponding target value yPt from prior P at frame
t, using smooth L1 loss (L1) across all sign priors for each
frame in the input video sequence. The same loss is applied
to the sign activity prior for consistency. We also mitigate
the impact of low-quality keypoints in our objective func-
tion by only using keypoints with over 50% confidence from
the pose estimation model and masking missing keypoints
from the loss. The final reconstruction loss is as follows:

Lrecon =
∑
P∈P

wPL1(ŷ
P , yP) (2)

where wP is the loss weighting for the prior P .

5.2. Representation Regularization
Feature Regularization. Self-supervised methods have
shown that regularizing features improves representation
quality [4, 51]. To enhance our representations, we incor-
porate a variance and covariance loss into zavg.

The variance loss, Lvar, encourages diversity in the
learned representations by spreading them across the rep-
resentation space. To compute the variance loss, we first
calculate the standard deviation for each feature dimension

(j) across a batch (N ).

σj =

√√√√ 1

N − 1

N∑
i=1

(zavg
i,j − z̄avg

j )2 (3)

The diversity of the features are then encouraged through
a hinge function to ensure that the variance does not fall
below a threshold of one.

Lvar =

D∑
j=1

max(0, 1− σj) (4)

The covariance loss, Lcov, reduces correlations among
features, helping to avoid redundancy. To compute the co-
variance loss, we first need to calculate the covariance ma-
trix such that:

Cj,k =
1

N

N∑
i=1

(zavg
i,j − z̄avg

j )(zavg
i,k − z̄avg

k ) (5)

where Cj,k represents the covariance between feature di-
mensions j and k and z̄avg

j is the mean of the j-th feature
across the batch. The loss then penalises off-diagonal val-
ues in the covariance matrix, encouraging different feature
dimensions to be uncorrelated:

Lcov =
∑
j ̸=k

C2
j,k (6)

Style Agnostic Representations. We also aim to encour-
age the encoder to capture robust and generalizable sign
features, while filtering out irrelevant details such as back-
ground and person-specific appearance. We can explic-
itly learn this by introducing a discriminator that evaluates
whether two representations share the same “style”, defined
here by background and appearance features.

To extract style information, we calculate the gram ma-
trix, commonly used in image style transfer [15], from the
zemb tokens, averaging across the column dimension to pro-
duce the style representation zstyle ∈ RD. We then pair zavg

with zstyle and pass them to the discriminator, which learns
to output 1 for matching pairs and 0 for non-matching pairs.

To generate these representations pairs, as shown in
Fig. 1(right), we randomly crop a video sequence of length
L to create two segments, A1 and A2, each of length T . For
each, we extract zavg

A1
and zstyle

A1
, as well as zavg

A2
and zstyle

A2
, as-

suming that they share background and appearance features
due to originating from the same video. From a different
video, we obtain segment B with its style zstyle

B , which pro-
vides a contrasting background and appearance.

The discriminator, D, is then trained to produce 0 output
for mismatched styles and 1 for matched styles, such that
D(zavg

A1
, zstyle

B ) = 0 and D(zavg
A1
, zstyle

A2
) = 1. This can be used



to further enhance the generalization of the encoder, we add
an adversarial loss during pretraining, designed to fool the
discriminator which encourages the model to focus on sign-
specific content over style-related features. The adversarial
loss is formalized as follows:

L(A1,A2)
pos = max(0,D(zavg

A1
, zstyle

A2
)− Eq∼UD(q)) (7)

L(A1,B)
neg = max(0,Eq∼MD(q)−D(zavg

A1
, zstyle

B )) (8)

LA1

adv = (L(A1,A2)
pos )2 + (L(A1,B)

neg )2 (9)

where Eq∼MD(q) is the expected discriminator output of
style for representation pairs that come from the same video
sequence and Eq∼UD(q) for when they come from different
video sequence. We apply this loss only if Eq∼MD(q) >
Eq∼UD(q), ensuring stability by restricting the adversarial
loss to cases where the discriminator is likely to correctly
identify the matches.

Our final loss for pretraining is defined as:

Lfinal = Lrecon + wvar Lvar + wcov Lcov + wadv Ladv (10)

where wadv, wvar and wcov are the respective weighting
factors for the adversarial, variance and covariance losses.

6. Representations for Dictionary Retrieval
Sign dictionary retrieval is the task of identifying signs
from a predefined database. This allows for quick lookup
of related signs given a query sign which supports ef-
ficient dataset creation and promotes cross-linguistic un-
derstanding of signs [39]. The SignRep model can
be used as a feature extractor for dictionary retrieval.
Given a query sign video of length L, we apply a slid-
ing window to extract segment representations Zavg =
{zavg

1 , zavg
2 , . . . , zavg

n , . . . , zavg
N }, where N =

⌊
L−T
stride

⌋
+ 1.

Since isolated signs typically begin and end in a resting
pose, we use the output from

γact
n = max(P{LH,act},P{RH,act}) (11)

to identify whether the signer is active. By checking hand
activity, we compute a weighted average of the segment rep-
resentations resulting in

zout =
1∑
γact
n

N∑
n=1

γact
n zavgn (12)

where zout is the representation for the query video. Finally,
we extract features for all dictionary videos and classify
a query video by finding the closest match using cosine
similarity of the normalized representations.

Class Probability Distribution. The retrieval approach en-
ables the recognition of visually similar sign classes with-
out additional training, which is useful for improving the

accuracy of downstream tasks such as recognition. We con-
struct a class distribution by computing the cosine simi-
larity across all samples in the training dataset, capturing
the visual proximity between them. From the resulting co-
sine similarity matrix, we compute inter-class similarities
using the sign-sample labels to generate a matrix of shape
RC×C , where C represents the number of classes. Apply-
ing a temperature-scaled softmax to each row of this ma-
trix yields a probability distribution for each class relative
to the others, forming a class probability distribution matrix
ϕ ∈ RC×C , where each element of ϕ lies in the range [0, 1].

We can incorporate the class probability distribution ϕ
as a regularization term in the downstream recognition task
using KL divergence. Given a sign video with target label c,
we can compute the KL divergence between the predicted
class distribution ȳ (from the output classifier layer) and ϕc
which is the pre-computed class probability distribution of
c. This results in:

Lϕ = κϕc[c]KL(ϕc ∥ ȳ) (13)

where κ is the weighting factor for the loss and KL(ϕc ∥
ȳ) is the KL divergence. To emphasize the contribution of
the target class distribution, we scale the KL divergence by
ϕc[c], which is the value of the class probability for ϕc at c.

7. Experiments
We evaluate our model on sign recognition and retrieval us-
ing three datasets: ASL-Citizen [11], WLASL2000 [28],
and NMFs-CSL [19]. The ASL-Citizen dataset includes
2,731 isolated ASL signs recorded from a webcam. The
WLASL2000 dataset, sourced from the web, contains 2,000
common ASL signs and presents challenges due to its noisy
nature and limited samples per sign. The NMFs-CSL
dataset consists of 1,067 Chinese Sign Language (CSL)
signs, which require recognition of non-manual cues, such
as facial expressions, to accurately identify signs.

7.1. Evaluation Protocol
We follow standard evaluation protocols for sign recogni-
tion, measuring top-1 and top-5 per-instance and per-class
accuracy on WLASL and NMFs-CSL. For ASL-Citizen,
we use the benchmark metrics specified for this dataset, in-
cluding discounted cumulative gain (DCG), mean recipro-
cal rank (MRR), and top-1 and top-5 instance accuracy.

To evaluate our model as a frozen feature extractor, we
apply a retrieval protocol based on the dictionary-based re-
trieval approach from [11]. We choose a retrieval approach
over a linear evaluation protocol, as dictionary retrieval is
a common and practical task in sign language processing.
This method also offers a better evaluation of the general-
ization of the features to unseen datasets, which is particu-
larly important given the evolving nature of sign languages.



7.2. Experimental Setting
Pretraining. We pretrain our model on the YouTube-SL-
25 dataset [42], which consists of large-scale continuous
sign videos from YouTube. We initialize the model with
the base video Hiera-B architecture, pretrained on Kinetics
using MAE. We randomly select 16 consecutive frames as
inputs based on a co-articulated sign typically lasting for
around 13 frames [1, 34, 47]. No changes are made to the
original encoder architecture, while the decoder is replaced
with our lightweight sign decoder.
Recognition. For downstream tasks, our approach lever-
ages only the pretrained encoder, discarding the decoder
and entirely eliminating the reliance on keypoint extraction.
For recognition, we extend the pretrained model’s input se-
quence to 64 frames. We preserve the pretrained weights by
inflating the patch embeddings, which preserves the com-
putational efficiency by avoiding increasing the number of
tokens in the transformer, detailed in the supplementary ma-
terial. A linear classifier is applied to the pooled features
from the encoder model to predict the sign classes.
Retrieval. For dictionary retrieval evaluation, we follow the
approach outlined in Sec. 6 using a stride of 2. For the label
assignment, we compute the cosine similarity between the
test video representation and those in the training dictionary.
Each test query video is assigned the label of the training
video that yields the highest similarity score.

Additional implementation details are provided in the
supplementary material.

7.3. Evaluation on Sign Recognition
In Tab. 1, our single-modality model demonstrates signif-
icant improvements over all existing single-modality ap-
proaches, achieving performance on par with complex
multi-modal methods for WLASL2000. While ensembling
with multi-modal approaches could further improve perfor-
mance, we emphasize the importance of pretraining. Our
Hiera encoder model with our pretraining, achieves these
results without the extensive architectural modifications re-
quired by other methods. Instead of relying on additional
modalities as input, our pretrained model has learned these
features to create a robust sign representation model. Im-
portantly, our pretraining strategy does not rely on any an-
notated sign data.

The effectiveness of our SignRep model on the NMFs-
CSL dataset is further illustrated in Tab. 2, where we
achieve a top-1 accuracy of 84.1% and a top-5 accuracy of
98.8%, outperforming all other methods, including multi-
modal approaches. Notably, the closest single-modality
comparison is the StepNet RGB model, which achieves
77.2% in top-1 accuracy, nearly 7% lower than our model.
While StepNet focuses on developing specialized architec-
ture for sign, we demonstrate our framework can effectively
learn sign features from large-scale datasets.

Instance Acc. Class Acc.

Method Top-1 Top-5 Top-1 Top-5

Skeleton-based

ST-GCN [50] 34.40 66.57 32.53 65.45
SignBERT [17] 39.40 73.35 36.74 72.38
BEST [52] 46.25 79.33 43.52 77.65
SignBERT+[20] 48.85 82.48 46.37 81.33

Multi-modal

BEST (+R) [52] 54.59 88.08 52.12 87.28
SignBERT(+R) [17] 54.69 87.49 52.08 86.93
SignBERT+(+R) [20] 55.59 89.37 53.33 88.82
SAM (5ξ )[23] 58.73 91.46 55.93 90.94
SAM-v2 (5ξ ) [22] 59.39 91.48 56.63 90.89
NLA-SLR [57] 61.05 91.45 58.05 90.70
NLA-SLR(3ξ) [57] 61.26 91.77 58.31 90.91
StepNet (R+F) [40] 61.17 91.94 58.43 91.43

RGB-based

I3D [8] 32.48 57.31 - -
I3D(BSL1K) [1] 46.82 79.36 44.72 78.47
StepNet [40] 56.89 88.64 54.54 87.97

SignRep (Ours) 61.05 90.27 58.89 89.44

Table 1. Comparison of downstream sign recognition results on
WLASL2000. ξ, (R) and (F) denotes a multi-crop inference, RGB
and Optical Flow modality respectively.

Method Top-1 Top-5

I3D [8] 64.4 88.0
TSM [29] 64.5 88.7
Slowfast [14] 66.3 86.6
GLE-Net [19] 69.0 88.1
HMA (⋄) [18] 75.6 95.3
StepNet [40] 77.2 92.5
SignBERT (H+R) (⋄) [17] 78.4 97.3
BEST (⋄) [52] 79.2 97.1
NLA-SLR (⋄) [57] 83.4 98.3
StepNet (R+F) (⋄) [40] 83.6 97.0
NLA-SLR (⋄,3ξ) [57] 83.7 98.5

SignRep (Ours) 84.1 98.8

Table 2. Comparison of downstream sign recognition results on
NMFs-CSL. ⋄ denotes methods using multi-modality/ensemble
models and ξ indicates a multi-crop inference.

Our results on the ASL-Citizen dataset, shown in Tab. 3,
further demonstrate the effectiveness of our model where it
surpasses the previous baseline I3D model by 18% in top-1
accuracy.



Model DCG MRR Rec@1 Rec@5

ST-GCN* [50] 76.37 69.97 59.52 82.68
I3D* [8] 79.13 73.32 63.10 86.09

SignRep (Ours) 90.84 88.05 81.37 96.11

Table 3. Comparison of downstream sign recognition results on
ASL-Citizen. * denotes results produced by [11]

.
7.4. Evaluation on Sign Dictionary Retrieval
To assess the effectiveness of our model as a feature ex-
tractor, we utilize a dictionary-based sign retrieval method
that directly evaluates the quality of the learned representa-
tions without any fine-tuning. In Tab. 4, we compare our ap-
proach to the Hiera model pretrained with MAE on both the
Kinetics and YT-SL datasets. We apply the same training
settings outlined in Sec. 7.2 for pretraining on YT-SL. Our
results demonstrate that our proposed pretraining strategy
significantly outperforms standard MAE, even when trained
on YT-SL, by optimizing specifically for sign language rep-
resentation, whereas MAE’s pixel-reconstruction objective
does not directly support learning the sign specific features
needed for sign retrieval.

We also compare our model’s retrieval performance with
the use of raw 3D keypoints and joint angles averaged over
time. As shown in Tab. 4, our method achieves a substantial
performance increase, with top-1 retrieval scores more than
tripling those based on hand joint angles. These results un-
derscore the strength of our pretraining approach in captur-
ing spatio-temporal features specific to sign language, es-
tablishing our method as a highly effective framework for
sign representation learning. We also validate the impor-
tance of incorporating hand activity awareness, observing
that weighted averaging based on hand activity improves
retrieval performance compared to averaging.

7.5. Ablation Studies
Impact of Pretraining on Sign Retrieval. In Tab. 5, we
examine the effects of various elements in our pretraining
strategy on retrieval performance in WLASL2000. Our
results show that combining all three types of sign pri-
ors that have angle, keypoint and distance yields the high-
est retrieval accuracy, underscoring the benefit of captur-
ing multiple aspects of the sign features. We also analyze
the role of masking during pretraining, removing it leads
to a noticeable decline in retrieval performance, indicating
that masking is essential for robust representation learning.
While we observe lower reconstruction loss without mask-
ing, this does not translate to better retrieval scores, suggest-
ing that precise reconstruction alone does not necessarily
produce effective sign representations. Finally, the addition
of both adversarial loss and variance-covariance regulariza-
tion yields the strongest retrieval results, confirming that

these feature regularization techniques improve the quality
and robustness of learned sign representations.

Impact of Pretraining for Recognition. In Tab. 6, we
demonstrate that our pretrained model substantially outper-
forms both the MAE model pretrained on Kinetics and the
model pretrained on YT-SL with pixel MAE. Additionally,
the baseline Hiera model pretrained on Kinetics, achieving
a top-1 accuracy of 51.5%, surpasses prior keypoint-based
masked learning methods such as SignBERT, BEST and
SignBERT+, as shown in Tab. 1. This result underscores
the value of RGB input, revealing the limitations of using
keypoints as a primary modality. Previous keypoint meth-
ods have required ensembling with RGB to remain compet-
itive, illustrating the challenges of relying solely on skeletal
information as an input modality for sign recognition. Fi-
nally, we observe that incorporating the sign class distribu-
tion loss further enhances recognition accuracy, improving
top-1 accuracy from 59.9% to 61.0% with a κ of 0.2.

8. Feature Extractor for Sign Translation
In this section, we evaluate SignRep as a feature extractor
for sign translation by integrating it into two open-source
translation models: Sign2GPT [49] on RWTH-PHOENIX-
Weather 2014T (Phoenix14T) [6] and CSL-Daily [54], as
well as the approach from [43] on How2Sign [13]. We
chose these models because they allow direct evaluation
of SignRep as a frozen feature extractor without requiring
sign-text pretraining or significant modifications to the ar-
chitecture. We follow the same translation training hyperpa-
rameters as the original papers to ensure a fair comparison
and isolate the impact of replacing the visual backbone.

For Phoenix14T and CSL-Daily, we omit the pseudo-
gloss pretraining used in [49] to ensure a fair evaluation of
SignRep’s learned features without additional linguistic su-
pervision. In [49], they show that the DinoV2 backbone
requires fine-tuning with LoRA to perform well on sign
translation. Instead, we replace the original learnable Di-
noV2 backbone with pre-extracted SignRep features, ob-
tained using our sliding window approach with a stride of
2. This setup places ours at a disadvantage, as we re-
move the trainable backbone weights and data augmenta-
tion, relying solely on pre-extracted features. Despite this,
SignRep achieves competitive translation performance, as
shown in Tab. 7, performing comparably on Phoenix14T
and achieving substantial gains on CSL-Daily. By replac-
ing the learnable DinoV2 model with pre-extracted SignRep
features during training, we significantly reduce computa-
tional costs, making large-scale translation training more ef-
ficient and accessible without sacrificing performance. Our
approach removes an additional 5.5GFLOP per frame re-
quired by the learnable DinoV2 model, which is important
as translation models process tens to hundreds of frames.



ASL-Citizen WLASL2000 NMFs-CSL

Features DCG Rec@1 Rec@5 DCG Rec@1 Rec@5 DCG Rec@1 Rec@5

HieraMAE-Kinetic 11.64 0.25 0.84 13.21 2.08 3.40 23.29 3.96 12.18
HieraMAE-YTSL 12.12 0.39 1.34 14.06 2.57 4.41 28.03 7.57 18.38
All Joint Angles 13.82 0.57 2.17 17.92 2.54 6.50 32.51 7.93 25.50
All Keypoints 14.29 0.98 2.74 19.37 3.16 8.23 36.64 12.26 30.99
Hand Keypoints 25.91 7.96 19.58 28.11 7.57 20.92 41.72 15.91 42.62
Hand Joint Angle 26.93 8.81 21.41 30.61 9.42 24.36 44.17 18.13 46.34

SignRep (avg) 61.40 37.47 68.77 53.57 26.16 60.98 79.51 58.48 91.85
SignRep (weighted) 71.21 49.95 80.09 57.93 29.92 67.41 83.05 63.04 95.63

Table 4. Comparison of generalization results on sign retrieval with no downstream training applied to SignRep.

Prior Comp. Reg.

angle kpt dist mask var+cov adv DCG

✓ ✓ 45.1
✓ ✓ 32.9

✓ ✓ 47.2
✓ ✓ ✓ ✓ 48.5
✓ ✓ ✓ 46.3
✓ ✓ ✓ ✓ ✓ 49.9
✓ ✓ ✓ ✓ ✓ ✓ 50.7

Table 5. Comparison of the impact of sign priors, masking and
regularization on the impact of retrieval. Retrieval results are ob-
tained on WLASL using a stride of 8.

Instance Acc. Class Acc.

Method κ top-1 top-5 top-1 top-5

MAE (Kinetic) - 51.5 83.4 48.4 82.0
MAE (YT-SL) - 57.2 87.4 54.6 86.3
SignRep 0.0 59.9 90.2 57.4 89.2
SignRep 0.1 60.4 90.1 57.8 89.1
SignRep 0.2 61.0 90.3 58.9 89.4
SignRep 0.5 59.8 89.4 57.7 88.8

Table 6. Comparisons of the impact of pretraining and weighting
for the class distribution loss on WLASL.

Phoenix14T CSL-Daily

Sign2GPT Backbone B-4 R B-4 R

DinoV2(LoRA) 19.42 45.23 12.96 41.12
SignRep(extracted) 20.38 45.17 16.33 42.67

Table 7. Comparison of translation results using Sign2GPT [49]
by replacing the learnable DinoV2 backbone with our extracted
SignRep features. B-4 denotes BLEU4 and R denotes ROUGE.

This leads to an 80% reduction in GPU memory usage dur-
ing training, lowering requirements from 60GB to 11GB

How2Sign

Tarrés’s Backbone rBLEU BLEU

I3D(Supervised) 2.21 8.03
SignRep(Self-Supervised) 2.74 8.66

Table 8. Comparison of translation results using Tarrés [43], re-
placing the I3D features with our SignRep features.

with a batch size of 8. This reduction makes training on
standard hardware more feasible, enabling broader accessi-
bility for researchers working with sign translation models.

For How2Sign, in Tab. 8, we replace the supervised I3D
features with our self-supervised SignRep features on the
translation framework from [43] and observe performance
improvements. Unlike I3D features, which are pretrained
with supervision on a labeled sign recognition data, Sign-
Rep learns features purely through self-supervision, high-
lighting our framework’s effectiveness for learning sign-
specific features without supervision.

9. Conclusions
In this work, we introduced a scalable, self-supervised
framework for sign representation learning without labeled
sign datasets. Using masked autoencoding with sign pri-
ors, adversarial loss and feature regularizations, our ap-
proach enhances generalization while eliminating the need
for skeletal keypoints, multimodal or multi-branch architec-
tures in downstream tasks. Our single model achieves state-
of-the-art performance on multiple sign recognition bench-
marks with a simpler, more efficient design. Beyond recog-
nition, our representations demonstrate versatility in sign
dictionary retrieval on unseen datasets and serve as an effi-
cient feature extractor for existing sign translation systems,
reducing computational costs while maintaining strong per-
formance. Our findings highlight the potential of our self-
supervised learning framework for scalable sign modeling
and encourage further research into practical applications
of sign representations.
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Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez,
Daniel HAZIZA, Francisco Massa, Alaaeldin El-Nouby,
Mido Assran, Nicolas Ballas, Wojciech Galuba, Russell
Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael
Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Herve Je-
gou, Julien Mairal, Patrick Labatut, Armand Joulin, and Pi-
otr Bojanowski. DINOv2: Learning robust visual features
without supervision. Transactions on Machine Learning Re-
search, 2024. 2

[34] Tomas Pfister, James Charles, and Andrew Zisserman.
Large-scale learning of sign language by watching tv. 2013.
6

[35] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario
Amodei, Ilya Sutskever, et al. Language models are unsu-
pervised multitask learners. OpenAI blog, 1(8):9, 2019. 2

[36] Charles Raude, KR Prajwal, Liliane Momeni, Hannah Bull,
Samuel Albanie, Andrew Zisserman, and Gül Varol. A tale
of two languages: Large-vocabulary continuous sign lan-
guage recognition from spoken language supervision. arXiv
preprint arXiv:2405.10266, 2024. 2

[37] Phillip Rust, Bowen Shi, Skyler Wang, Necati Cihan
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SignRep: Enhancing Self-Supervised Sign Representations

Supplementary Material

A1. Human Pose Extraction
To extract human pose features, we utilize angles derived
from a human pose estimation model from [21]. We com-
pute the bone lengths for all instances in the YouTube-SL-
25 dataset (YT-SL) and select the median value as the stan-
dard bone length for each respective joint. This normal-
ization ensures that all individuals are represented with the
same body shape, thereby avoiding the leakage of person-
specific features when converting angles into 3D keypoints.

We visualize the resulting keypoints in Fig. 2, separat-
ing the hands from the body for easier identification of in-
dices. The left fingertips are defined using keypoint in-
dices {44, 48, 52, 56, 60}. For the fingertip distance ma-
trix, P{b,d}, these keypoints serve as the source, while in-
dices {40, 41, 44, 45, 48, 49, 52, 53, 56, 57, 60} are used as
the destination for computing the distance matrix. Simi-
larly, the same process is applied to the right hand using its
respective keypoint indices.

For the hand-interaction distance prior, P{b,d}, we
use the fingertip keypoint indices and the wrist key-
point ({40} for left wrist and {19} for right wrist)
as the source. The destination includes the set
of keypoint indices {0, 3, 6, 7, 10, 13, 15, 16, 17, 18, 19,
23, 27, 31, 35, 39, 40, 44, 48, 52, 56, 60}, which represent
hands, face and body components. This matrix captures the
distances between key positions involved in interactions be-
tween the hands and the rest of the body.

Human pose estimations often exhibit jitter across
frames, which can affect temporal consistency. To miti-
gate this effect on the signer activity prior, P{h,act}, we de-
termine whether a hand is inactive by checking two con-
ditions: (1) its position is below the y-axis mean of key-
points {0, 3, 6, 7}, and (2) the sum of the standard devia-
tions across time for all 21 visible hand keypoints is less
than 0.26. These criteria help identify inactive hands in the
presence of keypoint jitter.

A2. Pretraining Dataset Processing
For pretraining, we utilize the YT-SL dataset. We rely on
pose estimations to ensure that a signer is present in each
sequence, cropping the video to focus on the upper torso
before resizing it to 256× 256.

To prevent data leakage, since WLASL also contains
YouTube videos, we ensure there is no overlap between the
videos in the WLASL and YT-SL datasets. This is achieved
by comparing the video IDs from WLASL with those in
the YT-SL dataset, ensuring that no videos that are in the
WLASL dataset are in our YT-SL pretraining data.

During pretraining, we randomly select 16 consecutive
frames from each video. For each batch, we randomly se-
lect two sequences from the same video, ensuring that each
batch contains a matching pair for the discriminator. These
steps are then used to train the SignRep framework.

A3. Implementation Details

As described in Sec. 7.2, we initialize the pretraining of our
SignRep framework using the video Hiera Base model, pre-
trained with MAE on Kinetics. The output dimension D
is 768, with a drop path rate of 0.1. The sign decoder’s
upsampler has a hidden dimension of 512 and the output
dimension D′ is set to 384.

Pretraining. During training, data augmentations include
Planckian Jitter [56], random resized cropping from 256 ×
256 to 224 × 224, Gaussian blur and grayscale conversion.
The model is trained for 500,000 iterations with a batch of
20 and a masking ratio of 80% on a single NVIDIA 3090
GPU. A warmup over the first 50,000 iterations gradually
increases the learning rate to 1× 10−4 using the Adam op-
timizer [27], followed by cosine annealing decay. A layer-
wise learning rate decay [9] is applied with a factor of 0.85.

In Tab. 9, we list the hyperparameters used for the
weighting of the loss functions during pretraining. Addi-
tionally, we apply a scaling factor ψ to the target to balance
the target values.

Downstream Recognition. We use the same data aug-
mentation as pretraining and apply cross-entropy loss with
label smoothing of 0.1, with no patch masking applied, set-
ting κ to 0.2 for the class distribution loss. The model is
trained with a batch size of 8 for 100 epochs, with 1000
iterations of warmup, followed by cosine annealing of the
learning rate, with a max learning rate of 1×10−4 using the
Adam optimizer. The layer-wise learning rate decay factor
is 0.85.

For the Adam optimizer, we utilize the AdamW version
in Pytorch. We set the betas to (0.9, 0.95) and use a weight
decay of 0.5. To stabilize training, gradient clipping is ap-
plied with a maximum value of 1.0. During pretraining, the
model is evaluated with retrieval on WLASL validation set
every 25,000 iterations, the model achieving the best perfor-
mance on the retrieval task using the WLASL validation set
is selected for subsequent retrieval, recognition and transla-
tion tasks.



Figure 2. Visualization of 3D keypoint extracted. Numbers alongside the nodes represent the keypoint indices. For visualization purposes,
we separate the left and right hand from the body.

Loss Components weighting w scale ψ

Priors

body angles (wP{b,a} ) 10.0 1.0
left hand angles (wP{LH,a} ) 10.0 1.0
right hand angles (wP{RH,a} ) 10.0 1.0

body kpt. (wP{b,k} ) 10.0 1.0
left hand kpt. (wP{LH,k} ) 10.0 2.0
right hand kpt. (wP{RH,k} ) 10.0 2.0

body dist. (wP{b,d} ) 20.0 1.0
left hand dist. (wP{LH,d} ) 20.0 4.0
right hand dist. (wP{RH,d} ) 20.0 4.0

signer activity (wP{act} ) 0.2 -

Regularizations

variance (wvar) 1.0 -
covariance (wcov) 0.004 -
adversarial style (wadv) 2.0 -

Table 9. Hyperparameters for weighting factors for the different
loss components used during pretraining of SignRep.

Downstream Translation. For the downstream transla-
tion task, we use Phoenix14T, CSL-Daily and How2Sign.
Phoenix14T [6] is a German Sign Language (DGS) dataset
consisting of weather forecast broadcasts with aligned sign
and text translations. CSL-Daily [54] is a daily con-
versational Chinese Sign Language dataset recorded in a
lab setting, covering various everyday interaction topics
such as family life, shopping, travel and banking services.
How2Sign [13] is an American Sign Language (ASL)

dataset that provides parallel signed video and text trans-
lations of instructional videos across a broad range of cate-
gories.

For a fair comparison, we use the open-source code from
[49] for Phoenix14T and CSL-Daily and follow [43] for
How2Sign, applying the same hyperparameters specified in
their respective papers. This ensures that improvements
stem from our learned representations rather than differ-
ences in training configurations.

A4. Discriminator Setup

In Sec. 5.2, the discriminator determines whether the output
features zavg share the same style as a given style represen-
tation zstyle. This process ensures that the representation en-
coder fenc learns style-agnostic representations, for robust
and generalizable features.

The discriminator model is designed as a lightweight
MLP-based architecture. To address the relatively small
magnitude of the style representation values, zstyle, we first
scale these values by a factor of 100.0. The scaled style rep-
resentation is then passed through a two-layer MLP with a
hidden size of 768, which transforms it to match the dimen-
sionality of zavg. Layer normalization is applied after this
transformation. Next, the transformed zstyle is concatenated
with zavg and fed into a four-layer MLP with a hidden size
of 768 and an output size of 1. This MLP is responsible for
determining whether the representation of zavg aligns with
the style zstyle. Spectral normalization is incorporated into
this final MLP to stabilize discriminator training. All lin-
ear layers, except the final linear layer, are followed by the
GELU activation function.

Matched and unmatched style samples for training the



discriminator are constructed from items within the batch.
For each item in the batch, its matching styles are derived
from its paired sample described in Sec. A2, while un-
matched pairs are randomly selected from the remaining
batch items. This setup ensures that the discriminator learns
to distinguish between matching and non-matching styles
effectively.

The discriminator is trained using binary cross entropy
loss to predict 0’s for unmatched styles and 1 for matched
styles. We use a learning rate of 1 × 10−4, with a warm-
up period of 50,000 iterations and cosine annealing decay.
The Adam optimizer is used with betas (0.5, 0.9) and a
weight decay of 1 × 10−3. An exponential moving aver-
age with an update momentum of 0.1 is used to compute
the expected outputs of a matched style Eq∼MD(q) and un-
matched style Eq∼UD(q). The discriminator is trained si-
multaneously with the SignRep representation model.

A5. Class Probability Distribution
To create the class distribution ϕ, we utilize the
temperature-scaled distribution described in Sec. 6. Our
goal is to avoid excessively weak low-confidence probabili-
ties and overly strong high-confidence probabilities, thereby
achieving a smoother loss function Lϕ.

For each class, we select a temperature τ such that
the scaled distribution softmax(ϕ̂c/τ) yields a maximum
class probability as close as possible to, but still below, 0.5.
Here, ϕ̂c represents the inter-class cosine similarity for class
c. We determine the appropriate τ by iterating over values
in the interval [0.001, 0.1] and selecting the temperature that
produces ϕc satisfying max(ϕc) < 0.5 while being nearest
to 0.5. We repeat this process for every class to obtain the
final class distribution ϕ.

A6. Inflated Patch Embeddings
To accommodate a 64-frame input without increasing the
number of tokens processed during the downstream recog-
nition task, we employ inflated patch embeddings as de-
scribed in Sec. 7. This method preserves computational
efficiency while capturing temporal relationships in the
data. The pretraining is conducted on continuous sign data,
whereas the downstream task involves isolated signs, which
are temporally less dense. To address this discrepancy, we
adapt the patch embeddings by inflating their temporal com-
ponents, ensuring the preservation of temporal relations.

The original patch embeddings are defined with a kernel
size of (3, 7, 7), a stride of (2, 4, 4), and padding of (1, 3, 3).
These parameters are updated to a kernel size of (7, 7, 7), a
stride of (8, 4, 4), and padding of (3, 3, 3). This adjustment
allows for better modeling of the temporal relationships re-
quired for sign recognition without adding more patch to-
kens.

To ensure compatibility and preserve the pretrained
weights, we employ a zero-initialization approach. The new
kernel weights are first initialized to zero. Then, weights
from the original patch embedding are mapped to the new
kernels by transferring the weights from kernel indices
{0, 1, 2} to indices {1, 3, 5} in the temporal dimension, re-
spectively. This method ensures that the pretrained infor-
mation is preserved during downstream initialization.

A7. Qualitative Retrieval
We show qualitative results of the pretrained SignRep
model on the three downstream recognition datasets, ASL-
Citizen in Fig. 3, NMFs-CSL in Fig. 4 and WLASL in
Fig. 5. We note that the retrieved results are generated using
the pretrained model, which has neither been fine-tuned on
the downstream recognition task nor exposed to the down-
stream video dataset during pretraining. We display the top-
3 closest retrieved video segments for randomly selected
reference video segments with active signers. The results
show that the model effectively retrieves segments with sim-
ilar hand shapes, poses and motions, highlighting its ability
to capture meaningful sign-related features during pretrain-
ing.

A8. Limitations
Our model is pretrained on Youtube-SL-25, which carries
inherent limitations in terms of signer diversity, language
distribution and skin tone representation. These factors may
affect the quality and generalizability of the learned rep-
resentations. Additionally, our method focuses solely on
manual sign features, leaving room for future improvements
by incorporating non-manual components such as facial ex-
pressions and mouthing patterns. While our approach elim-
inates the need for keypoints during downstream tasks, the
pretraining process still relies on keypoint-based supervi-
sion, which may be affected by low-quality detections. To
mitigate this, we leverage a human pose estimation model
specialized for sign language [21]. Furthermore, we filter
out keypoints with confidence scores below 50% and mask
missing keypoints in the loss function. These adjustments
are advantageous over methods relying on keypoints as in-
puts.

Our model learns individual sign representations using
a 16-frame window. Future work could explore extending
this to longer temporal windows. However, doing so would
require careful modifications to prevent excessive compu-
tational overhead, as increasing the number of frames also
increases token complexity. Alternatively, our model can
serve as a lightweight feature extractor for learning inter-
sign relationships and long-range temporal dependencies in
a more efficient manner.



Top 3 Retrieved Video Segments on ASL-Citizen
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Figure 3. Qualitative results for ASL-Citizen for retrieval based on features extracted from the pretrained SignRep. Given the reference
sequence (Ref.), the Top-3 most similar videos are retrieved based on the cosine similarity of the output representations. M1 denotes the
closest match, M2 is the second closest match and M3 is the third closest match.



Top 3 Retrieved Video Segments on NMFs-CSL
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Figure 4. Qualitative results for NMFs-CSL for retrieval based on features extracted from the pretrained SignRep. Given the reference
sequence (Ref.), the Top-3 most similar videos are retrieved based on the cosine similarity of the output representations. M1 denotes the
closest match, M2 is the second closest match and M3 is the third closest match.



Top 3 Retrieved Video Segments on WLASL
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Figure 5. Qualitative results for WLASL for retrieval based on features extracted from the pretrained SignRep. Given the reference
sequence (Ref.), the Top-3 most similar videos are retrieved based on the cosine similarity of the output representations. M1 denotes the
closest match, M2 is the second closest match and M3 is the third closest match.
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