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Figure 1. VisualSpeaker results. The generated animation from the phrase “No price too high.” Ground truth video (top), the FLAME
meshes predicted by our approach (middle), and the 3DGS renders driven by these meshes (bottom). Note how VisualSpeaker synthesizes
lip movements that accurately and expressively articulate the input, achieved by combining geometric and perceptual supervision.

Abstract

Realistic, high-fidelity 3D facial animations are essential
for expressive avatars in human-computer interaction and
accessibility. Although prior methods show promising qual-
ity, their reliance on the mesh domain limits their ability to
fully leverage the rapid visual innovations seen in 2D com-
puter vision and graphics. We propose VisualSpeaker, a
novel method that bridges this gap using photorealistic dif-
ferentiable rendering, supervised by visual speech recogni-
tion, for improved 3D facial animation. Our contribution
is a perceptual lip-reading loss, derived by passing pho-
torealistic 3D Gaussian Splatting avatar renders through
a pre-trained Visual Automatic Speech Recognition model
during training. Evaluation on the MEAD dataset demon-
strates that VisualSpeaker improves both the standard Lip
Vertex Error metric by 56.1% and the perceptual quality of
the generated animations, while retaining the controllabil-
ity of mesh-driven animation. This perceptual focus natu-
rally supports accurate mouthings, essential cues that dis-
ambiguate similar manual signs in sign language avatars.

1. Introduction
People are innately skilled at recognizing and interpreting
subtle facial cues, making the task of animating photoreal-
istic 3D head avatars a challenging task as the renders face
intense visual scrutiny. Demand for such avatars is increas-
ing in areas like telepresence, interactive media, and par-
ticularly Sign Language Production (SLP). While spoken
language uses mouth movements as secondary cues, sign
language relies on mouthings as primary linguistic compo-
nents to disambiguate similar manual signs [32]. Therefore,
perceptually accurate mouthings are vital for effective sign
language communication.

Despite this, prior 3D talking head methods [6, 10, 29,
38] were predominantly guided by geometry, relying on
Mean Squared Error (MSE) loss over the vertices to ensure
the predicted mesh vertices closely match the ground truth.
While effective for reducing geometric error, these losses
often yield averaged and minimally expressive animations



that fail to differentiate visemes [11], the basic visual units
of speech that represent distinct mouth shapes and move-
ments. This occurs as geometric guidance alone is discon-
nected from how people perceive lip movements, especially
when solely reading lips. Vertex losses’ inherent shortcom-
ings have led to the explorations of additional losses, with
Chae-Yeon et al. [4] succinctly summarizing the three cri-
teria for perceptually accurate lip movements as temporal
synchronization, expressiveness, and lip readability.

Among these criteria, we focus on lip readability, which
is critical in applications such as SLP and accessibility sys-
tems for deaf and hard-of-hearing users, where visemes act
as linguistic signals that disambiguate manual signs and en-
code grammatical markers [32]. While recent approaches
[7, 9] have targeted this using mesh-level losses, such ge-
ometric proxies remain fundamentally disconnected from
the end goal: generating photorealistic and intelligible ren-
ders. To bridge this gap between geometry and percep-
tion, we propose VisualSpeaker, a framework that directly
optimizes for lip readability in the rendered pixel space.
Our method guides an autoregressive transformer by lever-
aging a pretrained Visual Automatic Speech Recognition
(V-ASR) model [20] to provide feedback on differentiable
3D Gaussian Splatting (3DGS) renders [14]. This approach
improves fidelity while enabling novel applications, such as
generating silent mouthing animations for sign language di-
rectly from text. Our main contributions are:
• A novel lip-reading loss computed directly on photoreal-

istic 3DGS renders, closing the loop between geometric
generation and perceptual evaluation.

• Evaluations demonstrating that our method surpasses the
mesh-based baselines in both geometric terms and, cru-
cially, in terms of lip-readability, validated by a user study
on intelligibility.

• A text-to-mouthing application for SLP, which integrates
a Text-to-Speech (TTS) system to generate accurate sign-
ing avatars from text alone, enabling scalable and audio-
free avatar generation.

2. Related Work
Animating speech-driven head avatars has been a long-
standing research challenge, spanning decades of work
across both 2D and 3D domains [3, 6, 10, 21, 22, 42]. The
field has progressed from rule-based systems to data-driven
models, with growing emphasis on photorealism and per-
ceptual quality.

Linguistic Approaches. Rules-based procedural ap-
proaches to facial animation, often following the domi-
nance model [5], remain prevalent in production environ-
ments, such as JALI [8] and FaceFX [23]. These methods
decompose speech into phonetic units, then apply hand-
crafted mapping functions that transform these units into
facial poses. This yields consistent, controllable animation

adopted in industry, but these methods require significant
linguistic and artistic expertise to adapt to new languages or
identities, limiting their scalability.

Learning-based Approaches. To overcome the limita-
tions of procedural systems, data-driven approaches learn
animation directly from paired audio-visual data. Early
methods [21, 22] demonstrated feasibility but were limited
by small datasets and computational constraints. Subse-
quent methods based on RNNs and CNNs [6, 13, 29, 33]
enabled more expressive animations across diverse appear-
ances. However, even with attempts [13, 29] to encapsu-
late the longer-term dependencies of speech, these methods
still struggled to capture the complex relationships between
audio and facial movements over a broad range of identi-
ties. By adapting the Transformer architecture [35], models
like FaceFormer [10] now better capture these relationships,
achieving more expressive and temporally stable results by
considering a longer audio context.

Despite these advances, over-smoothing remains a per-
sistent challenge across all methods, leading to less ex-
pressive animations. This primarily stems from the re-
liance on L2 losses in the geometric domain, which tend
to average out subtle movements. To mitigate this, works
have proposed various strategies. One approach, seen in
CodeTalker [38], uses a Vector Quantised-Variational Au-
toEncoder codebook [34] to discretize facial motions and
preserve nuance through quantization. Other methods move
beyond simple MSE by incorporating auxiliary losses for
lip-reading, emotion, or synchronization [4, 7, 44]. While
these losses improve geometric quality, they create a funda-
mental disconnect between the optimization target and the
final, photorealistic visual output.

Photorealistic Avatars. Recent advances in novel view
synthesis, particularly the real-time, differentiable render-
ing of 3D Gaussian Splatting (3DGS) [14], have enabled the
creation of high-fidelity avatars that can be animated in real-
time. This capability has opened up new approaches for 3D
talking head synthesis [12, 17, 18, 39], allowing direct ani-
mation of photorealistic 3D heads. The rendering efficiency
of 3DGS enables methods [18, 39] to incorporate visual
losses directly during training. For example, TalkingGaus-
sian [18] creates two motion-fields, one for the head and one
for the mouth, and uses an MLP conditioned on audio fea-
tures to predict Gaussian primitives to render. Training uses
only visual losses on a few minutes of identity-specific data,
yielding high-quality reconstructions but with limited gen-
eralization to unseen identities and no explicit control over
other factors such as gaze or expressions. GaussianTalker
[39], most related to our work, employs a mesh to drive
the 3DGS avatar. However, it relies on mesh-based ren-
ders for computing losses in a latent lip-reading space and
photometric supervision of the rendered avatars, rather than
directly evaluating lip readability in the final output. This



highlights a core limitation of mesh-based pipelines: when
the mesh serves only as an intermediate geometry proxy,
it cannot guarantee that fine-scale lip details are preserved
after neural rendering. Subtle articulatory cues such as
tongue position, lip closure, and inner-mouth geometry can
be smoothed out or misaligned if supervision stops at the
mesh stage. This disconnect between perceptual lip accu-
racy and training objectives motivates the need for supervi-
sion that directly enforces lip intelligibility in the final pho-
torealistic output, as perceived by a human observer.

3. Methodology
VisualSpeaker combines parametric 3D face modeling,
differentiable photorealistic rendering, and visual speech
recognition to improve lip-synchronized facial animation.
This section first outlines the key components: the FLAME
head model, 3D Gaussian Splatting avatars, the audio-text
feature extractor, and the perceptual supervision module.
Then we detail the full architecture and training procedure.

3.1. Preliminaries
FLAME [19] is a widely adopted parametric 3D face model
that represents head geometry using a compact set of in-
terpretable parameters for identity (β ∈ R300), expression
(ψ ∈ R100), and pose (θ ∈ R6). As a statistical 3D Mor-
phable Model (3DMM) [2], it deforms a canonical mesh via
linear blend skinning:

F (β, θ, ψ) → (V,F). (1)

Here, V ∈ R5142×3 and F ∈ Z10144×3 are the vertices and
faces of the FLAME mesh, respectively.

We adopt FLAME for its consistent topology and ex-
plicit factorization of static identity from dynamic expres-
sion, enabling robust mesh fitting and controllable anima-
tion. As a de facto standard, FLAME has been extended in
numerous works [24, 25, 31], most relevant are works [27]
that allow for rendering using 3DGS [14]. To accommodate
the rendering, we rigidly attached 120 triangles represent-
ing teeth to the standard FLAME topology.

For datasets lacking 3D ground truth, we employ
optimization-based tracking to obtain FLAME parameters
for a 3D pseudo-ground truth. Following VHAP [26], we
fit FLAME to multi-view images from MEAD [36] through
a multi-stage approach. Initial stages align the mesh using
landmark-based losses, while later stages incorporate pho-
tometric losses on differentiable mesh renders [28]. We add
temporal regularization to minimize jitter between frames
and extend VHAP to refine camera parameters initially es-
timated via structure-from-motion [30]. For training, we
also remove all head translation and rotation, as we focus
on the facial expressions. This pseudo-ground truth, while
robust, has limitations. The optimization-based fitting can

sometimes struggle with extreme or very rapid expressions,
and its accuracy is sensitive to the initial landmark detec-
tion. This results in a ’noisier’ ground truth compared to
direct 3D scans , which motivates our curriculum learning
strategy and the adjusted vertex weighting in later training
stages.

3DGS Avatar. To generate photorealistic 3D head
avatars, we employ 3DGS [14], which models appearance
as a set of 3D Gaussian primitives with explicit positions,
shapes, and view-dependent spherical harmonics. Unlike
implicit NeRF, which typically have high computational
costs for rendering, 3DGS supports differentiable, high-
fidelity rendering at interactive rates. This efficiency is crit-
ical for our method, making it computationally feasible to
incorporate the perceptual lip-reading loss directly into the
training loop without prohibitive overhead.

We bind the 3DGS primitives to a FLAME mesh follow-
ing [27], allowing photorealistic rendering controlled with
mesh deformations. The fitting is optimization based and
results in per-subject avatars, G. 3DGS’s explicit nature
enables differentiable rendering at interactive speeds. Opti-
mization produces accurate results, but is slow and depends
on varied input views and sequences. If these limitations
were a concern, feed-forward approaches [16, 40, 43] could
be used at minimal cost to final output quality.

During training, we render frames by passing the pre-
dicted FLAME mesh (V,F), precomputed Gaussian pa-
rameters G, and camera parameters C to the differentiable
3DGS renderer [14] producing an image I ∈ R96×96×3:

R(V,F, G,C) → I (2)

3.2. Perceptual Supervision
We introduce a novel perceptual supervision signal that
evaluates lip-readability directly on photorealistic outputs,
inspired by recent advances in perceptual loss for facial an-
imation [7, 44]. Unlike prior work that computes losses on
intermediate mesh representations, our method leverages an

(a) Ground Truth (b) 3DGS Render (c) Mesh Render

Figure 2. Lip Region Comparison. Visual comparison of lip re-
gions after alignment, cropping, and grayscale conversion for lip-
reading supervision. The 3DGS render (middle) closely resembles
the ground truth (left), while the mesh render (right) lacks photo-
realistic detail.
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Figure 3. Overview of VisualSpeaker. Our encoder–decoder framework predicts the next frame’s vertex offsets, Vt. Given either text or
audio, the encoder (left) generates input features IT . These, together with past facial motion, V<t, and a speaker identity embedding, sn,
derived from a neutral FLAME mesh, are passed to the decoder (middle). During training (right), predictions are supervised by a standard
vertex loss and a novel perceptual loss computed on photorealistic 3DGS renders using a pretrained lip-reading model [20].

efficient 3DGS pipeline to supervise the final visual out-
put. This strategy closes the gap between geometric accu-
racy and perceptual intelligibility. As illustrated in Figure 2,
our 3DGS renders achieve a visual fidelity far closer to the
ground truth than mesh renders, making them a more effec-
tive target for perceptual evaluation.

To implement this, we employ the pretrained AutoAVSR
model [20] to extract visual speech features, establishing a
direct optimization path from the predicted FLAME mesh
to the animation’s perceptual quality. For computational ef-
ficiency, we render only the 96x96 pixel lip region, which
is isolated using a virtual camera positioned via reprojected
3D landmarks.

A potential concern is the domain gap between synthetic
3DGS renders and real videos. To validate that our renders
serve as a suitable proxy for training, we measured feature
similarity within AutoAVSR’s embedding space. We com-
puted the per-frame cosine similarity between features from
a ground-truth video and our render of the corresponding
ground-truth mesh. Across our subset of the MEAD dataset,
the matching pairs achieve a high mean cosine similarity
of 0.697, while mismatched pairs fall to 0.190. These re-
sults demonstrate that our 3DGS renders are well-aligned

with the AVSR embedding space, validating their suitabil-
ity as supervision targets. See supplementary material for
full confusion matrix.

3.3. Architecture
VisualSpeaker employs an encoder-decoder transformer ar-
chitecture, drawing inspiration from Faceformer [10], as il-
lustrated in Figure 3. The model is designed to generate 3D
facial animations from either audio or text input.

Encoder. The encoder’s role is to process the input
modality, audio or text, and produce a sequence of feature
embeddings aligned with the video frame rate.

During training, or audio-driven inference, the model
processes input waveforms using a pretrained Wav2Vec2.0
model [1]. An initial Temporal Convolutional Network
(TCN) extracts low-level features, which are then tempo-
rally interpolated to match the 30 FPS video frame rate,
ensuring synchronization between the audio and visual
streams. These features are passed through Wav2Vec2.0’s
transformer encoder to capture long-range contextual de-
pendencies. To preserve the powerful, generalized audio
knowledge, the TCN’s weights are frozen, while the sub-
sequent transformer layers are trained end-to-end to adapt



them to the facial animation task.
To enable direct text-to-mouthing synthesis, the frame-

work integrates a pretrained F5-TTS model. During in-
ference, input text is first converted into a synthetic audio
waveform by the TTS model. This waveform is then pro-
cessed by the same Wav2Vec2.0 encoder, creating a seam-
less pipeline from text to animation.

Regardless of input modality, the encoder’s final output
is a sequence of feature embeddings, IT = (i1, ..., iT ),
which are the cross-modal input given to our decoder.

Decoder. The decoder autoregressively predicts vertex
offsets that deform a neutral FLAME mesh to create the
final animation. At each step, the model predicts the next
vertex offset, V̂t, given the past offsets V̂<t, the speaker
embedding sn, and the input features IT :

Model(V̂<t, sn, IT ) → (V̂t) (3)

The per-subject neutral mesh serves a dual purpose: it
provides the base geometry to which offsets are added, and
it acts as an identity prior. Its vertices are passed through a
linear layer to produce a speaker embedding, sn, which con-
ditions the decoder to generate subject-specific morphology
and articulation styles by fusing it to the projected past off-
sets.

During training, the sequence of past vertex offsets is
projected into a 64-dimensional embedding space and fused
with the speaker embedding and periodic positional encod-
ings. This combined sequence is processed by a single
transformer decoder layer composed of self-attention with
a temporal bias, cross-attention with an alignment bias, and
a feed-forward network. The decoder uses four attention
heads and a dropout rate of 0.3. The resulting output is
mapped back to the vertex offset space and added to the
neutral mesh to produce the final animated mesh, Vt. For
stable training, we employ teacher forcing and a fixed learn-
ing rate, as in Faceformer [10].

3.4. Supervision
We train our model using a three-stage curriculum that
strategically combines a standard geometric loss with our
novel perceptual supervision. This approach avoids insta-
bility caused by applying the complex perceptual loss from
the outset before a reasonable audio-to-geometry mapping
is learned. Furthermore, it manages the comparatively large
computational cost of differentiable rendering by introduc-
ing it only in the final refinement stage.

Our first stage is geometric pretraining, by using VO-
CASET [6], a dataset with high-quality 3D ground truth.
This stage is supervised only by geometric vertex loss, Lvert,
to learn the mapping between input and facial movements.
The second stage is the transition to MEAD [36] to adapt the
model to the changes between the high quality 3D recon-
struction and the pseudo-ground truth generated meshes.

We continue to train with only Lvert, but adjust weighting for
focus on the lip region and account for noise in the pseudo-
GT data. Finally, we introduce the novel lip-reading loss
Lread and fine-tune the model on MEAD with a combined
loss function.

The primary geometric loss term, Lvert, is a standard ver-
tex loss that minimizes the distance between the predicted
mesh vertices and the pseudo-ground truth mesh vertices. It
is calculated as a weighted MSE:

Lvert =

T∑
t=1

V∑
v=1

(||V̂t,v − Vt,v||2)Wv, (4)

where V is the total number of vertices, 5143, of the
FLAME mesh with added teeth, and Wv is a per-vertex
weight. During the first stage, we set Wv to 1.0 for all ver-
tices. In the second and third stages, we reduce the weight
for all non-skin vertices to 0.5 to reduce the influence of
noisy pseudo-ground truth in those areas, and to 0.0 for eye
vertices to ignore irrelevant reading motions present in the
dataset.

Our novel perceptual loss, Lread, directly evaluates the
visual quality of the mouth motion in the rendered image
space. First, we use the differentiable renderer to gener-
ate a sequence of lip-region images, ÎT , from the predicted
mesh sequence. Then we use a pre-trained AutoAVSR [20]
to produce lip-reading features for both the predicted se-
quences, ÎT , and the input frames, IT . The loss is the cosine
distance between these feature embeddings:

Lread = 1− CosSim(AutoAVSR(IT ),AutoAVSR(ÎT )).
(5)

To reduce computational cost, the features from the ground
truth frames are precomputed and stored.

Lip-reading supervision is applied only during the third
stage of training. The total loss function is a weighted sum
of the geometric and perceptual losses:

L = Lvert + λreadLread, (6)

where λread = 1e−5. This value was chosen empirically
to scale the magnitude of Lread to be comparable to that of
Lvert during training, ensuring a balanced contribution from
both supervision signals. Lower values, such as 1e − 6,
yielded negligible improvements over the baseline, while
higher values caused artifacts, including mesh protrusions
and sharp angles.

4. Experiments
To evaluate the effectiveness of VisualSpeaker, particularly
the contribution of the 3DGS-based lip-reading loss, we
conducted a series of experiments using the VOCASET [6]
and MEAD [36] datasets. Our primary analysis focuses on



Figure 4. Qualitative Results. Visual comparisons for four unseen subjects and sentences from MEAD [36], highlighting how
VisualSpeaker better preserves lip articulation than the baseline. Each subfigure displays three frames, left to right: Pseudo-GT ren-
der, VisualSpeaker without lip-reading loss (Lread), and VisualSpeaker with full supervision. Next to these, we show a zoomed-in crop of
the mouth region in the same order top to bottom, highlighting differences in lip articulation.

an ablation study comparing our full model against a vari-
ant trained without this perceptual supervision. The results
demonstrate that incorporating a 3DGS-based lip-reading
loss significantly improves lip-motion accuracy and per-
ceived realism over a strong baseline, without degrading
overall visual quality.

All models were implemented in PyTorch and trained on
an NVIDIA 3090, with a constant learning rate of 1e − 4
and the Adam optimizer [15]. The initial stages focusing on
mesh supervision were trained for 250 epochs with a batch
size of four. The final stage, incorporating the lip-reading
supervision, was subsequently trained for 100 epochs using
a batch size of one with gradient accumulation over four
steps due to memory constraints.

4.1. Datasets and Preprocessing
For initial geometric pre-training, we use VOCASET [6],
which provides 480 sequences of high-quality 3D mesh data
and aligned audio for 12 subjects. We follow the standard
8/2/2 subject split for training, validation, and testing, en-
suring no overlap of subjects or sentences exists. Addition-
ally, the provided 60 FPS mesh data is resampled to 30 FPS
for consistency.

As VOCASET lacks any video data, we opt to use the
multi-view audiovisual dataset MEAD [36] to create our
photorealistic head avatars and test our lip-reading loss. We
use the 40 neutral emotion sequences of the 48 actors pro-
vided.

To create the pseudo-ground truth FLAME meshes, we
fit the FLAME model to the video data using the method-
ology outlined in Section 3.1. Due to tracking and masking
challenges, five subjects were excluded. For fair evaluation,
we split into six validation and test subjects with both sets

containing two female and four male. As all 40 sentences
are spoken by all subjects, we train only on the first 30,
leaving the remaining 10 sentences to be used across the
validation and test subject sets.

4.2. Quantitative Results
To evaluate the geometric accuracy of the lip movements
generated by our model, we employ the standard Lip Vertex
Error (LVE) metric [29]. LVE computes the maximum per-
frame L2 distance between predicted and ground truth lip
vertices, averaged across the sequence and is an key metric
for the geometric accuracy of the animation. The average
LVE scores for different stages of our pipeline, evaluated
on the test sets of VOCASET and MEAD, are presented in
Table 1.

Stage / Method ↓ LVEVOCASET ↓ LVEMEAD

Pretraining 3.06 7.05
VisualSpeaker w/o Lread – 3.85
VisualSpeaker – 1.69

Table 1. Comparison of Loss Vertex Error (LVE (mm), lower is
better) across pipeline stages. Lread represents the lip-reading loss.

The inherent differences between the datasets and the
challenge posed by MEAD are immediately apparent.
The model pretrained on VOCASET achieves an LVE of
3.06mm on its native test set. However, when this same
model is applied to the MEAD test set, the LVE signifi-
cantly increases to 7.05mm, a rise of 130%. This likely
reflects differences in capture conditions, with MEAD’s
pseudo-ground truth being noisier or more variable than



Stage / Method PSNR ↑ SSIM ↑ LPIPS ↓

Pseudo-GT Vertices 20.47 0.9126 0.1265
Pretraining 19.48 0.9057 0.1353
VisualSpeaker w/o Lread 19.29 0.9077 0.1326
VisualSpeaker 19.32 0.9083 0.1316

Table 2. Visual Results. PSNR, SSIM, and LPIPS scores for
different training stages on the MEAD test set.

VOCASET’s direct 3D scans, possibly due to tracking in-
tricacies or less controlled recording conditions. Adapting
to MEAD by fine-tuning mitigates this, improving the LVE
on MEAD to 3.85mm and yet remaining 26% higher than
the retrained models performance on VOCASET.

Incorporating Lread in the full VisualSpeaker model fur-
ther reduces the MEAD LVE to 1.69mm, representing
a 56.1% improvement over the fine-tuned model and a
44.8% reduction relative to the pretrained baseline. This
demonstrates that perceptual supervision from lip-reading
not only improves alignment with visual intelligibility but
also drives the model toward more precise geometric artic-
ulation, likely by enhancing attention to the mouth region
during training.

We also assess the visual fidelity of the generated avatars
with common visual quality metrics, Peak Signal-to-Noise
(PSNR) Structural Similarity Index Measure (SSIM) [37],
and Learned Perceptual Image Patch Similarity (LPIPS)
[41], on the rendered frames. We include: (i) ground truth
images, (ii) images rendered from pseudo-ground truth ver-
tices, and (iii) outputs from successive stages of our method.
Since our method does not modify the underlying 3DGS
representation, the pseudo-ground truth renders serve as an
upper bound for achievable image quality. Table 2 shows
the results of these metrics as averages of per-sequence
scores on the MEAD test set.

As shown in Table 2, improvements in these metrics
across training stages are modest. The full VisualSpeaker
model yields a slight gain in SSIM and LPIPS, though
PSNR decreases slightly compared to the pretrained model.
This discrepancy likely arises because these metrics are
more sensitive to global image fidelity than to the local ar-
ticulatory details, such as the lips, that our method explicitly
targets. Figure 5 illustrates this, showing that while both
the VisualSpeaker and pretraining models receive similar
PSNR scores, the renders from the pretrained model appear
visually unnatural to humans, with distorted expressions,
while VisualSpeaker produces more realistic facial dynam-
ics. These results indicate that our pipeline preserves visual
quality relative to the pseudo-ground truth ceiling, and that
introducing perceptual lip-reading supervision does not de-
grade image quality, despite not being directly optimized

(a) Ground Truth (b) VisualSpeaker (c) Pretrained

Figure 5. Qualitative Comparison. Example outputs from
VisualSpeaker and the model pretrained only on VOCASET, on
unseen subjects and sentences from MEAD [36]. Despite the
clear perceptual differences, the PSNR values for these frames are
21.11 dB and 20.90 dB, respectively.

for pixel fidelity.

4.3. Qualitative Results and User Study
Quantitative metrics, both geometric and visual, do not fully
capture the perceptual quality of dynamic facial animations
as experienced by human observers. Therefore, qualita-
tive analysis and user studies are essential to evaluate the
effectiveness of our method in generating realistic and in-
telligible lip movements. Figure 4 presents a series of vi-
sual comparisons between our full VisualSpeaker model,
the baseline model (VisualSpeaker w/o Lread), and renders
from pseudo-ground truth vertices for unseen subjects and
sentences from the MEAD test set. We use pseudo-ground
truth vertices driven avatar, rather than real images, as a ref-
erence to isolate and evaluate the accuracy of motion syn-
thesis, independent of texture or identity reconstruction.

Visually, the VisualSpeaker model produces animations
that surpass the baseline in key aspects. For example, im-
proved mouth closures are evident in the top row of Fig-
ure 4, while the bottom right demonstrates more expressive,
large-scale lip motions. The bottom left highlights improve-
ments in generating distinct mouth shapes, such as pursed
lips. Videos of the generated animations in Figure 4 are
included in the supplementary material.

To further assess the perceptual quality of our generated
animations, we conducted a user study. We recruited 51 par-
ticipants, who were presented with side-by-side video com-
parisons. Each comparison showed animations generated
by VisualSpeaker versus either a baseline model (trained
without lip-reading supervision), or animations rendered
from pseudo-ground truth meshes. Participants were in-
structed to rate their preference based on visual realism of
lip movements and ease of lip-reading, using a 5-point scale
from strongly prefer left (-2), prefer left (-1), no preference
(0), prefer right (1), to strongly prefer right (2). Each par-
ticipant evaluated 20 randomly selected video pairs from a
pool of 100 test sequences, ensuring broad coverage while
maintaining manageable session length. The study inter-
face, detailed instructions, and example comparisons inter-



Comparison Pair Realism (%) ↑ Lip Clarity (%) ↑

Ours vs. Baseline 63.8%± 8.8% 66.6%± 10.5%

Ours vs. Pseudo-GT 34.9%± 8.0% 33.6%± 8.7%

Table 3. User Study: Overall Preference. Percentage of times
VisualSpeaker was preferred in A/B comparisons, ± the standard
deviation. ‘Baseline’ is VisualSpeaker w/o Lread; ‘Pseudo-GT’
uses fitted ground truth vertices.

(a) Why (b) Because (c) Why (d) Because

Figure 6. SLP Example. Two left sub-figures show still
frames of two BSL signs with identical manual and different
mouthings. Right sub-figures show how VisualSpeaker can gen-
erate mouthings capable of disambiguating signs using text input.

face can be seen in the Supplementary. Preference scores
were computed from these ratings to quantify perceptual
advantages between methods.

The results of the user study, shown in Table 3, in-
dicate that VisualSpeaker outperforms the baseline with
65% of participants preferring the animations generated by
VisualSpeaker in terms of both realism and lip clarity. This
highlights the contribution of lip-reading loss.

However, when compared to the pseudo-ground-truth
vertices, our output quality still has room for improvement.
This is likely due to limitations in expressiveness and a rel-
ative lack of subtle, fast lip movements in our current gener-
ation. While VisualSpeaker improves lip articulation over-
all, the model can under-articulate very rapid or subtle con-
sonant closures, such as plosives (/p/, /b/) or brief tongue
contacts, which the FLAME model does not explicitly cap-
ture. Additionally, users reported that eye motion, blink-
ing, and general upper-face activity in the pseudo-ground-
truth renders contributed significantly to perceived realism.
This suggests that the lower gap rating for our method may
be partly due to missing or under-articulated non-verbal
cues beyond the mouth region, which we currently do not
model. This highlights that while our method advances lip-
synchronization, achieving full human-level realism in 3D
avatars is a holistic challenge. Additional work to ingrate
our method with systems that control upper-face expres-
sions, eye gaze, and blinking to bridge this remaining gap is
a clear direction for future work.

4.4. Sign Language Production
To evaluate our method’s ability to generate linguistically
meaningful mouthings, we chose sign pairs which share the
same manual component in British Sign Language (BSL),
differing only in their mouthings. Figure 6 shows an ex-
ample of the ‘why’ and ‘because’ signs. Still frames of
a real, unseen, signer are on the left and outputs from
VisualSpeaker generated purely from gloss-level text input
and synthesized speech are on the right. Our model success-
fully produces distinct mouth shapes for these two signs,
capturing differences such as lip rounding and closure pat-
terns. This is achieved using glosses and the TTS model,
without requiring paired audio or manual alignment. The
complete sequences are provided in the supplementary ma-
terial. The success results from the improved lip readability
provided by our perceptual loss, demonstrating that opti-
mizing for visual intelligibility enables crucial downstream
tasks in accessibility and human-computer interaction that
are unattainable with purely geometric supervision.

5. Conclusion
We present VisualSpeaker, a method for speech-driven 3D
facial animation that bridges geometric accuracy and per-
ceptual intelligibility. By supervising directly in the ren-
dered domain with a lip-reading loss on photorealistic dif-
ferentiable 3DGS avatars, our approach achieves a 56%
LVE reduction on MEAD without degrading image fidelity.
A user study confirms clear gains in realism and lip clarity,
and we demonstrate practical impact for text-to-mouthing
in sign language, where viseme precision is essential.

On the other hand, several limitations remain. Differ-
entiable 3DGS training incurs high computational cost and
limits batch size, suggesting a need for more efficient ren-
derers. The method also relies on per-subject multi-view
avatars; future work could adapt our loss to more generaliz-
able or few-shot avatar pipelines. Finally, our model lacks
explicit control of emotion and upper-face cues, which per-
ceptually matter for natural communication.

Overall, our results demonstrate that incorporating direct
perceptual supervision at the final output level is a promis-
ing step toward more expressive and intelligible 3D avatars
for accessible communication in applications such as sign
language translation and human-computer interaction.
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