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Sign Spotter

ChatGPT

Spoken Sentence

("You are a helpful assistant designed to generate a
sentence based on the list of words entered by the
user. Generate a meaningful sentence from them.”

—

Es gibt nur ein Programm in der DDR.
(There is only one program in the GDR.)

Input:NUM-EINER PROGRAMM DDR ES-GIBT

Figure 1: Overview of the proposed sign language translation framework. The system spots signs by processing video input and

generates spoken language sentences via ChatGPT.

Abstract

Sign Language Translation (SLT) is a challenging task that aims to
generate spoken language sentences from sign language videos. In
this paper, we introduce a lightweight, modular SLT framework,
Spotter+GPT, that leverages the power of Large Language Mod-
els (LLMs) and avoids heavy end-to-end training. Spotter+GPT
breaks down the SLT task into two distinct stages. First, a sign
spotter identifies individual signs within the input video. The spot-
ted signs are then passed to an LLM, which transforms them into
meaningful spoken language sentences. Spotter+GPT eliminates
the requirement for SLT-specific training. This significantly reduces
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computational costs and time requirements. The source code and
pretrained weights of the Spotter are available online !.
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1 Introduction

Sign languages are visual languages that rely on manual hand
articulations, facial expressions, and body movements. To bridge
communication gaps between the Deaf community and hearing
people, Sign Language Translation (SLT) (sign language — spoken
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language) and Sign Language Production (SLP) (spoken language
— sign language) systems hold great significance.

SLT is often formulated as a Neural Machine Translation (NMT)
task since it aims to generate spoken/written language sentences
from sign language videos [5]. Compared to classical text-based
NMT approaches, which work on easily tokenizable text, SLT deals
with continuous sign language videos, which are hard to align and
tokenize. Furthermore, spoken and sign languages have different
grammar, and the order of the sign glosses and spoken language
words are different as seen in Fig. 2.

Sign Language Video
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Es gab nur €in Programm in der DDR.
(There was only one program in the GDR.)

Figure 2: Overview of the CSLR (Continuous Sign Language
Recognition) and SLT (Sign Language Translation) tasks.

To address this issue, some researchers have approached SLT as
a combination of two sub-tasks; Sign Language Recognition (SLR),
recognizing the constituent signs of sequences and then translating
the recognized signs into meaningful spoken language sentences
[5, 6, 42]. Some researchers approach the first task as Continuous
Sign Language Recognition (CSLR) and try to detect sequences of
glosses as an intermediate representation to represent sign language
videos. Camgoz et. al [5, 6] showed that using gloss-based inter-
mediate representations improved SLT performance significantly.
The common approach in CSLR is learning spatial and temporal
visual representations with a sequence-to-sequence Connectionist
Temporal Classification (CTC) loss [12]. These CSLR approaches
require gloss supervision, which is hard and time-consuming to
accurately annotate.

On the other hand, some researchers tackle SLT in an end-to-
end manner by training SLT models that produce spoken language
sentences directly from sign language videos [6, 41, 44]. Although
end-to-end approaches can achieve excellent results on small SLT
datasets, such as PHOENIX-2014-T [5], they under perform on SLT
datasets that are weakly aligned or have a large domain of discourse
[2, 20, 32].

In this work, we explore an alternative, modular approach: Spot-
ter+GPT. Our goal is to reduce the cost and complexity of SLT
pipelines by leveraging pre-trained Large Language Models (LLMs)
instead of training a gloss-to-text translation model. We first train a
sign spotter using a large sign language dataset from the linguistic
domain. Then, we utilize our spotter to recognize the sequence of
sign glosses from continuous sign language videos. These glosses
are then passed to the LLM via prompting to generate spoken sen-
tences. We evaluate our method on the MeineDGS dataset and a
custom DGS-20 benchmark and compare it to traditional gloss-to-
text transformer baselines. This pipeline does not require training
an SLT-specific decoder and can generate semantically coherent
translations, particularly in controlled settings.
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2 Related Work
2.1 Sign Language Recognition

SLR can be divided into two categories; Isolated Sign Language
Recognition (ISLR) [1-3, 15, 17, 33, 39] and Continuous Sign Lan-
guage Recognition (CSLR) [9, 25, 38, 43]. ISLR focuses on recogniz-
ing a single sign from the video, while CSLR focuses on recognizing
the sequence of glosses. CSLR is a weakly supervised recognition
task since continuous SLR datasets [5, 10] usually provide gloss
sequences without explicit temporal boundary since labeling each
gloss frame by frame is a time-consuming process. For this reason,
using the CTC loss [12] became popular [6, 25, 38, 43].

Some researchers develop CSLR models with the assistance of
an ISLR model [9, 38]. Cui et. al [9] first trained a feature extraction
module and then finetuned the whole system iteratively. Wei et. al
[38] trained two ISLR models in two different sign languages and
then proposed a multilingual CSLR by utilizing cross-lingual signs
with their assistance. In this work, we utilized an ISLR model to
detect the sequence of glosses.

2.2 LLM:s for Sign Language Translation

The development of Large Language Models (LLMs) has led to
significant improvements in natural language processing tasks [4,
27, 35]. After OpenAl introduced ChatGPT, which was trained
using Reinforcement Learning from Human Feedback (RLHF), it has
attracted significant attention because of its success in several tasks,
including question answering, summarization, machine translation,
ete [19, 22, 26].

Despite the effectiveness of ChatGPT, only a few studies have
explored ChatGPT in the context of sign language. Shahin and
Ismail [31] evaluated ChatGPT’s capabilities on gloss-to-text and
text-to-gloss translations with a limited set of phrases, such as
with only 5 medical-related statements in English and Arabic sign-
spoken language pairs. While promising, their experiments were
minimal and relied on given gloss inputs rather than real video
inputs. They found that it performs better when translating to
English rather than Arabic.

More recently, several studies have begun integrating LLMs into
SLT pipelines, often through training adapters or fine-tuning [8,
11, 13, 18, 40]. However, such systems typically require additional
training and resources, limiting their ease of deployment.

In contrast, our approach, Spotter+GPT, is a lightweight SLT
framework that uses a pretrained sign spotter to detect glosses
from video, and directly prompts ChatGPT for spoken sentence
generation. To the best of our knowledge, it is the first to combine
gloss spotting from raw video with prompt-based LLM transla-
tion, without requiring any additional training or adaptation for
translation.

3 Method

As shown in Fig. 1, our approach contains a two-step process. First,
we train a sign spotter to identify individual signs. This model was
trained to recognize a single isolated sign from the input video.
Once trained, the spotter is applied to continuous sign language
videos in a sliding window manner to get gloss predictions. Then
we pool and threshold these detections to obtain the final set of
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identified glosses. We call this first step Sign Spotting (Section
3.1). Subsequently, we employ a pretrained LLM to convert these
sequences of glosses into spoken language sentences. To achieve
this, we prompted a ChatGPT model (Section 3.2).

3.1 Sign Spotting

As spotter, we employ an I3D model [7]. We prepare isolated sign
sequences from a continuous sign language dataset, MeineDGS
[16], where the glosses are annotated in frame level. Within the
MeineDGS dataset the average duration of a gloss is 10 frames while
we train our I3D models with a window size of 16. If an isolated
sign sequence is shorter than 16 frames, we repeat the last frame.
For longer sign instances we generate multiple samples by using a
sliding window with a stride of 8.

In the training time, the model takes 16 consecutive frames. We
resize the input images to 256 X 256 and then crop to a 224 x 224
region. We replaced the ReLU activation function with the Swish
activation function [28] as it improves sign language recognition
performances [14, 39].

Following [2], we utilize cross-entropy loss and an SGD optimizer
[34] with momentum 0.9, batch size 4, and an initial learning rate
of 0.01. We decreased the learning rate by a factor of 10 when
validation loss plateaus for 4 consecutive epochs. We use label
smoothing of 0.1 to prevent overfitting. While our input videos
are cropped randomly during training time, it is cropped from the
center during evaluation. We applied color augmentation during
training.

After training our I3D model, we employ it to spot signs in
coarticulated continuous sign language videos in a sliding win-
dow manner. With a stride of 1, for the given input video with T
frames, we obtain T — 15 gloss predictions. Then, we propose a
straightforward yet efficient solution to produce a final sequence
of glosses. First, we filter gloss predictions by a threshold, based
on the model’s prediction confidence. Following this, we collapse
the consecutive repeated predictions to obtain the final sequence
of gloss predictions.

3.2 ChatGPT

Due to the success of ChatGPT in many tasks, we utilize it to create
spoken sentences from glosses. This strategy not only eliminates
the requirement for gloss-to-text model training but also offers
potential advantages. ChatGPT can generate fluent and context-
aware sentences, making it a strong candidate for translating glosses
into coherent sign language sentences.

It is worth noting that the order of the glosses in sign languages
are different from the word order in spoken languages. Meanwhile,
the vocabulary of our gloss spotter is constrained by the number
of classes on which the I3D model was trained on. However, the
dynamic nature of ChatGPT allows a flexible translation process,
enabling us to overcome the limitations of a fixed gloss set and,
different ordering.

We prompt ‘gpt-3.5-turbo’ version of ChatGPT via the OpenAl
Python API without fine-tuning it. For each input video, after we
obtain a series of glosses, we pass them to ChatGPT and prompt
the model to create a meaningful sentence using those glosses.
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The spotter is capable of real-time inference on systems equipped
with a GPU. We tested it on two machines: a desktop with an
NVIDIA RTX 3090 and a laptop with an NVIDIA RTX 5000. In
both cases, the system operated smoothly, achieving a minimum of
25 frames per second. Since ChatGPT is accessed via an external
API, its response time depends on network conditions. In our ob-
servations, the typical latency per prompt was approximately 1-2
seconds.

3.3 Prompt Engineering

We initially set our prompt by only defining our task as generating a
sentence based on the list of words entered by the user. However, we
observed that sometimes ChatGPT produces outputs like “Sorry, I
could not generate a sentence." in cases when spotter failed to detect
any gloss or when the number of detected glosses was insufficient.
To address this, we refined the prompt by adding two explicit rules
to avoid unrelated sentences and to produce “No translation" in
cases where a meaningful sentence could not be generated. The
final prompt is as follows:

® You are a helpful assistant designed to generate a sentence
based on the list of words entered by the user. You need to
strictly follow these rules:

(1) The user will only give the list of German words sepa-
rated by a space, you just need to generate a meaningful
sentence from them.

(2) Only provide a response containing the generated sen-
tence. If you cannot create a German sentence then re-
spond with “No Translation".

4 Experiments

4.1 Dataset and Preprocessing

MeineDGS. It is a large linguistic German Sign Language (DGS)
dataset [16]. Videos contain free-flowing conversation between
two deaf participants. We follow the sign language translation
protocol set [29] on MeineDGS, which has 40,230 training, 4,996
development, and 4,997 test sentences.

We use the MeineDGS-V split [29], which distinguishes between
sign variants, each containing the same meaning but with differing
motions. MeineDGS-V has approximately 10,000 glosses available
for training. However, some signs have relatively few examples or
some of them are singletons. To make the dataset more balanced
for isolated SLR model training, we selected glosses that have more
than 12 samples and we exclude the INDEX gloss as it stands for
a pointing, making it the predominant gloss in the dataset. This
criterion leads to 2,301 classes. We train our I3D spotter on these
2,301 classes using train, validation, and test splits of Saunders et.
al [29].

Please note that in [29] the spoken sentences are lowercase, punc-
tuation was removed, and all German characters (4, 6, i, and 3) were
replaced with corresponding English letters. This will cause some
words to change meaning. Therefore, instead of the sentence repre-
sentation of [29], we used the original spoken language sentences
[16] in the sign language translation task.

DGS-20 Videos. To further evaluate our approach, we collected
a small dataset containing 20 German Sign Language (DGS) videos.
These videos were recorded by a single deaf signer, who performed
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10 unique sentences, each repeated twice for consistency and vari-
ation. The glosses used in these sentences were selected from the
2,301-class vocabulary of our trained sign spotter, ensuring full
coverage. Some example sentences are presented in Table 1.

Table 1: Some examples from DGS-20 dataset.

ID German Sentence (English Translation)

1 Die Familie isst abends im Restaurant.
(The family eats in the restaurant in the evening.)

2 Der Dolmetscher spricht mit der Familie des Méadchens.
(The interpreter speaks to the girl’s family.)

3 Der Dozent fihrt morgens mit dem Fahrrad zur Univer-
sitét.
(Tomorrow the lecturer will ride his bike to the university.)

4  Der Schauspieler spricht viel iiber Politik und Kultur.
(The actor talks a lot about politics and culture.)

4.2 Evaluation Metrics

We use BLEU [21], and BLEURT [30] metrics to evaluate the perfor-
mance of our SLT approach. BLEU is a metric based on the precision
of n-grams (consecutive word sequences) for machine translation.
On the other hand, BLEURT aims to achieve human-quality scoring.
Higher scores indicate better translation. We use the sacreBLEU
[23] implementation for BLEU, and BLEURT-20 checkpoints [24]
for the calculation of BLEURT scores.

4.3 Quantitative Results

Sign Language Recognition: We evaluate our I3D model on the
MeineDGS dataset providing the per-instance and per-class accu-
racy scores. We first fine-tuned I3D pretrained on Kinetics [7] and
obtained 53.24% and 40.70%, respectively. It has been shown that
pretraining on larger sign recognition datasets improves sign per-
formance [1, 37]. Therefore, we first fine-tuned the 13D model on
the large-scale BOBSL (BBC-Oxford British Sign Language) dataset
[2]. Then we fine-tuned an I3D model pretrained on Kinetics +
BOBSL for finetuning on the MeineDGS. We observe 1.5% perfor-
mance increase with the usage of sign language data in weight
initialization. Our results are provided in Table 2.

Table 2: Isolated sign language recognition performance on
MeineDGS-V.

Per-instance Per-class
53.24% 40.70%
54.57% 42.48%

Model | Pretrained on
13D Kinetics [7]
I3D | Kinetics [7] + BOBSL [2]

Sign Language Translation: We evaluate our entire SLT ap-
proach, Spotter+GPT, on the MeineDGS-V test split and our DGS-20
videos. The quantitative results are provided in Table 3 and Table 4,
respectively.

We empirically evaluate the Spotter’s performance using vary-
ing probability thresholds. The threshold of 0.7 for the probability
associated with each gloss prediction yielded the best results.
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It is worth mentioning that DGS-20 videos result in higher per-
formance than MeineDGS. As this dataset contains a limited and
controlled vocabulary, GPT achieves significantly higher scores in
both BLEU and BLEURT metrics, demonstrating its effectiveness in
low-resource but constrained setups.

Evaluation of each component. To evaluate the performance
of our components independently we conduct two different types
of experiments. First, to evaluate the performance of our spotter, we
replace its results with the ground truth gloss annotations. Although
the MeineDGS-V test split has 4,620 glosses, our spotter is only able
to recognize 2,301 glosses. To make a fair comparison, we excluded
gloss annotations that do not belong to our Spotter’s vocabulary
and we refer to this filtered reference set as Sub-GT. Specifically,
Sub-GT is derived from the full ground truth annotations in the
MeineDGS-V, but only includes glosses that exist in our predefined
vocabulary. We refer to our full pipeline using this subset as Sub-
GT+GPT. As expected, these scores surpass the results obtained
with the spotter (BLEURT: 29.72 vs. 21.62).

Second, to evaluate the role of ChatGPT as a gloss-to-text genera-
tor, we replace it with a traditional Transformer model [36], trained
on gloss-sentence pairs. We use two layers with 8-heads in the trans-
former encoder and decoder using 512 hidden units. We use the
Adam optimizer with an initial learning rate of 6 x 10~% with batch
size 64. We reduce the learning rate by a factor of 0.7 if the BLEU-4
score does not increase for 5 epochs. On MeineDGS, the transformer
outperforms GPT in terms of BLEU. However, when considering
BLEURT, which reflects semantic similarity, GPT achieves better
results (Table 3).

On the DGS-20 videos, we evaluate the same Transformer model
that was trained on the MeineDGS dataset. ChatGPT significantly
outperforms transformers in all metrics (Table 4). This performance
can be attributed to these factors: the spotter achieves high accu-
racy due to the limited vocabulary, and ChatGPT effectively maps
detected gloss sequences into spoken language sentences. These
results highlight that when gloss detection is reliable, prompting an
LLM like ChatGPT can produce high-quality translations without
any task-specific fine-tuning.

Table 3: Performance of our approach on MeineDGS-V test
set. Color-coded for easier comparison: GPT vs. Transformer
(blue), Spotter vs. Sub-GT

Method B-1 B-2 B-3 B-4 BLEURT
+GPT 1482 4.19 145 0.64 21.62

Spotter+Transformer | 19.5 6.13 2.48 1.08 19.01
+GPT 16.65 6.45 3.02 1.55 29.72

Table 4: Performance of our approach on DGS-20. Color-
coded for easier comparison: GPT vs. Transformer (blue),
Spotter vs. GT

Model B-1 B-2 B-3 B-4 BLEURT
+GPT 38.25 24.13 15.81 9.12 46.93
Spotter+Transformer | 18.65 4.91 1.79 0.92 19.85
+GPT 68.74 59.23 52.21 46.22 79.04
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Table 5: Qualitative results of the proposed method.

Examples 1-3 are from MeineDGS; Examples 4-6 are from DGS-20.

IVA Adjunct *25, September 16-19, 2025, Berlin, Germany

GT Glosses NUR2B NUM-EINER1A:1d PROGRAMM1A ICH1 DDR4 ES-GIBT3

Spoken Language Es gab nur ein Programm in der DDR. (There was only one program in the GDR.)

Spotter NUM-EINER PROGRAMM DDR ES-GIBT

Spotter+GPT Es gibt nur ein Programm in der DDR. (There is only one program in the GDR.)

GT Glosses SEHR-VIEL2 FEIN1 ESSEN1

Spoken Language Dort gibt es sehr gutes Essen. (There is very good food there.)

Spotter SEHR-VIEL GUT ESSEN

Spotter+GPT Es gibt sehr viel gutes Essen. (There is a lot of good food.)

GT Glosses LETZTE URLAUB SARDINIEN INDEX

Spoken Language Letztens war ich im Urlaub auf Sardinien. (I was recently on holiday in Sardinia.)

Spotter LETZTE MEHR

Spotter+GPT Letzte Woche gab es mehr Regen als erwartet. (Last week there was more rain than expected.)

GT Glosses FAMILIE1 ESSEN1 ABEND2 RESTAURANT1

Spoken Language Die Familie isst abends im Restaurant. (The family eats in the restaurant in the evening.)

Spotter FAMILIE ESSEN ABEND RESTAURANT

Spotter+GPT Die Familie geht am Abend ins Restaurant, um zu essen. (The family goes to the restaurant to
eat in the evening.)

GT Glosses DOLMETSCHER1 SPRECHEN3 FAMILIE1 MADCHEN1

Spoken Language Der Dolmetscher spricht mit der Familie des Madchens. (The interpreter speaks to the girl’s
family.)

Spotter DOLMETSCHER MIT MADCHEN SPRECHEN

Spotter+GPT Der Dolmetscher spricht mit dem Médchen. (The interpreter speaks to the girl.)

GT Glosses DOZENT1 MORGEN1B FAHRRAD1 UNIVERSITAT1

Spoken Language Der Dozent fahrt morgens mit dem Fahrrad zur Universitét. (Tomorrow the lecturer will ride
his bike to the university.)

Spotter DOZENT MORGEN FAHRRAD LUFT

Spotter+GPT Morgen fahre ich mit dem Fahrrad zur Uni, weil mein Dozent sagt, frische Luft ist wichtig.

(Tomorrow I'll ride my bike to university because my lecturer says fresh air is important.)

4.4 Qualitative results

We provide qualitative results of our approach in Table 5. When the
spotter successfully detects the majority of glosses, GPT effectively
generates high-quality spoken sentences from the glosses (Example
1, 2, and 4). Even in cases where the glosses are incomplete or con-
tain additional glosses, ChatGPT still preserves semantic coherence
with information gaps or the generation of new content (Examples
5, and 6). On the other hand, not surprisingly, ChatGPT’s perfor-
mance heavily depends on the quality of the input glosses. When
the spotter fails to detect glosses, ChatGPT generates incorrect
sentences (Example 3) or “No translation".

5 Conclusion

In this paper, we proposed a novel sign language translation frame-
work that combines a sign spotter with a Large Language Model
(LLM), specifically ChatGPT, to generate spoken language sentences
from sign language videos. Our method does not require any end-
to-end SLT model training and leverages prompt-based inference
for gloss-to-text generation.

Experimental results on MeineDGS-V and a newly collected
DGS-20 dataset show that Spotter+GPT produces coherent and

semantically accurate sentences, especially when the spotter suc-
cessfully identifies relevant glosses. This indicate that leveraging
LLMs offers a promising and flexible alternative to traditional gloss-
to-text pipelines.

Our system can process video inputs from both pre-recorded
datasets and live capture devices such as webcams. This flexibility
allows us to support potential real-time applications.

However, our system’s performance is inherently constrained by
the vocabulary and accuracy of the sign spotter. When the spotter
fails to detect critical glosses, the translation quality drops signifi-
cantly. This highlights the importance of high-quality gloss spotting.
Nevertheless, our approach can be adapted to specialized sign lan-
guage interpretation by fine-tuning the spotter on domain-specific
gloss sets. A future direction may include expanding the vocabulary
of the spotter to increase the range of recognized glosses.
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