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Abstract—There has been significant progress in human image
generation in recent years, particularly with the introduction
of diffusion models. However, it is challenging for the existing
methods to produce consistent hand anatomy, and the generated
images often lack precise control over hand pose. To address
this limitation, we introduce a novel two-stage approach to
pose-conditioned human image generation. Firstly, we generate
detailed hands and then outpaint the body around those hands.
We propose training the hand generator in a multi-task setting to
produce both hand image and their corresponding segmentation
masks, and employ the trained model in the first stage of gener-
ation. An adapted ControlNet model is then used in the second
stage to outpaint the body. We introduce a novel blending tech-
nique that combines the results of both stages in a coherent way
and preserves the hand details. It involves sequential expansion
of the outpainted region while fusing the latent representations,
to ensure a seamless and cohesive synthesis of the final image.
Experimental evaluations demonstrate the superiority of our
proposed method over state-of-the-art techniques in both pose
accuracy and image quality, as validated on the HaGRID and
YouTube-ASL datasets. Our approach not only enhances the
quality of the generated hands, but also offers improved control
over hand pose, advancing the capabilities of pose-conditioned
human image generation. We make the code available.

Index Terms—Human image generation, hand generation,
generative modeling, diffusion models, deep learning, computer
vision.

I. INTRODUCTION

ONTROLLABLE human image generation is an impor-

tant task in the field of visual content production. It has
applications in advertising, game character creation and E-
commerce amongst others. In recent years, diffusion models
have overtaken the field with their flexibility and unprece-
dented quality of results. They dominate over other generative
approaches such as Generative Adversarial Networks (GANs)
and Variational Auto-Encoders (VAEs) [6]. Many works have
explored ways to add pose control to diffusion generators
[2]-[5, 7, 8]. Despite their impressive capabilities and the
flexibility introduced by pose conditioning, diffusion models
frequently fail in generating high-quality hand images [!]-
[5]. Common issues include anatomical inaccuracies such as
extra or missing fingers, distorted poses, and visual artifacts
(see Fig. 1). These shortcomings are particularly jarring, as
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the human brain is exceptionally sensitive to hand anatomy,
making even minor errors appear unnatural or unsettling.
Furthermore, modern diffusion models lack fine-grained con-
trol over hand poses and often struggle to accurately model
complex interactions or cases with occlusions, reflecting the
inherent anatomical complexity of hands [4, 9].

It is also difficult to ensure the model’s generalization in
terms of visual appearance and style while keeping anatomy
consistent. Training datasets rarely combine the volume and
diversity of samples needed with high curation quality and
precise annotation. Publicly available datasets that include
annotated hands and hand interactions often lack visual di-
versity and are limited to isolated hand images, omitting
context from the rest of the body [10]-[12]. Such data is
poorly suited for fine-tuning pre-trained diffusion models, as
its limited variability in appearance and style restricts the
generator’s expressiveness and generality. This performance
degradation, known as “catastrophic forgetting”, is a well-
documented challenge in the field [4].

Recent works attempt to fix the quality of hand generation
in diffusion models [9, , 14]. In HandRefiner [9], the
authors propose to repaint hands in the generated images
with a depthmap-conditioned ControlNet [5]. Gandikota et
al. [14] identify a low-rank direction in the parameter space
of SDXL [15] that targets hand quality, and modify it via
a Concept Slider. In HanDiffuser [13], Narasimhaswamy et
al. use a dedicated encoder to predict pose and body shape
parameters from the input text prompt, which then serve as
conditioning for an image generator. While these approaches
show improved hand quality, they aim for general visual plau-
sibility and do not allow pose control, which is a paramount
factor in numerous applications of generative models.

This manuscript addresses the problem of high-quality
hand generation with diffusion models, focusing on achieving
precise pose control while maintaining generality and visual
flexibility. Our approach decomposes the task into two com-
plementary sub-tasks: dedicated hand generation and body
outpainting around the hands. This division reduces the data
variability the hand generator must learn, prioritizing pose
accuracy and articulation. At the same time, the outpainting
stage employs a conditional diffusion model adapted to handle
intricate hand shapes while generating diverse appearances and
styles seamlessly. The hand generator operates in a multi-task
framework, simultaneously learning to produce segmentation
masks alongside the primary denoising objective, enabling
precise body outpainting. To coherently merge the outputs
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Fig. 1. Examples of images, generated by the proposed method (column 6) and the state-of-the-art diffusion models (columns 1 to 5), given the pose condition

(final column) and the text description.

of both stages and minimize artifacts at mask boundaries,
we introduce a blending technique that utilizes sequential
mask expansion. To the best of our knowledge, this is the
first diffusion-based image generation approach to successfully
produce high-quality hands with precise pose control.

The main contributions of this work are:

e« We propose a novel two-stage diffusion approach to
human image generation, capable of producing high-
quality hands with precise control over their pose.

o We show that conditional diffusion models can be suc-
cessfully trained in a multi-task setting, predicting both
the added noise and the semantic segmentation mask of
the generated object.

+ We introduce a blending technique based on sequential
expansion of the outpainting region, enabling smooth in-
tegration of the two stages. It ensures seamless transitions
between regions while preserving fine details and visual
coherence.

o To validate the effectiveness of the proposed approach,
we perform extensive experiments and benchmark it
against state-of-the-art models, measuring pose precision,
including a separate evaluation of hand pose, image
quality and text-image consistency.

A preliminary version of this work appeared in [16]. In
this extended version, we utilize Low-Rank Adaptation [17]
to efficiently fine-tune the model in the second stage of the
generation, minimizing the risk of overfitting. Additionally,

we have updated the literature to include more recent relevant
work and added an ablation study on the effect of the multi-
task training of the hand generator. We have also introduced
an additional baseline [2], performed an evaluation on the
YouTube-ASL dataset [ 18], and added a user study. We further
added qualitative and quantitative results for challenging two-
handed poses and expanded the discussion of our model’s
limitations. Finally, we have improved the overall presentation
and writing of the manuscript.

II. RELATED WORK
A. Image Generation with Diffusion Models

There has been a significant interest in diffusion models
from the computer vision community due to their flexibility
and the high quality of results. For these reasons they dominate
over other generative models [0]. A notable branch of research
in diffusion models is Denoising Diffusion Probabilistic Mod-
els (DDPM) [19, 20] that utilize two Markov chains: a forward
chain that noises the data, and a reverse chain that recovers
data from noise. Ho et al. [20] and Dhariwal and Nichol [6]
demonstrated the capability of denoising diffusion models to
generate high-quality samples unconditionally. Subsequently,
Song et al. [21] and Nichol and Dhariwal [22] proposed infer-
ence optimizations that significantly speed up the generation
process. GLIDE [23] combined a diffusion model with text
conditioning by encoding the input prompt into a sequence of
embeddings with a transformer, which is then concatenated
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with the attention context of each layer. Similarly, DALL-
E2 [24] and Imagen [25] employed a modified GLIDE ar-
chitecture to map the CLIP [26] and T5-XXL encoder [27]
embedding space correspondingly into the image space via
the reverse diffusion process, generating images that convey
the semantic information of the input caption. While early
diffusion approaches were performed in pixel space, Rombach
et al. [1] proposed Latent Diffusion by moving the denoising
process to the lower-dimensional latent space of a pre-trained
autoencoder, benefiting from perceptual compression of the
modelled data and unlocking greater flexibility for solving
various image-to-image and text-to-image tasks.

B. Pose-Conditioned Human Image Generation

Although unconditional and text-conditioned approaches
can often produce high-quality realistic results, the limited
control over generation makes such models unusable for many
real use cases.

Generative Adversarial Networks (GAN) [28] have been
widely used to introduce pose control to image generation
through explicit appearance and pose conditioning [29], spa-
tial deformations [30], pose transfer [31], and cross-attention
mechanisms [32]. However, they were mostly developed using
fashion datasets and/or low-resolution images without account-
ing for the hand pose. More recently, Saunders et al. proposed
GAN-based methods [33, 34] for sign language applications
that aim to generate fine-grained hand details. Although the
approaches explicitly model hands, they can only produce
appearances seen during training and do not generalize to out-
of-distribution visual conditions.

Diffusion models have seen extensive use for pose-
conditioned human image generation. Building up on Latent
Diffusion [!], a number of works extended it to condition
the denoising process on various modalities such as human
pose keypoints, sketches, edge maps, depth maps, colour
palette, etc. [2]-[5, 7]. ControlNet [5] introduces a trainable
copy of a Stable Diffusion (SD) encoder to extract features
from the condition while keeping the base model frozen
during training. Similarly, T2I-Adapter [3] uses lightweight
composable adapter blocks for condition feature extraction,
which can be combined for multi-condition setting. However,
in both models, the features learned by encoders are combined
with the features of the frozen backbone model in an additive
manner which may provoke trainable-frozen branch conflicts,
as discussed in HumanSD [4]. To address this, Ju et al
propose making all the parameters of the underlying SD model
trainable, while trying to mitigate the issue of catastrophic
forgetting by using the heatmap-guided denoising loss. Other
approaches, such as Baldrati er al. [7] extend the input to
include human pose image and garment sketch, while Wang et
al. [2] propose a ViT-based [35] self-attention module to focus
on only the relevant pose embedding tokens.

Numerous works have explored pose-guided image syn-
thesis given a reference appearance image using diffusion
models [8, 36, 37]. Bhunia et al. [36] achieve pose control
by concatenating the skeleton condition to the model input.
Additionally, the style image features are passed to cross-
attention blocks to better exploit the correspondences between

the source and target appearances. Shen er al. [8] propose
a three-stage approach to bridge the gap between the source
and target poses by predicting the global image features first,
generating a coarse image, and then further refining it to
add detail and improve consistency. Lu ef al. [37] implement
a coarse-to-fine appearance control method based purely on
images instead of relying on text prompts. They introduce
a perception-refined decoder to decouple fine-grained ap-
pearance and pose controls, and use multi-scale attention to
enhance the alignment of the source image with the target
pose.

Notably, most of the recent pose-conditioned approaches to
image generation [2]-[4, 7, 8, 36, 37] do not include hand
keypoints into a skeleton representation and therefore do not
offer control over the hand pose. On the other hand, the models
that offer such control, e.g. ControlNet [5], fail to produce
realistic and anatomically correct hands. This shortcoming is
tackled by our proposed approach.

IIT. PROPOSED METHOD

An overview of our approach is shown in Fig. 2. In this
work, we divide the image generation task into two sequential
stages: hand generation and body outpainting around the
hands. Firstly, a diffusion-based generator produces the hand
image and a corresponding segmentation mask, guided by a
keypoint heatmap representing hand pose. This is achieved
though the multi-task training setting that we employ for the
hand generator. The generated hand image is then resized
and aligned with the global body skeleton to serve as input
for the second stage. The final image is produced in the
second stage by outpainting the body around the generated
hands using ControlNet [5]. It is guided by the skeleton
image and the segmentation mask obtained on the previous
stage. To seamlessly integrate the two stages, we propose a
blending strategy based on sequential mask expansion, which
harmonizes transitions and preserves visual coherence. This
modular design simplifies the task for the hand generator,
allowing it to prioritize pose precision and articulation, while
the outpainting stage provides greater flexibility in appearance
and style through text prompts.

Section III-A outlines the Latent Diffusion paradigm under-
lying our method. Sections III-B and III-C detail each stage
of the generation process, while Section III-D describes the
proposed blending technique that unifies both stages into a
coherent output.

A. Latent Diffusion Models

The idea of Latent Diffusion [!] is to perform the diffusion
process in the latent space of a pre-trained autoencoder to
decrease the dimensionality of the data and operate on the
feature level instead of raw pixels. The input image I €
RH*Wx3 is put through an encoder E to obtain its latent
representation 2o = E(I), where 2o € R¥ *'¥ ¥4, The latents
are subsequently corrupted by noise, following the forward
diffusion process, a Markov chain of Gaussian transitions:

q(ze|xi—1) = N(xe; /1 = Brap—1, Bel), (D
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Fig. 2. General overview of the proposed approach. We divide image generation into two sub-tasks: (I) hand generation (top part) and (II) body outpainting

around the hands (bottom part).

where ¢ = 1,...,T is the time step that defines the strength
of the added noise, f; is the noise variance and q(x¢|z;—1) is
the conditional probability of x, given x;_;. By utilizing the
properties of the above process and performing a reparame-
terization trick, we can obtain x; from any time step in the
closed form.

Our goal is to restore a clean sample 2y from the noise
7. However, the reverse process g(x;—1|x¢) is intractable
in general case, therefore it is approximated with a Gaussian
generative process that utilizes a U-Net model €g, trained to
predict the added noise and subsequently recover zy:

T

po(o:r) = plar) [ [ po(i—1lze), 2
t=1

po(i1lze) = N(@o_1; po(2, 1), Do (2, 1) (3)

In DDPM [20] the mean of the reverse diffusion process
1o (¢, t) is reparameterized in the following way:

1 1— (673
t) = - 1), 4
o) = <= (o~ =eoa ). @
where eg(x,t) is the predicted noise. DDIM [21] further

generalizes DDPM and defines a family of non-Markovian
processes that consider sampling trajectories of length smaller
than T without retraining the model. This deterministic sam-
pling process allows for fewer denoising steps, significantly
speeding up inference.

Latents %y, obtained from the denoising process, are then
translated back to the pixel space using the decoder D to form
the generated image I = D(p).

B. Multi-Task Hand Generation

We use a pre-trained SD model as the foundation for the
proposed hand generator Hy and finetune it in a multi-task
setting to predict the noise together with the segmentation
mask of the generated hands. Taking inspiration from [7] and
[4], our hand generator accepts an additional input condition
cp € REXHXWh that is concatenated with noisy latents,
guiding the generation process towards the specified hand
shape. The noise term éy is predicted by the model along with
the segmentation mask mg:

(&)

At each step of the diffusion process, a denoised hand latent
2o is obtained with DDIM sampling using the predicted noise
€p.

In our approach, the conditional input ¢, has K = 11
channels: 10 channels for the hand keypoint heatmap and
1 channel for the segmentation mask of the hand. Each
heatmap channel represents the keypoints of an individual
finger, ensuring better separability in cases of finger overlap
or occlusion. The segmentation mask is included to provide
additional spatial guidance to the model. To increase robust-
ness and enable mask-free inference, the mask is set to zeros
during training with the probability p = 0.5. Both the keypoint
heatmap and the segmentation mask are downsized to the
latent dimension using bilinear interpolation to provide explicit
pose and layout control to the generator. To accommodate
the increased number of input channels, we extend the first
convolutional layer of the pre-trained SD architecture with
randomly initialized weights and further train the network.

€9, mg < Hoy(xy,t,cp).
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Hand segmentation masks are predicted by a stack of 4
transposed convolutional layers f,, with kernels of the size
2 x 2 and stride 2. The outputs of each intermediate layer are
passed through the Sigmoid Linear Unit (SiLU [38]) activation
function. The mask prediction head is built on top of the
last layer of the SD decoder, and it produces outputs in the
spatial resolution of the input image /. The predicted mask is
later used to define the target region for the body outpainting
module and to coherently blend hands and body.

The network is trained using the combined objective:

N
1 2
L=Lrpwm + Ay g(Mi —mag)?, (6)

(7

where M; is the ground truth segmentation mask for the -
th sample, A\ is a hyperparameter that defines the weight of
the segmentation loss, €y, mg are the outputs of the hand
generator, as shown in (5). Apart from the practical use of
the predicted segmentation mask in the next stage, including
an extra objective provides an additional regularization to the
training process, thus making the generator more robust [39]-
[41]. The effect of multi-task training of the hand generator is
explored in Section IV-E.

Liom =Eeon,1)~.1) [lle —é0l3] |

C. Body Outpainting

The background of the generated hand image is removed
using the predicted mask. Both the resulting foreground image
and the mask are further downscaled and aligned with the full
body skeleton to form the canvas for outpainting I. and its
corresponding mask mg.. The canvas is then encoded into a
latent space using the encoder z. = E(I.), and the mask
is downsized to match the spatial dimensions of the latent
representation mg, € RT*W = myien: € REX%.

The final image is obtained by painting the body around
the hand region with a ControlNet model €. The objec-
tive of the model is to predict the unknown latent pixels
(I — mygtent) © x. of the input canvas while leaving the
masked area myqtent © T, unchanged, guided by the body
pose in the form of a skeleton image and a mask of the target
region. A pre-trained skeleton-conditioned ControlNet model
can naturally solve the inpainting task by noising, and subse-
quently restoring, the masked region of the input. However, in
the case of body outpainting, it tends to hallucinate objects,
inexistent hand parts, and unnatural textures around the hand
region, as the model learned to associate non-neutral hand
shapes with holding objects during the generic training. In
the previous work [16], we fine-tuned ControlNet for body
outpainting to address these issues. However, direct fine-tuning
can negatively affect the generalization ability of the model
if performed on a small or noisy dataset. Additionally, the
domain gap between generic inpainting and body outpainting
is small, which suggests the use of more efficient tuning
techniques. Low-Rank Adaptation (LoRA) [17] is a parameter-
efficient fine-tuning method that injects trainable low-rank
matrices into the original model weights, allowing targeted
adaptation without full model updates. In the literature, it was

explored for efficient learning of visual concepts and styles in
diffusion models [42]-[45], as well as for combining multiple
input conditions [46]. In this work, we propose to use a LoRA
module on top of a pre-trained ControlNet to specialize it
in body outpainting while minimizing the risk of overfitting.
Additionally, as the number of trainable parameters becomes
< 1% of the original ControlNet size, the fine-tuning can be
performed faster and using only a fraction of GPU memory.
The used LoRA configuration and training times of the model
are discussed in more detail in Sections IV-E, IV-B. We train
the LoRA layers by reconstructing the original image from
a canvas containing only segmented hands, thus emulating a
two-stage generation process.

D. Sequential Mask Expansion

When outpainting the body around the generated hands, it
is essential to preserve hand details while ensuring seamless
transitions and natural connectivity between regions. Even
though ControlNet receives the mask as an input condition,
a diffusion process is performed over the full area of the
latent and therefore corrupting the hand region. To preserve the
hand details, the latents at each step are obtained by blending
the input canvas and the denoised latents at the current step,
similarly to [47, 48]:

(®)

Although this naive blending strategy keeps the hand region
unchanged during diffusion, it often produces border artifacts
on non-uniform backgrounds. Fine-tuning ControlNet for body
outpainting reduces these issues but does not fully eliminate
them, as the model may still expand hands beyond the masked
region, add extra fingers, or introduce incorrect textures for
complex hand shapes. To address irregularities around the
mask border, we propose to gradually dilate the input hand
mask for T iterations, where 71" is the number of diffusion
steps. We then use the dilated masks for blending, m,tent
in (8), starting from the largest and arriving at the original at
step 7. At the same time, the denoising UNet of the body
outpainter receives a precise hand mask at every iteration
of the diffusion process. This approach ensures that possible
distortions around the hand region are replaced with latent
pixels from the uniform background of the initial canvas, while
subsequent diffusion steps harmonize and blend the replaced
region with the rest of the latent. Using progressively smaller
masks for each next diffusion step allows to wash out the
border of the expanded region and avoid visible edge artifacts.
The last two diffusion iterations are performed on the full
latent without masking, further unifying both regions to ensure
smooth transitions, consistent color distribution, and realistic
shadows.

In Blended Latent Diffusion [48] progressive mask shrink-
ing was employed to enable text-guided image editing in a
thin masked region. However, our mask expansion approach
solves a conceptually different task of harmonious blending
of two regions of the latent representation with no constraints
on the size of the inpainted region. In our case, the diffused
region typically spans most of the image, and we are forcing it

Ty = Miatent © Te + (1 - mlatent) © x¢.
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Fig. 3. Examples generated by our proposed approach (right of each image pair) from the corresponding input pose (left of each image pair). The bottom

row shows common failure cases.

to envelop the generated hands in a coherent and artifact-free
way by progressively expanding the mask.

After the diffusion process is completed, the denoised
latents are mapped back to the pixel space using the decoder
I. = D(&). We then blend the resulting image with the input
hand region using the initial mask m, following the naive
strategy from (8). This allows us to reintroduce sharpness to
the hands that might have been reduced during the unmasked
diffusion steps with no detrimental effects on the blending
consistency.

IV. EXPERIMENTS AND RESULTS
A. Datasets

A combination of InterHand2.6M [10], Re:InterHand [11]
and HaGRID [49] datasets are used for training the hand
generator. The datasets are combined to ensure overall sample
quality and diversity. InterHand2.6M is restricted to a studio
environment with distinct lighting and a limited number of
participants, whereas Re:InterHand provides synthetic 3D ren-
ders of real images. HaGRID is the most diverse of the three
datasets as it was captured “in the wild”, but it includes images
of varying quality and only bounding boxes as annotation.
We also curate a partition of the YouTube-ASL [18] dataset,
a large-scale open-domain American Sign Language dataset,
that we use for model testing. It consists of 2000 video frames
that include two-handed signs across a variety of poses and
signer appearances, sampled from 50 different videos.

Both InterHand2.6M and Re:InterHand provide precise
hand keypoints and for HaGRID and YouTube-ASL keypoints
are extracted using the Mediapipe holistic model [50]. The
hand segmentation masks for InterHand2.6M and HaGRID are
obtained with SAM ViT-H [51] by using keypoints as queries
for the model. Masks extracted with SAM often include
checkerboard artifacts and discontinuities on the edges, so we

process them with a 5 x 5 dilation kernel to mitigate this
issue. We also use the LLaVA-v1.5-7b [52] model to produce
image captions for HaGRID and YouTube-ASL. Sequence-
level captions for InterHand2.6M and Re:InterHand are cre-
ated manually to include gender, skin tone and details of the
hand appearance.

To train the hand generator, we crop the square hand regions
from the original images and resize them to the resolution
512 x 512 to accommodate the pre-trained SD architecture.
For cases where hands are interacting and their bounding
boxes intersect, both hands are included in the same crop.
Otherwise, one hand is cropped at random during training.
We apply RGB value shifting and random brightness and
contrast changes to augment the training samples. The total
training dataset size for the hand generator is close to 200, 000
samples, where around 60,000 are randomly sampled from
InterHand2.6M, 60, 000 from Re:InterHand and 80,000 from
the training subset of HaGRID, keeping the original gesture
distribution.

We utilize LAION-Human (from HumanSD [4]) to con-
struct the dataset for training the outpainting model. Similarly
to how we process HaGRID, the keypoints are extracted with
Mediapipe and the hand segmentation masks are obtained with
SAM ViT-H. We use text prompts from LLaVA-v1.5-7b as
ground-truth instead of the original ones provided by LAION-
Human due to their noisiness. We extract 36,000 images,
excluding ones with multiple people in the frame and those
with hand segmentation masks smaller than 2500 pixels.

B. Implementation Details

The hand generator is initialized from the official SD v1.5
checkpoint and further tuned for 5 epochs (around 30, 000 it-
erations) on the combination of InterHand2.6M, Re:InterHand
and HaGRID, as described in Section I'V-A. The segmentation
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Fig. 4. Visualization of 192-dimensional (left) and 768-dimensional (right)
InceptionV3 features.

mask loss weight A from (6) is set to 0.05. The model is
trained on a single Nvidia A100 GPU with batch size 32
and learning rate 1e~> over 14 hours. The ControlNet model
for the body outpainting stage is initialized from the official
Openpose-pretrained checkpoint. LoORA of rank 8 is initialized
on top of the “to_k”, “to_q", “to_v” and “to_out.0” modules
of the ControlNet attention layers, while the rest of the
model’s weights are kept frozen. It is trained for 5 hours
on a single Nvidia RTX3090 GPU with batch size 16 on
our filtered version of LAION-Human. We use the masked
L2 reconstruction loss to train the LoRA layers for body
outpainting.

C. Evaluation Metrics

To evaluate the performance of the proposed approach,
we measure three aspects of the generation: pose accuracy,
including isolated evaluation of the hand poses, text-image
consistency, and image quality. Pose accuracy is measured by
Distance-based Average Precision (DAP) [53] and Mean Per
Joint Position Error (MPJPE), calculated between the ground
truth keypoints and the ones predicted by Mediapipe from the
generated images.

Fréchet Inception Distance (FID) [54] and Kernel Inception
Distance (KID) [55] are well established metrics that show
the overall quality of the synthesis by comparing the distri-
butions of Inception [56] features extracted from ground-truth
and generated images. As this work aims to improve hand
generation in diffusion models, we are particularly interested
in the quality of hand structure and patters associated with
fingers. The 2048-dimensional features of the final pooling
layer, typically used for the FID/KID evaluation, are designed
to represent high-level visual information and may not capture
the subtle characteristics of human hands. Alternative layers
for FID computation have also been explored in the literature
[57, 58]. Motivated by this, we use 192-dimensional features
from an intermediate Inception layer for our evaluation, as
they are more sensitive to changes in fine image details due
to their spatial extent. This adaptation allows for a more
relevant evaluation of the model performance in generating
high-quality hands, which is central to the objectives of this
paper. A visual comparison between the features of dimensions
192 and 768 is shown in Fig. 4.

Finally, we use the CLIP [26] similarity score (CLIPSIM)
to measure consistency between the input text prompt and
generated images by projecting both into a shared latent space
and calculating the distance between the embeddings.

D. Results

The proposed approach is compared to recent state-of-the-
art diffusion-based models, namely SD [!], HandRefiner [9],
HumanSD [4], StablePose [2], T2I-Adapter [3] and Con-
trolNet [5]. Following the HandRefiner evaluation setting,
we randomly sample 12,000 images from the HaGRID test
set, keeping the original gesture distribution, and use them
for comparison. The quantitative results are summarized in
Table I.

We report DAP and MPJPE across all 133 keypoints of
the full body (17 for body, 68 for face, 21 for each hand,
6 for feet), as well as separately for 42 hand keypoints.
The superiority of the proposed approach is demonstrated
by significant improvements over the baselines in both pose
precision and image quality metrics. It is worth noting that
SD and HandRefiner do not allow for pose conditioning
and only base the generation on the text prompt, which
provides extremely weak guidance for the pose, resulting in
0.0 DAP. Similarly, our experiments with StablePose revealed
significant challenges in generating coherent hand anatomy
across samples. As a result, Mediapipe did not detect any hand
keypoints in most cases, leading to DAP values close to zero
for the hands.

Initial experiments measuring image quality on HaGRID
showed poor performance despite excellent qualitative results.
After investigation, it became apparent that that dataset suffers
from severe background clutter. In the same way the Inception
features, used for FID and KID computation, are sensitive
to hand structure, they are also sensitive to clutter in the
background. To reduce noise in the evaluation metrics, we
segment the background out using SAM to ensure a fair
and targeted evaluation of human generation quality. “FID
fg” and “KID fg” in Table I report the results on images
with the background removed. In this human-centric setting,
the proposed approach outperforms the baselines with a 37%
improvement. Similarly, our model shows higher results in
text-to-image consistency.

Although HaGRID offers a diverse set of human appear-
ances, sizes and camera placements, it concentrates on primar-
ily one-handed gestures. To evaluate the model’s performance
on more challenging two-handed poses that include hand
interactions and occlusions, we use a subset of YouTube-
ASL, as described in Section IV-A. The evaluation procedure
follows the one described for HaGRID. It is worth noting
that YouTube-ASL does not suffer from background clutter, so
we report the image quality metrics on full images. Table II
summarizes the quantitative results of the evaluation, which
are consistent with those for HaGRID. Our proposed model
outperforms the baselines in both pose accuracy and image
quality by a substantial margin.

To measure the model’s quality objectively, we conducted
a user evaluation. The participants were presented with 20
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samples from our test set, where each sample consisted of
a reference pose and 5 generated images from HumanSD
[4], StablePose [2], T2I-Adapter [3], ControlNet [5] and our
proposed model correspondingly. The samples were randomly
selected to uniformly cover a set of 10 gestures from Ha-
GRID, skipping trivial and similar gestures. We asked the
participants to rank (from best to worst) each image for both
pose reproduction accuracy and the overall image quality. The
questions were created to cover two crucial aspects of human
image generation and align with our quantitative evaluation
procedure. We collected the responses from 30 subjects and
these are summarized in Fig. 5 where we show the mean rank
for each model along with their standard deviations. The data
indicates that our proposed model has the highest average rank
across both questions. This aligns well with the quantitative
results shown in the tables. Furthermore, our model was ranked
first in pose precision in 92% of cases and achieved top
ranking in visual quality in 64% of cases. ControlNet was
ranked first in pose precision in 5% of cases, and T2I-Adapter
in 1.5% of cases. Interestingly, despite the fact that StablePose
is second to our model quality-wise in the user study, it has
the worst quality in the table.

E. Ablation Study

1) Multi-task Training Objective: In addition to serving a
practical purpose during the body outpainting stage, predict-
ing segmentation masks along with hand generation can be
beneficial for the model’s training dynamics. We investigate
the effect of adding the mask prediction component to the
training loss of the hand generator by training the model on a
combination of InterHand2.6M and Re:InterHand, while using
HaGRID for validation. The total size of the training dataset
for this study is around 110,000 samples. We train the hand
generator model for 5 epochs and evaluate the metrics for 360
images of the validation dataset every 2,000 iterations. We
measure FID and KID to capture changes in image quality
and DAP to track pose precision improvements throughout
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Fig. 5. User evaluation results - mean rank of each model across all the
responses with standard deviations.

Fig. 6. Comparison of the generated hands on early steps of training without
(middle) and with (right) the segmentation mask loss component.

the training. Differently from the main evaluation procedure,
FID and KID are calculated using the Inception features of
dimension 768. This is because hands occupy most of the
frame during the hand generator training, and features closer
to the end of the Inception network better capture the global
structure of the image unlike previously used features of
dimension 192 that concentrate more on local details.

We conduct training without the mask loss, and with two
mask loss weights of 0.01 and 0.1 correspondingly. Fig. 7
shows the smoothed plots of the metrics throughout train-
ing. As can be seen from FID and KID values, adding a
segmentation objective to the training with the weight 0.01
helps the model to converge quicker and achieves better
image quality. The higher weight of 0.1 is also beneficial
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Fig. 7. Image quality (top, middle) and pose accuracy (bottom) evaluation
results throughout the training of the hand generator. Blue graphs describe
training without the segmentation mask loss, red graphs describe the training
with the mask weight 0.1 and green - with 0.01.
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TABLE I
QUANTITATIVE EVALUATION RESULTS ON HAGRID DATASET.

Pose Accuracy Image Quality
Method DAP 1+ DAP hands ¥ MPJPE | MPJPE hands | | CLIPSIM 1| FID fg | KID fg |
Stable Diffusion [1] 0.00 0.00 0.381 0.469 32.94 2.40 1.28 4+ 0.30
HandRefiner [9] 0.00 0.00 0.380 0.466 32.95 2.33 1.17 £ 0.28
T2I-Adapter [3] 0.06 0.11 0.179 0.216 33.09 2.39 1.29 £+ 0.27
StablePose [2] 0.19 0.001 0.178 0.407 33.09 3.67 291 + 044
HumanSD [4] 0.31 0.04 0.121 0.236 32.80 2.82 1.58 + 0.29
ControlNet [5] 0.59 0.39 0.094 0.135 32.86 2.34 1.46 + 0.34
Ours 0.76319+  0.74g9%+  0.051,659 0.088359, 34.55 1.47379, 0.61 +0.048

TABLE II
QUANTITATIVE EVALUATION RESULTS ON YOUTUBE-ASL DATASET.

Pose Accuracy Image Quality
Method DAP 1+ DAP hands + MPJPE | MPJPE hands | | CLIPSIM 1| FID | KID |
Stable Diffusion [1] 0.00 0.00 0.440 0.622 31.44 32.20 27.57 + 0.96
HandRefiner [9] 0.00 0.00 0.442 0.628 31.46 33.96 29.85 £+ 1.05
T2I-Adapter [3] 0.01 0.02 0.248 0.326 32.13 23.67 21.80 + 0.92
StablePose [2] 0.13 0.01 0.149 0.219 32.28 44.26 5291 £ 1.75
HumanSD [4] 0.11 0.01 0.180 0.307 31.79 24.55 23.46 + 0.94
ControlNet [5] 0.58 0.38 0.110 0.093 32.29 23.62 23.92 + 1.01

for performance, compared to the base reconstruction loss.
However, the performance increase is smaller as stronger
gradients from the auxiliary objective might interfere with
the main learning task. This is supported by the DAP values
following a similar pattern with the weight 0.01 leading to the
best results and having superior training dynamics. We noticed
that the mask loss component helps the model to learn a more
cohesive structure of the palm during the early steps of the
training, as the examples in Fig. 6 show. This may be due to
the fact that the input hand keypoint heatmap is sparse in the
palm region and the segmentation mask provides an additional
spatial context to the model. These results indicate that using a
multi-task objective during training improves the performance
of the hand generator.

2) Blending with Sequential Mask Expansion: It is crucial
to employ a reliable blending strategy to combine the results
of the hand generator and body outpainter in a harmonious
and coherent way. To demonstrate the efficiency of the se-
quential mask expansion strategy, proposed in Section III-D,
we compare it to two alternative approaches: (1) bounding box
blending and (2) naive blending. (1) defines the area outside
the square hand region on the canvas as the outpainting region,
whereas (2) creates the outpainting mask by simply inverting
the segmentation mask predicted by the hand generator. In
all three cases, the last two steps of the diffusion process
are performed with a full mask to smoothen the transitions
between the regions. To compare the blending approaches,
we randomly sample 500 images from the HaGRID test
set, following the original gesture distribution, and measure
FID, DAP and MPJPE between the generated images and the

originals. It can be seen from Fig. 8 that all three strategies
are able to blend the hand and the body coherently. However,
(1) does not fully remove the bounding box region and causes
discolouration around the hands. Additionally, it corrupts the
head and the face, if hands are located in close proximity,
and leads to “boxy” artifacts in the background. At the same
time, (2) tends to produce anomalies on the border of the hand
region that include erroneous extensions of the hands, hand-
held objects and hallucinated textures. The proposed blending
strategy allows us to preserve the area around the hand and
eliminate artifacts on the border of the outpainted region. The
numerical evaluation results in Table III further demonstrate

Fig. 8. Qualitative comparison of three blending methods: bounding box
(left), naive (middle) and sequential mask expansion (right).
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TABLE III
ABLATION ON THE BLENDING STRATEGY.

Method H FID | DAP 1T MPJPE |
Bounding Box blending 1646 049 0.087
Naive blending 13.03  0.58 0.062
Sequential Mask Expansion || 12.13  0.59 0.057

Fig. 9. Examples of generated images from a downscaled input pose by 20%,
40%, 60%, 80% from left to right.

TABLE IV
COMPARISON OF FULL MODEL FINE-TUNING AND LORA.

Pose Accuracy
Method DAP DAP(h) MPJPE MPJPE(h)
Pelykh et al. [16]| 0.66 0.71 0.102 0.067
Ours 0.65 0.7 0.103 0.069
Image Quality
Method FID fg KID fg CLIPSIM
Pelykh et al. [16]| 16.19 12.51 +0.46 334
Ours 1494 10.41+0.48 32.95

the sequential mask expansion mechanism outperforming the
alternatives in terms of both quality and pose precision metrics.

3) Low-Rank Adaptation for Body Outpainting: By updat-
ing only the additional low-rank matrices while freezing the
original model, LoRA significantly reduces memory consump-
tion and computational overhead compared to full model fine-
tuning. The LoRA that we train on top of a ControlNet for the
body outpainting stage constitutes around 0.2% of the total
number of model parameters. This results in a larger batch
size and faster back-propagation, leading to a 5x decrease
in training time. Table IV shows a quantitative comparison on
YouTube-ASL between the ControlNet fine-tuning proposed in
[16] and LoRA. It can be seen that LoRA produces comparable
results in pose accuracy, while resulting in increased image
quality. This is most likely due to the fact that LoORA improves
the model’s resilience against overfitting on a small dataset and

10

TABLE V
QUANTITATIVE ANALYSIS OF COMPUTATIONAL EFFICIENCY.

Method | Inference Time (sec/iter.) | Memory (Mb)
SD [1] 2.0 2050
ControlNet [5] 2.65 2800
Ours 9.7 8700

better preserves its original generalization capabilities.

V. LIMITATIONS AND CONCLUSIONS

In this work, we presented a novel approach to human
image generation that addresses the issue of low-quality
hand synthesis and lack of control over the resulting pose.
The experimental evaluations on HaGRID and YouTube-ASL
datasets showed the increased performance of our approach
in terms of both pose precision and image quality, compared
to a number of state-of-the-art diffusion-based human image
generation models.

Although the proposed method produces impressive visual
results, it carries certain limitations, as shown in the bottom
row of Fig. 3. The presented approach concentrates on cases
where the hands occupy a substantial area in the frame. This
is because the spatial dimensions 64 x 64 of the SD latent
space may be insufficient to accommodate the fine details of
small hand masks during the outpainting step. To investigate
the quality decrease for small-hand regions, we progressively
shrink the input pose for a number of test samples from 20 to
80 percent. The qualitative results are shown in Fig. 9. It can
be observed that the hand quality decreases and the number of
artifacts around the hand area increases for smaller poses. The
quality drop is especially evident for the poses, downscaled by
more than 40 percent.

Also, because of the two-stage generation process, there can
be a visible difference in skin tone and/or lighting between the
hands and the rest of the body. This is due to the outpainting
model sometimes being incapable of matching the tone of the
hands precisely. Furthermore, since we derive the conditioning
for the hand generator only from hand keypoints, it occasion-
ally produces a forearm that does not connect plausibly with
the rest of the arm. We leave enhancing the synchronization
between the two stages of the generation process to future
works. In addition, the two-stage process results in slower
inference and higher GPU memory requirements, comparing
to SD, as separate models are queried at each stage. We
present a quantitative comparison of the inference time and
memory consumption between our model, SD and ControlNet
in Table V. The measurements were performed on a single
Nvidia RTX3090 with no performance optimization tech-
niques applied. Finally, even though the proposed sequential
mask expansion reduces the number of blending artifacts, they
are still possible around the area of the hand, especially for
complex hand shapes or hand-to-face interactions.
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