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Abstract— We propose HandOcc, a novel framework for
hand rendering based upon occupancy. Popular rendering
methods such as NeRF are often combined with parametric
meshes to provide deformable hand models. However, in doing
so, such approaches present a trade-off between the fidelity
of the mesh and the complexity and dimensionality of the
parametric model. The simplicity of parametric mesh structures
is appealing, but the underlying issue is that it binds methods
to mesh initialization, making it unable to generalize to objects
where a parametric model does not exist. It also means
that estimation is tied to mesh resolution and the accuracy
of mesh fitting. This paper presents a pipeline for meshless
3D rendering, which we apply to the hands. By providing
only a 3D skeleton, the desired appearance is extracted via
a convolutional model. We do this by exploiting a NeRF
renderer conditioned upon an occupancy-based representation.
The approach uses the hand occupancy to resolve hand-
to-hand interactions further improving results, allowing fast
rendering, and excellent hand appearance transfer. On the
benchmark INTERHAND2.6M dataset, we achieved state-of-the-
art results.

I. INTRODUCTION

As one of the most expressive parts of the human body, the
hands play a crucial role in communication, interaction, and
manipulation tasks, which drives the necessity for accurate
and versatile hand estimation. Hand pose estimation, as well
as hand synthesis and rendering, is important to many areas,
including: human-computer interaction, avatar generation,
sign language production, and augmented or virtual reality
applications such as teleoperation or telepresence.

There has been a significant body of work devoted to
3D hand pose estimation over the years. The most promi-
nent works are often monocular, exploiting image convolu-
tion, e.g., [32, 42, 43, 48]. However, leveraging advances
in technology, particularly GPU acceleration, enables us to
achieve volumetric hand reconstruction alongside 3D render-
ing for novel view synthesis.

Most existing methods employ sparse 3D skeletal hand
estimation, and for hand rendering they exploit mesh-based
parametric representations such as MANO [41]. MANO
parameterizes a 3D hand with a set of angles and shape
coefficients that incorporate forward kinematics and generate
a realistic hand mesh. It allows for the efficient estimation
of the 3D volume of the hand, and the corresponding hand
mesh can be used for rendering. These properties, alongside
a differentiable implementation, have made MANO a popular
and widely used hand model.

Traditional hand-rendering methods often rely on texture
maps and a colored mesh, where the hand geometry is con-
trolled by a kinematic model, examples of such approaches

were demonstrated in [10, 12, 50]. Nevertheless, such meth-
ods have drawbacks. For instance, relying on meshes can lead
to mesh artifacts, limits on fidelity/detail, costly generation of
personalized texture maps, and challenges in handling self-
occlusions and intersections.

Recently, the neural radiance field (NeRF) [31] has gained
a lot interest due to its ability to represent the volume density
and color space as a continuous function. Despite their
recent popularity and speed, NeRFs are still attractive as they
demonstrate excellent generalization to novel-view synthesis.
This is due to their use of a continuous function. While the
original proposal for NeRF was for static scenes, a lot of
work has since explored extensions capable of integrating
dynamics into the NeRF model.

A. Related Work

The articulation of the human body, especially hands,
presents numerous challenges for neural rendering, particu-
larly when generalizing across complex shapes and motions.
Some of the first approaches to adapting NeRF to a dynamic
scene were D-NeRF [40] by Pumarola et al. and Nerfies [35]
by Park et al. Both methods are similar in the way they
introduce a deformation field (e.g., MLP network) that learns
the transformation from a target scene to canonical space,
and a canonical NeRF model that predicts colors and density.
The authors argue that a two-model approach that introduces
a transformation from observation to canonical space is better
than direct estimation and helps in generalization. However,
this technique also imposes additional constraints on models
to learn information about the shared geometry between
the canonical and observation space, and the corresponding
appearance.

To achieve better reconstruction and thus rendering for
a human body, parametric models have gained popularity.
They allow integration of human geometry (e.g., kinematics)
into a neural model and can achieve more accurate and
faster optimization. We can divide them into two main types
of human body parameterization: implicit or mesh-based
representations.

The vital advantage of an implicit parameterization is that
it can be represented with a continuous and differentiable
function. Examples are the signed distance field (SDF)
used in [1, 2, 20, 34, 45], occupancy maps [30], implicit
surfaces, point clouds, and transformation fields [46]. For
faster convergence and better accuracy, the implicit models
are normally conditioned with input data such as sparse
points (e.g., skeletons) or mesh parameters. The imGHUM
approach [1] of Alldieck et al. utilizes skeleton points from
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the human body to condition the SDF. Similarly, Karun-
ratanakul et al. in HALO [19] exploit the hand skeleton to
condition an occupancy network. The NASA model [9] by
Deng et al. presents a neural pose-conditioned occupancy
approach based on a mesh, where high-quality surface details
are learned using per-bone deformable transformation. The
PTF [46] of Wang et al. extends NASA’s approach to learn-
ing occupancy functions in the continuous rest-pose space by
exploiting piece-wise transformation fields. Although NASA
uses SMPL [28] mesh parameters as initialization, the PTF
tries to robustly fit a mesh to the predicted point cloud.

Mesh representations for the human body are extremely
popular due to their differentiability, simplicity, and com-
pactness. They have been proposed for body (SMPL), hands
(MANO [41]), faces (FLAME [27]), and even animals [54].
One of the main advantages of a mesh-based model is that it
provides a volumetric shape that exhibits aspects of realism.
The SMPL model is often utilized in body capture from im-
ages (e.g., [25, 36]), and MANO in various hand estimation
problems (e.g., [4, 53]). However, the main problems with
meshes are their coarse structure and low resolution, which
are especially evident when it comes to mesh rendering. One
way to mitigate these issues involves increasing the number
of faces to provide high-fidelity meshes [7, 29], at the cost of
increasing computational complexity. PHRIT [14] combines
the advantages of a MANO mesh and implicit SDF to
obtain a high-fidelity reconstruction at infinite resolution but
lacks real-time inference. Other techniques addressed the UV
texture map of the mesh to improve hand color/texture [6],
or exploit graph convolution neural networks to obtain richer
information about the hand surface [10].

Implicit models tend to take longer to converge, and
most of the current implementations try to combine both
(implicit and mesh) representations to exploit their advan-
tages. Moreover, with the continuous property of the NeRF
that enables learning of density and color, hand-rendering
methods provide accurate results with real-time efficiency.
One of the first approaches to integrate NeRF for 3D hand
rendering was LISA [8] of Corona et al. LISA exploited
MANO parameters together with local bone coordinates
to predict per-bone signed distance and color. The signed
distances contribute to the final volume densities that allow
rendering. However, due to the complexity of the mesh, the
method struggles to perform in real-time.

HandNerf [11] by Guo et al. presents a framework for
3D hand rendering utilizing NeRF. It uses a deformation
field to transform the input scene into a canonical space.
Additionally, HandNerf exploits a MANO mesh to query
the closest facet for a 3D point, which is used to predict
texture colors. Similarly, LiveHand [33] by Mudra et al.
uses mesh textures along with the distance to the mesh
surface as an input to a NeRF to estimate hand density and
color. Both LiveHand and HandNerf exploit rendered MANO
mesh depth to provide an extra loss and awareness to the
NeRF model, along with the ray bounds determined by a
3D hand mesh volume. The Hand Avatar [7] of Chen et al.
provides a high-resolution MANO-HD mesh with more faces

and vertices. Their method proposes a shading field, where
anchors are used on the mesh to extract albedo information
of the hand poses. Similarly, HARP [18] explicitly model a
parametric mesh-based hand with a normal map and albedo
to tackle lightning conditions and articulation.

The hand appearance was mainly tackled by an implicit
function that learns hand texture from multi-view images [8,
11]. LiveHand embeds hand textures on the MANO UV
texture map, while HandAvatar and HARP exploit the albedo
and normal map from a MANO mesh. Handy [38] utilizes a
GAN model to generate high-fidelity UV hand mesh textures.
In contrast, our work employs a separate Convolutional
Variational Autoencoder (CVAE) to explicitly extract latent
hand texture features directly from the desired image. These
extracted features are then used to condition the rendering
model, allowing for more control and flexibility.

B. Motivation and Novelties

We propose a framework for novel pose and novel view
high-fidelity hand rendering. Despite recent advancements in
NeRF and rendering via Gaussian splatting, hand rendering
remains an unsolved problem due to numerous challenges
(e.g., high motion, finger interactions, etc.). The current state-
of-the-art approaches rely heavily on the MANO mesh
model, which introduces significant limitations: if the mesh
is poor, the rendering quality suffers as well. Additionally,
obtaining accurate hand meshes is inherently challenging
and often imprecise, requiring rendering and fitting to multi-
view data. These meshes are restricted by low resolution and
coarse surface detail, which can lead to rendering artifacts.

To avoid reliance on a parametric mesh model like
MANO, we instead leverage an implicit shape representation
by probabilistically modeling the occupancy of the hand.
This paper also serves as a proof of concept, demon-
strating that an implicit model without mesh information
achieves state-of-the-art performance. To the best of our
knowledge, we are the first to render a dynamic hand using
a pose-conditioned NeRF without relying on an underlying
MANO model. The main input to our model is as simple as
a sparse 3D hand skeleton, which is easier to obtain than a
volumetric mesh (using a basic triangulation).

Furthermore, we remove the fundamental necessity for a
parametric structure, which limits the application of current
approaches to objects or body parts for which such models
are unavailable. Many existing methods rely heavily on
explicit mesh textures, thus restricting their applicability to
areas where models exist. By adopting an implicit shape rep-
resentation, we avoid these constraints and open oportunties
for more flexible, extendable, and accurate modeling.

We evaluate our model on the benchmark INTER-
HAND2.6M dataset [32], achieving state-of-the-art results.
Additionally, by bypassing meshes, we propose a number of
novelties and advantages that include:

1) Utilizing an occupancy map to facilitate efficient hier-
archical sampling of a hand surface for NeRF rays.

2) Conditioning the NeRF with CNN embeddings to
provide improved hand appearance and shape transfer.
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Fig. 1: This figure demonstrates an overview of the proposed approach. Samples are drawn from the occupancy network
which is conditioned on the skeletal input. The occupancy model returns per-point probabilities and features of the surface
points. The surface points go through a deformation layer that canonicalizes the hand input. Afterwards, per-point occupancy
encodings are then given to the NeRF (MLP) along with appearance embeddings. The NeRF renders an RGB image with
corresponding features. The final CNN layer upsamples and refines the NeRF output.

3) Tackling interacting hands by modeling occupancies
that prevent hand intersection.

4) Efficient and fast rendering, where the hand geometry
implicit to occupancy map is learned via a NeRF
on a downscaled image, while exploiting a CNN for
accurate image upsampling.

II. METHODOLOGY

The overview of the proposed pipeline is demonstrated
in Fig. 1. The ultimate goal is an accurate 3D rendering
of an articulated hand from a single view. We achieve
this using a pre-trained occupancy network, a sparse 3D
skeleton, and a NeRF renderer. Additionally, we exploit
appearance embeddings extracted with an image model, and
an upsampling CNN that improves NeRF output.

In the following sections, we discuss each part of the
pipeline in turn. First, we cover the point cloud extraction
and representation of the hand occupancy model. Next, we
present hand appearance and shape transfer using a CVAE
model. After that, we outline volumetric hand rendering with
NeRF and the efficient hierarchical sampling of the hand
surface. We also discuss the importance of the deformation
model and canonical representation. Finally, we describe an
upsampling CNN model that increases the rendered image
quality.

A. Point Cloud Extraction

The first step in our pipeline is to extract dense point
clouds from multi-view hand data to train an occupancy
network. We assume N camera views with known calibration
parameters P . Given an approximate 3D hand bounding
box, we generate a uniformly distributed point cloud and
use projection matrices P to find the corresponding 2D
projections of the 3D points.

Assuming color consistency of the hand pixels among
images, we filter the points to identify those that correspond
to the hand. To support this assumption, we normalize images
for luminance, brightness, color, contrast, etc. This normal-
ization ensures minimal color discrepancy across authentic
hand projections. We can test this by calculating the standard
deviation over N views for each point, with low variance
indicating true hand projections.

While this filters hand points, background points with
consistent colors may remain. We re-project all 3D points
back into the 2D images and check their location with 2D
binary hand masks to further filter incorrect points.

B. Hand Occupancy Representation

Given the dense point clouds for each hand, the next
step is to train an occupancy network. The aim is to learn
an approximate hand shape by conditioning the occupancy
network with a sparse hand skeleton.

The occupancy network provides an implicit hand repre-
sentation, where for each 3D point, it returns the probability
of whether a point belongs to the hand. If x ∈ R3 is an
arbitrary 3D point, S ∈ Rn×3 a sparse hand skeleton of
n points, then occupancy network O can be viewed as a
probability function such that O : R3 × Rn×3 → [0, 1].

We canonicalize the occupancy model to align with the
same 3D space centered at the origin. Let s0 be the first
point in the matrix S and the root joint of a hand (e.g., wrist).
The normalized hand skeleton S̃ = S−1ns

T
0 conditions the

occupancy map. Note that s̃0 is at the origin, i.e., s̃0 = 0.
Moreover, we represent a left hand as a flipped right hand
by mirroring points along the x-axis.

It is crucial to efficiently exploit the occupancy network
in the case of interacting hands, especially to determine the
probability of intersection. SR and SL denote sets of points
for the right and left hand, respectively. P is a matrix of



Fig. 2: This figure demonstrates the results of the CVAE
model. The first column shows input images IAHi

and IBHj

of two different hands from different people. The second
column shows the same hand skeleton HX

k rasterized on an
RGB image. The output of the model is the last column,
showing synthetically generated images IAHk

, IBHk
. These

images closely resemble the input persons identity in terms
of shared features, albeit with different skeleton shape.

K 3D points spanning both hands, and t = sL0 − sR0 is
the offset between the hands. The equation to determine the
occupancy probability for the right hand is O(Pi − sR0 , S̃R)
for all indices i ∈ {1, . . . ,K} of matrix P. For the left hand,
the input points P must not only be shifted but also flipped
and translated by the hand offset to preserve the original
relation of the left to right hands. Let f be a function that
flips input points by multiplying the x-axis by -1. Then the
occupancy map for the left hand of the same 3D point set
P is:

O(f(Pi − sL0 ), f(S̃L)) (1)

The probabilities can serve as labels and strong indicators
of which specific hand the points belong to, potentially
determining a possible hand-to-hand intersection. Crucially,
the occupancy probabilities help set the boundaries of the
hand and allow for the extraction of hand surfaces, which
will be discussed in the following sections.

C. Hand Appearance and Shape Transfer

Although the occupancy network is trained on point clouds
derived from multi-view data, in practice, only a single image
is provided as input. Therefore, the hand parameters such
as shape and appearance (skin color, wrinkles, gender, hair,
nails, etc.) have to be extracted from a single image.

Many approaches parameterize the shape of the hand with
MANO which exploits principal component analysis (PCA)
to model hand shape. As is common in the literature [23,
26, 53], mesh parameters are estimated from input images by
supervising network training using ground truth mesh param-
eters. However, since we assume no mesh parameterization
in the proposed pipeline, we demonstrate a new, alternative
approach that extracts both shape and appearance from the
images. Moreover, it is also suitable for hand shape and
appearance transfer.

First, let H ∈ Rn×2 be a 2D hand skeleton found by
projecting the 3D hand skeleton S, using known projection

parameters P and I is an RGB image of a hand. The objective
is to learn a function ϕ capable of transforming a hand
skeleton H and image I into a latent vector representing
the hand composition. This composition should capture both
the skeletal structure of the hand H and its appearance in
the image I.

For this task, we exploit a convolutional variational au-
toencoder (CVAE) [22], because they are efficient generative
models capable of accurately encoding the input into a
latent representation that follows a Gaussian distribution.
The CVAE aims to take the hand skeleton H and an
image of a hand I, then compress that information into a
lower dimensionality latent space with sufficient detail that
a decoder can reconstruct an image of a hand with the same
appearance I and skeleton H.

Let the function ϕ be the CVAE encoder, where the
function ψ decodes the latent vector of ϕ to an RGB image.
Then for any person X and for any hand pair (i, j):

ϕ(HX
i , I

X
Hi

) = ϕ(HX
i , I

X
Hj

) ∧ ψ
(
ϕ(HX

i , I
X
Hj

)
)
= IXHi

(2)

Where, HX
i is i-th hand skeleton of the X-th person, and

IXHj
is an image of the Hj hand of the X-th person. In

other words, the latent space for the same hand skeleton
and images of the same person are equal. For two different
identities A and B, the goal of the CVAE is to be able to
produce the following:

ψ
(
ϕ(HA

i , I
B
Hj

)
)
= IBHi

(3)

Which is a hand image generated of person B with a hand
skeleton of person A. The CVAE is forced to disentangle
the skeleton pose from the hand appearance of the image.
Consequently, by providing different people in the training
set, the CVAE can generalize over various shapes and
appearances.

Since each person has a different distribution of hand
skeletons, in practice, Eq. (3) cannot be used directly, be-
cause such images may not exist. Therefore, the CVAE ne-
cessitates input from the same individual, as specified in Eq.
(2). The associated losses for training serve to enforce consis-
tency within a single person’s latent space. They comprise the
image loss of the CVAE decoder, and the Kullback-Leibler
divergence [17]. Examples are demonstrated in Fig. 2.

D. Hand Rendering

The standard NeRF architecture processes a 5-dimensional
input, consisting of 3D point coordinates, x, paired with
viewing direction, d (represented as a 3-dimensional vector).
It then estimates volume density σ(x) alongside the RGB
color vector C(r). Leveraging multiple views, NeRF casts
rays r = o+ td from pixel coordinates using camera param-
eters P , where o denotes the camera origin. Subsequently, it
samples these rays within predefined bounds t ∈ [tmin, tmax].
The predicted colors are accumulated from the colors and
volume densities along the corresponding camera rays.

C(r) =

∫ tmax

tmin

T (t)σ
(
r(t)

)
c
(
r(t),d

)
dt (4)



T (t) = exp

(
−
∫ tmax

tmin

σ
(
r(s)

)
ds

)
(5)

Where, the T (t) function corresponds to the accumulated
transmittance along the ray, and c is a color function of the
ray and viewing direction. In the literature, the continuous
NeRF function is implemented via an MLP. In practice,
the integral is approximated by weighing the discrete point
samples along the ray. To mitigate the dependency on the
fixed ray bounds, hierarchical volume sampling is performed
based on a coarse density estimate.

We build our framework around the concept of NeRF’s
rendering approach, however, we adapt it to the articulated
hand problem. Hand motion is governed by a skeletal struc-
ture, while appearance and shape are determined by CVAE
image embeddings A ∈ Rn. Directly encoding a skeleton
vector and 3D coordinates into a NeRF MLP is inefficient
and results in poor conditioning, as the skeletal embeddings
lack volumetric information, are sparse, and lead to poor
generalization (e.g., see also [11]). Therefore, we leverage a
pre-trained occupancy decoder features F ∈ Rm, where the
input 3D points have already been processed via a skeleton
occupancy embedding. These features encapsulate spatial
information and the relationship to the 3D skeleton, serving
as input to the NeRF.

Furthermore, the occupancy, combined with per-point
features, yields probabilities P that we employ as density
cues to expedite NeRF convergence. This is particularly
beneficial for interacting hands, where probabilities facilitate
the identification of specific hands by selecting the maximum
probability.

Refining the NeRF output via a CNN model is one
of our objectives, and several studies (e.g., [11, 33]) en-
forced NeRF to produce additional d-dimensional features
fN ∈ Rd alongside RGB colors and volume density. This
approach is adopted because simple RGB channels lack
high-dimensional information regarding volumetric shape
and details, which are crucial for the post-processing CNN
model. Consequently, we incorporate this strategy into our
framework as well. Ultimately, NeRF can be conceptualized
as a function g such that it takes appearance, occupancy
features and probabilities, and returns color, density, and
volumetric features:

g : (F ,A,P) → (c, σ, fN ) (6)

In the original NeRF formulation, the authors randomly
sample rays from images. However, such a strategy restricts
us to an RGB loss (e.g., mean squared error, MSE) on
the predicted and ground truth pixel colors. To integrate a
perceptual image loss that is superior in capturing detailed
features (e.g., LPIPS [49]) we use all image rays to fully
render an image. Nevertheless, loading all rays is very
computationally expensive. Therefore, for efficiency reasons,
we prune rays with zero occupancy probability. This allows
us to perform batching over the images without a significant
memory demand.

E. Hand Bounds

In the vanilla NeRF, the ray sampling bounds are set
by user-defined nearest and farthest distances that span the
object. The “coarse” NeRF model uses uniformly sampled
points along rays, and a “fine” model then provides hierar-
chical sampling.

For dynamic hands, using fixed bounds is inefficient
because they must be large enough to span over all hand
articulation, and to span the whole object’s volume, many
samples are required. Therefore, we exploit the probabilistic
occupancy network to establish constraints and sample points
in close proximity to the hand surface. We define the
origin of the ray intersecting the hand surface based on an
occupancy probability threshold pmin (e.g., 0.1). The upper
bound of the ray can be determined by the point of max-
imum occupancy saturation (i.e., pmax, close to probability
1.0), a predefined minimum distance (e.g., 1-2 cm), or, as
implemented in our approach, a combination of both. The
estimated hand surface is essentially the closest point on a
ray to the camera that has an occupancy probability equal
to a pre-defined threshold. Figure 1 depicts the hand surface
represented by blue points.

F. Occupancy Hierarchical Sampling

The probabilities returned by the occupancy network can
be interpreted as densities in a NeRF model. However, these
occupancy probabilities are not reliable enough to directly
replace the NeRF density field, as doing so would lead to de-
graded rendering quality. Instead, we leverage the occupancy
field to incorporate additional sample points from regions
with the highest probabilities by employing hierarchical
sampling [31]. This procedure mirrors the original proposal
by the NeRF authors, which involved a fusion of “coarse”
and “fine” models. However, by sampling directly from the
hand surface and augmenting it with points of the highest
probabilities, we circumvent the need for a “fine” model.

G. Deformation Model

To improve generalization and accelerate training, we inte-
grated a deformation model that transforms an observed hand
pose into a canonical one. This assists NeRF in optimizing
a single canonical pose, rather than various hand poses,
thereby reducing complexity. We base our deformation only
on skeletons. Firstly, we determine the per-bone rotations
and translations between the canonical and observed sparse
skeletons. Then, we segment a hand point cloud based
on proximity to the underlying skeleton edges and trans-
form the points using corresponding per-bone rotations and
translations. Unlike other methods that utilize MLP-based
deformation for enhancement or prediction, our approach
does not require a deformation neural network. The per-bone
rigid transformations are precise, and any artifacts resulting
from the segmentation are either negligible or mitigated by
filtering the point cloud through the occupancy network.



H. CNN Upsampling

As is often mentioned, NeRF can be slow to train and
takes a long time to fully converge. Even with the proposed
efficient sampling, the time to render a full-resolution image
takes significant computational time. Since NeRFs are capa-
ble of accurately representing volumetric geometry and high
rendering quality, these properties can be exploited at a much
lower image resolution. Moreover, upscaling CNN models
have shown excellent capability in restoring and refining
down-scaled images. Therefore, we enhance rendering speed
by training a NeRF on low-resolution hand geometry and
subsequently reconstructing the full-size image using a CNN.
This process involves providing a provisional RGB image
along with additional feature channels fN .

III. EXPERIMENTS

We primarily focus our evaluation on the publicly available
INTERHAND2.6M benchmark dataset. It is one of the largest
hand datasets containing 2.6 million images captured with
140 cameras of 26 unique people. The dataset is commonly
used to evaluate 3D hand estimation and rendering.

A. Implementation Details and Reproducibility

To extract hand point clouds from multi-view images, we
combined hand masks and color consistency to filter out out-
liers. The images are normalized with histogram equalization
and converted to the HSV format. Since ground truth point
clouds are unavailable, visual verification on a random subset
of hands confirms their high realism. For our occupancy
network, we leverage a PointNet encoder [5] to condition
it with the sparse 3D input skeleton data. The decoder
utilizes conditional batch normalization with ResNet [13]
blocks to convolve the input 3D points, incorporating the
embedded skeleton from the encoder, and transforming the
points into logits. The intersection over union accuracy of
our occupancy network is 80% on the validation set. Such
performance demonstrates high overlap with the ground truth
hand occupancy, enabling reliable shape reconstruction.

For the CVAE model, we used a CNN with residual blocks
to downsample and upsample the images. The latent space
estimated by the encoder is further reduced by PCA. The
loss for the CVAE combines LPIPS, L1 and KL Divergence.
For the NeRF, we use 8 uniformly distributed point samples
along the ray and another 8 points from hierarchical occu-
pancy sampling. The NeRF has a width of 256-512 hidden
units for the MLP, with a depth of 8 layers. The CNN
upscaling model is SRResNet [24] and has a scale factor
of 2. The model is trained end-to-end using a combined
LPIPS (0.4) and L1 (0.6) loss on the images. All models
were trained until convergence using an Adam optimizer [21]
with an NVIDIA GeForce RTX 3090 GPU. At inference, our
unoptimized model renders at 7fps in comparison to a simple
mesh render at 58fps.

B. Affine Image Transform

Using the original downscaled image in NeRF is inefficient,

TABLE I: Comparison of rendering quality on INTER-
HAND2.6M. The symbol ∗ indicates that the method was
the version implemented in the LiveHand paper [33].

PSNR ↑ LPIPS (x1000) ↓ ↑
Mesh wrapping 28.28 49.44
SMPLpix [39] 32.37 26.57
A-NeRF∗ [44] 28.07 94.41
LISA∗ [8] 29.36 78.46
LiveHand [33] 32.04 25.73
Ours 32.38 27.92

as it often contains a large amount of empty background,
with the hand occupying only a small portion of the space.
Using the approximate 2D bounds of the hand (found from
a 2D skeleton), we crop the original image into a fixed
bounding box via an affine transform T ∈ R3×3.

During training, we introduce a random scale or transla-
tional shift to the affine transform T. Such an augmentation
casts new rays, providing subpixel precision. It helps the
NeRF to generalize and provides new observations rather
than overfitting to the same rays every time. To preserve
the original image coordinates, we update the corresponding
intrinsic matrix. The high-resolution bounding box images
are used to train the super-resolution CNN model. To restore
the original image, the transform T−1 is applied to the
cropped image.

C. Quantitative evaluation

Table I compares our method against the state-of-the-
art approaches. The evaluation protocol follows the in-
structions outlined in the LiveHand description [33]. We
outperform other approaches except for the LPIPS metric.
This is because the ground truth images are masked with
the MANO mesh, and since our method does not utilize
mesh information, the LPIPS metric becomes sensitive to
the overall hand shape.

We followed the evaluation guidelines in HandNeRF [11]
and evaluated model performance trained with 4, 7, and 10
views on 18 different test views. The results of the experi-
ments are shown in Table II. We outperform the state-of-the-
art except for the SSIM metric, where we are comparable.

By applying the training and evaluation protocol from the
HandAvatar [7] method, the comparison results on different
splits of the INTERHAND2.6Mdataset are presented in Ta-
ble III. On most metrics, our approach is either better or
comparable to the state-of-the-art.

The results on HanCo [51, 52] are shown in Table IV.
We used the HandAvatar code and trained the method on
all images of persons 26 and 29 without hand-to-object
interactions. The dataset is very challenging and has a lot
of illumination changes, hence, the perceptual accuracy is
rather low. However, our method outperforms the HandA-
vatar method on the PSNR and is marginally behind on
LPIPS and SSIM metrics.

For a fair evaluation, the main input to our rendering
model is a 3D skeleton provided in the dataset, as the
competitors use the ground truth MANO mesh parameters.
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Fig. 3: Comparison of single hand rendering to LiveHnad [33] and HandAvatar [7] methods.
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Fig. 4: Comparison of interacting hands with Animatable-NeRF [37], NeuMan [16], and HandNeRF [11]. Each pair of
images shows two different views of the same pose. The first row applies NeRF to a novel view, while the second row
applies it to a novel pose. The competitor images are sourced from the HandNeRF.
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Fig. 5: Figure (a) shows: ground truth, output from the NeRF, output from the upscaling CNN. Figure (b) demonstrates
appearance transfer of the same hand pose to different identities.



TABLE II: Comparison of rendering results on single and interacting hands. The columns represent models trained on 4,
7, and 10 views, respectively, and tested on 18 views. The symbol ∗ denotes models implemented by HandNeRF [11]. The
symbol × indicates that the model failed to converge.

4 views 7 views 10 views
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Single hand
Pose-NeRF∗ [3] 27.085 0.935 0.092 29.264 0.930 0.070 29.212 0.939 0.073
Ani-NeRF∗ [37] 30.260 0.958 0.070 31.642 0.963 0.058 31.778 0.968 0.062
NeuMan∗ [16] 30.342 0.959 0.069 31.236 0.962 0.057 31.841 0.970 0.055
HandNeRF [11] 31.049 0.965 0.058 31.855 0.969 0.045 32.703 0.974 0.037
Ours 31.958 0.962 0.043 32.741 0.965 0.039 33.090 0.967 0.038

Interacting hands
Pose-NeRF∗ [3] 25.019 0.874 0.187 27.241 0.901 0.138 27.646 0.916 0.107
Ani-NeRF∗ [37] 28.032 0.941 0.086 28.854 0.944 0.084 29.357 0.949 0.079
NeuMan∗ [16] × × × × × × × × ×
HandNeRF [11] 29.035 0.955 0.084 30.069 0.962 0.081 30.757 0.956 0.072
Ours 29.746 0.931 0.079 30.706 0.938 0.071 30.836 0.939 0.070

TABLE III: Comparison of rendering quality on the HandAvatar [7] splits (first row) of the INTERHAND2.6M dataset. A
higher SSIM is better.

test/Capture0 test/Capture1 val/Capture0Method LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM
SelfRecon [15] 0.142 26.38 0.878 0.138 25.18 0.875 0.149 25.78 0.868
HumanNeRF [47] 0.114 27.64 0.883 0.117 26.31 0.880 0.119 27.80 0.881
HandAvatar [7] 0.103 28.23 0.894 0.107 26.56 0.890 0.106 28.04 0.890
Ours 0.107 28.33 0.895 0.117 26.62 0.886 0.112 28.23 0.891

TABLE IV: The comparison results on the HanCo [51, 52]
dataset.

PSNR ↑ LPIPS (x1000) ↓ SSIM ↑
HandAvatar [7] 18.712 16.231 0.844
Ours 19.181 16.320 0.842

The skeleton carries less information, specifically in de-
scribing hand volume, hence leaving our method with a
big disadvantage. However, despite this, the proposed model
still outperforms the competitors on many metrics, and only
marginally yields to the others. Additionally, we artificially
introduced small Gaussian noise to the input 3D skeleton
to simulate a network prediction; and we find that it has
negligible impact on the model’s accuracy.

D. Qualitative evaluation

Fig. 5 illustrates the effect of the upscaling CNN on the
NeRF output. Additionally, it demonstrates appearance trans-
fer between different identities by providing corresponding
CVAE embeddings to NeRF.

Qualitative comparisons of hand images rendered by the
proposed approach to the state-of-the-art are demonstrated in
Fig. 3 and Fig. 4. The figures show both the rendered hand
and the ground truth image for visual comparison. Here we
see excellent reproduction capability. There is some loss of
detail, especially around the nails, and some smoothing. But
on the whole, the results are visually very close to the natural
images.

E. Limitations

One of the limitations of our approach is a longer train-
ing time compared to hand parametric-based methods. The
reason for this is that the parametric model reduces the

problem’s dimensionality, allowing the model to converge
faster.

Additionally, extracting appearance and shape from a
single image is a challenging task. We use CVAE latent
embeddings that demonstrate good generalization, however,
it may not always be accurate due to the single-view ambi-
guity.

IV. CONCLUSIONS
We present a novel framework for 3D hand rendering that

exploits a NeRF renderer that generalizes across multiple
views and hand poses. The proposed method avoids the
hard constraint of initialization and/or a parametric mesh
model, widely adopted in the literature. Instead, we provide
a step-by-step pipeline starting from point cloud extraction,
and training of conditioned occupancy probabilities which
are then combined into a NeRF as an implicit shape model
to render 3D hands. The hand geometry is represented via
occupancy probabilities and features, while appearance and
shape are extracted and parametrized via a latent vector
extracted from the image via a CVAE. The proposed NeRF
conditioning combines these elements to efficiently render
novel poses and views. On the benchmark publicly avail-
able INTERHAND2.6M dataset, our method achieves state-
of-the-art accuracy.
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ETHICAL IMPACT STATEMENT

In this paper, we used two publicly available benchmark
hand datasets: InterHand2.6M [32] and HanCo [51, 52].
These datasets do not include any identifiable faces only
images of hands, 3D keypoints, MANO mesh parameters,
and segmentation masks. Additionally, the datasets are di-
verse in race and gender. We believe that using this data for
quantitative and qualitative evaluation carries minimal risk
of harm to participants originally captured in the datasets.
We strictly follow the dataset protocols that use numerical
identifiers to represent ground truth, maintaining privacy and
respecting participant anonymity.

We do not anticipate any negative societal impacts from
our research. The goal of this paper is solely to present
a more efficient rendering method, which we believe will
benefit research in computer vision. As with any artificial
intelligence tool, there is a potential risk of the model
being misused to blur the distinction between real and
AI-generated hands. However, our intention is quite the
opposite; by developing techniques for identity change using
CVAE embeddings, our work aims to support anonymization.
Moreover, in the provided visual figures, we demonstrate
performance across different races to avoid potential bias
or discrimination. This approach could reduce the need for
real data collection, substituting it with rendering techniques
that preserve privacy, which may help alleviate some of the
ethical concerns associated with biometric data usage.
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