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Abstract

3D human generation is an important problem with a wide range of applications in
computer vision and graphics. Despite recent progress in generative Al, such as diffu-
sion models or rendering methods like Neural Radiance Fields or Gaussian Splatting,
controlling the generation of accurate 3D humans from text prompts remains an open
challenge. Current methods struggle with fine detail, accurate rendering of hands and
faces, human realism, and controlability over appearance. The lack of diversity, realism,
and annotation in human image data also remains a challenge, hindering the develop-
ment of a foundational 3D human model. We present a weakly supervised pipeline that
attempts to address these challenges. In the first step, we generate a photorealistic hu-
man image dataset with controllable attributes such as appearance, race, gender, etc.,
using a state-of-the-art image diffusion model. Next, we propose an efficient mapping
approach from image features to 3D point clouds using a transformer-based architecture.
Finally, we close the loop by training a point-cloud diffusion model that is conditioned
on the same text prompts used to generate the original samples. We demonstrate orders-
of-magnitude speed-ups in 3D human generation compared to the state-of-the-art ap-
proaches, along with significantly improved text-prompt alignment, realism, and render-
ing quality. The code and data are available at https://github.com/ivashmak/
hugediff.git.

1 Introduction

3D human modeling, including reconstruction, rendering, and generation, plays an increas-
ingly vital role in modern computer vision, supporting applications in augmented/virtual
reality, human-computer interaction, gaming, and telepresence. Recent advances in the field,
alongside increased computational power, have enabled the creation of photorealistic avatars.
However, the field still faces many challenges, including model generalization, data diversity
and privacy (e.g., person appearance), clothing variability, method performance, etc.
Efficient generative 3D human models can greatly benefit the field by enabling appear-
ance transfer, which helps preserve anonymity and increase diversity. However, such a gener-
ative model requires large-scale and diverse datasets, which remain a major challenge. Most
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real-world human datasets are constrained by privacy concerns, financial limitations, com-
mercial restrictions, small sample sizes, or demographic biases (limited to the population of
the country where the dataset was collected). In turn, the lack of data can severely affect
the ability of the models to generalize. To mitigate this issue, recent works [73, 86] have
begun generating synthetic data or combining existing datasets. However, the realism of
such synthetic data is inherently limited by the quality of the generative models. Although
early works [57, 78] often produced artifacts and lacked realism, modern diffusion mod-
els [33, 51] have made significant progress toward generating photorealistic images. In the
literature [53], authors propose collecting samples from public repositories (e.g., YouTube),
but the ethical implications of this approach are questionable due to uncertain permissions.

Many existing methods for 3D human reconstruction from a single image rely on SMPL-
X UV maps [73, 80, 86]. However, this is suboptimal for several reasons. First, the XYZ-to-
UV mapping is typically neither one-to-one nor unique due to discontinuities and distortions
that arise when unwrapping a 3D model onto a 2D plane. As a result, this process can cause
repetitions in the mapping, where multiple 3D vertices may correspond to the same UV co-
ordinate. Second, it requires prior access to UV maps, which restricts its applicability in
real-world scenarios where such mappings are unavailable. In contrast, we propose a uni-
versal and straightforward approach to map image features directly to 3D structure without
relying on predefined UV coordinates. Compared to related work [53, 81], our method is
more general and easier to apply.

Our approach directly addresses key challenges such as data scarcity, generalization, di-
versity, and reconstruction. We introduce a weakly supervised pipeline that integrates data
generation, 3D reconstruction, rendering, and generative modeling. The process starts by
producing diverse single-view human images from different camera angles using an off-
the-shelf diffusion model. We then reconstruct 3D human representations by lifting im-
age features from arbitrary viewpoints and assigning them to a 3D point cloud using an
attention-based mechanism. Finally, we complete the human appearance and close the loop
by generating 3D human parameters through a guided diffusion model conditioned on textual
prompts.

By leveraging diffusion models for initial data generation, we gain explicit control over
diversity in human appearance, including variations in clothing, race, gender, etc., which
benefits the training of a generative 3D human model. In parallel, we introduce efficient
architectures for the 3D reconstruction (uplift) stage and point-cloud noise prediction within
the diffusion process. Our contributions are summarized as follows:

1. A diverse, high-resolution, photorealistic, Al-generated dataset with corresponding
3D human reconstructions.

2. Anefficient and universal UV-free transformer-based reconstruction method that maps
image features to 3D point clouds.

3. A guided point-cloud diffusion sampler conditioned on text prompts for human ren-
dering via Gaussian Splatting.

2 Related Work

Most 3D human models are explicitly represented as meshes (e.g., [19, 37, 43, 53, 60, 73,
81, 86] etc.), which provides fast training and inference. The most widely used mesh rep-
resentation is SMPL(-X) [40, 47]. Implicit human representations [50, 61, 70], which use
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continuous functions (e.g., signed distance fields), are less common due to their high com-
putational cost and slower inference. However, they are more flexible, template-free, and
capable of capturing fine-grained details.

Defining a suitable human model is crucial for 3D reconstruction from images, as it
provides strong priors that simplify the task. Several methods [73, 80, 86] leverage priors
from the SMPL-X framework by mapping UV coordinates to 3D mesh vertices. A common
approach involves extracting image features using a pretrained model (e.g., Sapiens [27]),
projecting them into UV space, and uplifting the UV features to 3D meshes via the pre-
defined mapping. Other approaches, such as LHM [53] and GTA [81], utilize transformer-
based architectures. For instance, LHM adopts a multimodal transformer [11] tailored for
human heads, while GTA leverages a triplane representation. Point-E [45] of Nichol et al.
proposes an alternative method which combines CLIP [54] embeddings for integrating text
prompts and image features.

Supervision in reconstruction models often involves rendering the 3D output and com-
puting losses against ground-truth images. Earlier works [25, 48] used mesh-based render-
ing, which is fast but limited by mesh resolution. NeRF-based methods [59, 62, 66] model
continuous color and density fields, providing strong generalization and high fidelity. Al-
though they are computationally expensive and slow to train and run, even with faster vari-
ants [2, 6, 12, 67, 71]. The recently proposed 3D Gaussian Splatting (3DGS) [26] introduces
a discrete set of Gaussian primitives, enabling real-time rendering while achieving quality
comparable to or better than NeRF-like approaches.

Training data for 3D human models typically include multi-view images to resolve single-
view ambiguities. Some of the largest multi-view human datasets include MVHuman-
Net [69], THuman [63, 75, 83], Human3.6M [24], and ActorsHQ [23]. However, limited
diversity and control in human appearance have led to a growing interest in generating syn-
thetic datasets or augmenting real ones. For example, IDOL [86] of Zhuang et al. proposes
human image generation, and Champ [85] augments the data to simulate multiple views us-
ing generative models conditioned on single-view images and meshes. SIGMAN [73] and
LHM [53] combine various public real-world and synthetic datasets to improve generaliza-
tion.

An obvious solution is to approach 3D human generation from a text prompt as a two-
stage process [3, 3, 22, 31, 32, 36, 38, 74], where multi-view images are generated first by
Stable Diffusion [57] or ControlNet [78], and then a 3D model is fitted to them. However,
since many approaches build on older diffusion models, these methods lack realism and can
take too long to generate. Methods such as [1, 18, 73, 80] generate 3D humans in a zero-shot
manner, but they lack appearance control. The SMPLitex [4] has both appearance control
and instant generation from text, but generates only UV texture maps. Gong et al. in [15]
and Fu et al. in [14] struggle to render detailed hands and faces. Human3Diffusion [72] and
PSHuman [35] provide only an image-conditioned 3D human generation framework.

3 Methodology

Our pipeline is illustrated in Fig. 1 and consists of several key stages. First, we generate a
dataset of diverse humans and perform an initial reconstruction by fitting the SMPL-X pa-
rameters to each image. Next, we train an efficient transformer-based reconstruction model
that estimates the 3DGS parameters, anchored to the canonical SMPL-X mesh, using Sapi-
ens features extracted from the image. Finally, we train a text-conditioned guided diffusion
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Figuré 1: Overview of the proposed pipeline. The left side shows the data generation part,
the middle part is the 3DGS reconstruction from image features. The right side highlights
the text-conditioned diffusion model.

¥ ssoj afew

process on 3DGS parameters that learns the human appearance distribution. We describe
each component in detail below.

3.1 Dataset generation

We employ the FLUX diffusion model [33] to generate approximately 10,000 diverse human
images, conditioned on text prompts describing attributes such as race, gender, hair color, and
clothing. Compared to alternatives like SDXL [51] or ControlNet [78], FLUX produced the
most photorealistic and prompt-aligned results. Each generated image is segmented using
SAM-2 [55] to remove the background, and then processed with Sapiens [27] to extract
image features. We estimate initial SMPL-X parameters using ExPose [8], and refine hand
poses with HaMeR [49]. Since ExPose reconstructions are often misaligned, we initialize
our Gaussian splatting model with the coarse mesh and jointly optimize SMPL-X and 3DGS
parameters by minimizing rendering loss with respect to the original image. Fitting 3DGS
to a single image is highly under-constrained, so we regularize the process by setting all
opacities to one and aligning rotations perpendicular to surface normals. This enables fast
and stable optimization.

3.2 Single Image Reconstruction

After obtaining reliable SMPL-X parameters, our next step is to create a generalizable model
that reconstructs a 3D human from a single image in terms of 3DGS parameters. For image
I, the human reconstruction is represented by SMPL-X pose vector ¢, shape vector B, facial
expressions ¥, and set of Gaussian primitives G = {og, rt, Sk, 0k, ¢ | k=1,...,N} of N
points anchored to SMPL-X model 6. The 3DGS parameters (o,r,s,¢,8,¢) are attached
to canonical point set Xy = 9(¢0, [30, I[IO) e RN*3 and correspond to opacities, rotations,
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anisotropic scales, colors, and offsets to the canonical pose coordinates (Xg), respectively.

To reduce the complexity of estimating this high-dimensional parameter space from a
single image, we make the following assumptions. First, the exact human articulation (¢)
and facial expressions (Y) are less critical for our task than accurate appearance modeling.
Off-the-shelf estimators, such as ExPose or OSX [37] and HaMeR for hands, can already
estimate an approximate human articulation from a single image. Second, since all points
lie on the mesh surface, we assume, without loss of generality, that they are non-transparent
(ox = 1), as transparency would introduce holes in the mesh. Furthermore, placing rotations
perpendicular to the mesh normals implies better alignment with surface geometry, spatial
consistency, and higher robustness to various articulations. Finally, the formalized problem
is the following:

H(I)N(g’¢7ﬁ"l,)~({sk7 ‘ska ck}>B)> (1

We leverage a pre-trained foundation Sapiens model for image processing that has a
large human prior and good generalization. The Sapiens model returns image features F
as the spatial grid H' x W’ with C channels from the input image I of H x W x 3. The
next step is to map the M = (H' - W') feature cells to the N mesh points, which is a non-
trivial problem that requires assigning 2D image-based information to a 3D space. Previous
work has approached this problem using the UV template SMPL-X mapping [73, 86], which
determines the correspondence of the 2D UV coordinates to the 3D model using standard
graphics techniques. However, taking inspiration from template-free methods [53, 81], we
train an efficient transformer-based model to map image features to the point cloud. To pre-
serve high-frequency details and maintain efficiency, we design a lightweight cross-attention
module between canonical points and image features. The query is a canonical set of points
(Xo) and keys with values are image features (F). We add a linear projection / along with
positional encoding to match the same dimensionality (d) of key (K) and query (Q) and
reshape the tensors to allow multi-head attention (4 — number of heads). The value (V) of
cross-attention is image features split among 4 heads:

Q — lPE(XO) c RNXIIXIXd; K — lPE(F) c RIXhXMXd; V — Spllt(F,h) c RIXhXMX% (2)

The attention weights are computed by applying a softmax to the multiplication of the query
and the key matrices. Afterwards, the per-point features (Fy) are computed as follows:

FX — softmax(QKT)V c [RNxhxldelxhxdxMRlxthx% N RNxhxlx% N RNXCL (3)

In our derivation, we assume broadcasting of tensors for dimension value “1” (similarly
to PyTorch [46]). Additionally, the transpose operator (') is applied only to the last two
dimensions.

The spatial dimensions of the feature grid (H',W’) (last output of the ViT [10] en-
coder) normally do not exceed 64 x 64, and the number of feature channels are 2048 in
the largest Sapiens model. The main computational bottleneck arises from the number of
points N, which significantly increases the processing cost. As a result, the final complexity
is O(N hM max(d, %)) The number of points N is a scalable parameter that influences the
quality of the reconstruction, but it must be handled with care to manage the computational
demands. To address this, we introduce an upsampling module that enables the mapping of
image features to the anchor set of mesh points, and further enhances the output fidelity with
a denser point cloud.
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Analogously to the assignment of image features to a point cloud, we design a point
upsampling mechanism based on cross-attention. Let X{, € R™*3 be the subsampled point
set (e, n <N),and K € {1,... ,n}NXk be a matrix of k nearest neighbor indices of Xy to
X{. The upsampling transformer takes the full point cloud Xy as a query, a subsampled
point cloud indexed with a neighbors matrix as keys, and associated features as values. The
multihead cross-attention is then defined as:

FXO + softmax (lpE (Xo)lpE (X6 [K])T) FX(’) [K} @

Connections among neighboring points in graph-structured point clouds are essential for
local feature propagation and to add high-frequency detail. The graph-convolutional methods
like GCN [29] or GAT [64] improve the local context within neighborhoods. However, these
approaches yielded limited improvement in experiments. Consequently, we designed a self-
attention module for point clouds, where the keys incorporate both feature embeddings and
relative positional distances to neighboring points. Let K’ be the neighbors indices of X to
itself (X), then features are updated as follows:

Fx < softmax (ZPE(FX) (ZPE(FX [K/]) + lPE(XO — Xo[K/]))T) Fx [K/] (®)]

For Fy € RV*/>1xd the operator [...] means indexing tensor with indices K, e.g., Fx[K] €
RNxhxkxd “The point set X indicates expanded embeddings of the point cloud X to the shape
(Nxhx1xd).

3DGS Regression. The 3DGS parameters are estimated in the final layers of our model.
After upsampled point features are refined via the self-attention module, we apply a set of
linear layers to regress the colors, scales, and displacements relative to the canonical mesh.
Each output is constrained to a pre-defined range to limit and regularize 3DGS, e.g., prevent
excessively large scales or displacements. For finer structures, such as the head and hands,
we apply stricter constraints due to their smaller spatial extent. To enforce those constraints,
we use a sigmoid for RGB colors and sinusoidal normalization for scales and displacements.
For displacements and scales, we found that sigmoid can suffer from vanishing gradients,
leading

Multi-view Regularization. Estimating a full human appearance from a single-view or
partial observation is inherently ambiguous, as many plausible reconstructions exist. With-
out sufficient regularization and constraints, neural models tend to eventually overfit to the
training data. In the context of a 3D human appearance from a single image, we observe
that after a few training epochs, the model starts mirroring the front-facing appearance to the
back. For example, resulting in artifacts such as “Janus faces”, i.e., a face appearing on both
the front and back of the head. To mitigate this, prior works (e.g., [30, 86]) leverage off-
the-shelf generative models conditioned on the input view to obtain multi-view supervision.
In contrast, we eliminate reliance on the external frameworks by implicitly utilizing a hu-
man 3D prior. Specifically, we train a separate text-conditioned reconstruction model by
only replacing the image features F with text-prompt encodings. Although this model tends
to generate an “average’; human appearance, it is capable of hallucinating high-detail tex-
tures. We render its output from four canonical views (front, back, left, right) and use these
renderings as multi-view supervision for regularizing the feature-based model.

Shape Model. The SMPL-X shape coefficients B are predicted using an MLP that takes
both spatial and averaged features. In particular, the feature matrix F is first averaged along
height and width dimensions, and then separately averaged along the channel dimension (C).
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Method Time (minutes) || Method Time (minutes)
HumanGaussian [38] 68.79 || DreamWaltz-G [21, 22] 201.95
TADA [36] 191.74 || DreamAuvatar [3] 350.50
GaussianDreamer [74] 11.66 || SMPLitex [4] 0.29
EVA3d* [18] 0.16 || StructLDM* [20] 0.10
GSM* [1] 0.12 || Ours 0.31

Table 1: Time comparison for one sample generation. The methods denoted with * do not
have control over appearance.

The resulting features are concatenated and flattened into a single vector. This provides the
model with both spatially-aware and globally-aggregated information, enabling it to estimate
an approximate human body shape. For text-guided models, the shape is predicted directly
from the text encoding.

3.3 Gaussian Splatting Diffusion

The final stage of our pipeline generates 3D human parameters from the same text prompts
used to guide the image diffusion model. The diffusion model introduces greater stochastic-
ity and variety into appearance generation than its deterministic text-conditioned reconstruc-
tion counterpart. We adopt diffusion models for this task, as they have demonstrated state-of-
the-art performance in generative modeling [9, 17], outperforming earlier approaches such
as VAEs [28] and GANs [16].

Most approaches employ latent diffusion models [56] to accelerate training and infer-
ence. For instance, methods [7, 34, 77, 84] encode point clouds via point-based models such
as PointNet(++) [5, 52], PointTransformer [82], DGCNN [65], PointConv [68], etc., and the
noise predictor is typically a U-Net [58]. The trade-off for denoising the latent space is a
potential quality reduction in generation, because of error accumulation within the encoder-
decoder and diffusion process. To ensure the best quality generation, we apply our diffusion
model to the 3DGS parameters, i.e., scales, displacements, and colors, estimated from the
previous steps of the pipeline. The U-Net 1D works on sequence data, which requires re-
ordering of the point cloud. With a human point cloud derived from the SMPL-X mesh, there
is no reordering to sort points consecutively. Therefore, we make the following changes.
Firstly, we replace “Conv1D” with a lightweight MLP that learns weights to combine the
k— nearest neighbor features of a point. Secondly, we replace “Conv1D” downsampling and
“Upsample” layers with multi-head attention on the nearest neighbors, the same as in the
reconstruction model.

4 Experiments

Implementation Details. The original SMPL-X mesh contains around 10,475 mesh ver-
tices. However, such a low resolution leads to poor rendering and a lack of detail when used
for a Gaussian splatting framework. Consequently, we densified the mesh to 84,317 points
by recursively splitting edges and faces if the length or area exceeds pre-defined thresholds.
This allowed the 3DGS fitting to reach almost 30 PSNR on reconstruction in less than a
minute on NVIDIA GeForce RTX 3090.

We trained our models with the AdamW [41] optimizer. For the training of the 3D
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Method Le Chat Gemini Grok Claude Copilot

Aln./Aes. | Aln./Aes. | Aln./Aes. | Aln./Aes. | Aln./Aes.
TADA [36] 77.7/168.3 | 62.7/46.7 | 49.0/38.7 | 82.7/76.1 | 81.9/75.9
HumanGaussian [38] 85.3/75.7 | 76.0/62.3 | 76.3/67.0 | 83.7/75.8 | 86.0/72.7
DreamAvatar [3] 73.3/70.0 | 61.0/38.7 | 59.3/38.7 | 83.0/81.1 | 85.0/68.7
GaussianDreamer [74] 82.7/68.7 | 49.7/43.7 | 35.3/42.3 | 65.0/79.3 | 84.3/77.2
DreamWaltz-G [21, 22] | 86.3/78.7 | 58.7/63.0 | 60.3/70.0 | 62.0/78.0 | 72.3/76.3
SMPLitex [4] 58.6/72.0 | 32.7/11.3 | 21.7/32.0 | 47.3/71.7 | 66.7/59.4
Ours 89.3/91.0 | 83.3/74.7 | 93.0/85.5 | 95.0/85.0 | 88.3/82.6

Table 2: Comparison evaluation of rendered images in terms of text-prompt alignment
(“Aln.”) and image aesthetics (“Aes.”) using large language models.

Method Google Gemini preference ranking (%)
Ist 2nd 3rd
TADA [36] 0.00 £ 0.00 0.00 £ 0.00 0.00 £ 0.00
HumanGaussian [38] 0.00 £ 0.00 222+ 3.14 9333+ 544
DreamAuvatar [3] 0.00 + 0.00 444 + 3.14 0.00 + 0.00
GaussianDreamer [74] 0.00 £ 0.00 222+ 3.14 222+ 3.14
DreamWaltz-G [21, 22] 11.11 £ 15.71 80.00 £ 18.86 444 £+ 3.14
SMPLitex [4] 0.00 £ 0.00 0.00 £ 0.00 0.00 £ 0.00
Ours 88.89 + 15.71 11.11 £ 15.71 0.00 £ 0.00

Table 3: Ranked preferences of rendered human appearances as judged by Google Gemini.
Results are reported as mean =+ standard deviation over three runs.

reconstruction model, we utilize LPIPS [79] (0.15), L1 (1.0), and SSIM (0.25) losses. For
the diffusion model, we used the “pred_x0" objective, number of timestamps 1000, and the
L2 loss.

The time comparison is shown in Table 1. Our method outperforms the text-conditioned
state-of-the-art models (sometimes by orders of magnitude) in terms of time to generate
and render a human. Text-conditioned methods such as HumanGaussian [38], DreamWaltz-
G [22] or DreamAvatar [3] first generate training images, then fit a 3DGS to them, and
then render (e.g., Instant-NGP [44] or NeRF [42]). With the exception of SMPLitex [4], no
other text-guided model in the competitors list renders a 3D human directly. The methods
that unconditionally generate humans have a comparative speed, but they cannot align the
generation with the text prompt.

Evaluation. We quantitatively evaluate 3D human generation in Table 2, focusing on
prompt alignment and image aesthetics (including realism). CLIP-based metrics [54] are
commonly used to measure consistency between text prompts and generated images [38].
However, we found CLIP scores to be unreliable due to factors such as resolution differences
and variations in human articulation. Large language models (LLMs), in contrast, do not
necessarily rely on CLIP, and many can directly evaluate images and text.

We rendered 15 images per method; however, the high computational cost of some ap-
proaches makes large-scale quantitative evaluation impractical. Our method achieved the
best results in image aesthetics and text prompt alignment, outperforming state-of-the-art
methods by a high margin, as evaluated by all five language models. In our evaluation,
we excluded some relevant works (SIGMAN [73], Text2Avatar [15], DreamHuman [31],
and [32]) as the code is not publicly available.
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Figure 2: Comparison of rendered images generated with text prompt conditioning.

From our previous evaluation, we found Google Gemini to be the most reliable LLM for
judgment. Consequently, we used Gemini to rank the rendered results based on aesthetic
quality. The outcomes are reported in Table 3, where our method was ranked first in nearly
89% of cases and second in the remainder.

Fig. 2 shows a qualitative comparison with text-guided state-of-the-art methods. None of
the competitors match the prompt we provided. The reason for this could be that most of the
methods use Stable Diffusion (SD) [57] or ControlNet [78] internally to generate training
images, and they struggle with prompt guidance. Furthermore, the generated appearances
look rather cartoonish, human proportions are strange, and the hand quality is poor.

Fig. 3 illustrates a visual comparison to the state-of-the-art models that generate without
control of human appearance. The reason for this is that these methods were trained primarily
on real-world fashion datasets (e.g., SHHQ [13], DeepFashion [39], UBCFashion [76]) that
may have too diverse clothing to annotate with text. Furthermore, those datasets could con-
tain a bias towards female participants, because methods such as EVA3D [18] and GSM [1]
tend to generate women. In Fig. 3, we highlight the rendering artifacts that occurred on
hands, feet, and faces, where the state-of-the-art methods struggle the most. Our approach
has fewer rendering artifacts, and the rendering quality looks higher. Novel view render-
ing is visualized in Fig. 4, where the human appearance looks consistent across different
viewpoints.
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StructLDM EVA3D GSM
Figure 3: Comparison of rendered images generated unconditionally.

Figure 4: Examples of novel view rendering of a 3D human appearance generated via the
proposed diffusion model.

5 Conclusions

We presented a weakly supervised pipeline, where we first generate a photorealistic image
with an off-the-shelf diffusion model and extract initial reconstructions through 3D model
fitting. Next, we train the reconstruction model with efficient image features to learn the
mapping to 3D point cloud features. Our training pipeline is self-contained, requiring neither
external tools for multi-view augmentation nor predefined UV coordinates. Only image
features containing rich human priors are extracted by Sapiens to boost the generalization of
our model. The reconstructed 3DGS parameters from a single reconstruction are then used
in training a point-cloud text-conditioned diffusion model with classifier-free guidance.

With extensive qualitative and performance evaluation, we show that our method outper-
forms the current state-of-the-art approaches in 3D human generation in terms of rendered
quality, speed, and appearance control. Our images present high-fidelity textures, realistic
proportions, with improved hand and face quality.
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