Addressing Dimensional Scaling in Reinforcement Learning for
Symbolic Locomotion Policies through Leveraging Inductive Priors

Rogier Fransen, Richard Bowden and Simon Hadfield
Centre for Vision Speech and Signal Processing, University of Surrey, Guildford, Surrey, GU2 7XH, UK
{r .fransen, r.bowden, s. hadfield}@surrey .ac.uk

Abstract— We explore symbolic policy optimization for var-
ious legged locomotion challenges; specifically walker envi-
ronments ranging from bipedal to highly redundant systems
with 128 legs. These represent a broad range of action space
dimensionalities. We find that state-of-the-art symbolic policy
optimization approaches struggle to scale to these higher
dimensional problems, due to the need to iterate over action
dimensions, and their reliance on a neural network anchor
policy. We thus propose Fast Symbolic Policy (FSP) to accelerate
the training of symbolic locomotion policies. This approach
avoids the need to iterate over the action dimensions, and
does not require a pre-trained neural network anchor. We
also propose Dim-X, a method for effectively reducing the
action space dimensionality using the inductive priors of legged
locomotion. We demonstrate that FSP with Dim-X can learn
symbolic policies, with improved scaling performance compared
to the baselines, vastly exceeding that possible with previous
symbolic techniques. We further show that Dim-X on its own
can also be integrated into neural network policies to shorten
their training time and improve scaling performance.

I. INTRODUCTION

Modern deep Reinforcement Learning (RL) is most fre-
quently used for training neural network control policies.
However, some more recent works have shown how the same
RL frameworks can also be used for learning symbolic con-
trol policies [1], [2]. These symbolic policies are constructed
from a collection of symbolic mathematical expressions,
describing how to map observed input sates to output actions,
to achieve a particular goal. In practice, these expressions
are produced using sequence generation models with a token
library comprising the observation inputs as well as binary
and unary mathematical symbols (e.g. +, X,sin and exp).
These symbolic policies have a number of very attractive
properties compared to their neural network counterparts.
They are extremely computationally efficient at inference
time, and require no specialist hardware to run, making them
ideal for power-constrained or edge devices. They are also
highly transparent and interpretable, raising the possibility of
autonomous systems with provable safety bounds that can be
safety-certified.

The challenge with symbolic policies as opposed to neu-
ral network policies, is that mathematical expressions are
natively scalar constructs with a single output. For multi-
dimensional action spaces, numerous independent expres-
sions must be created without any exploitation of redundan-
cies. This means in practice that previous approaches to RL

This work was supported by the Engineering & Physical Sciences
Research Council under grant agreement EP/S035761/1

|a0|a1|a2|a3|a4|a5|a6|a7|a8|agla10|a11|a12|

x32

Symbolic Policy 7

Fig. 1: Effective locomotion in a highly redundant 32 legged
walker environment with a small symbolic policy

symbolic policy optimization can scale poorly to complex
or higher dimensional problems. This issue is exacerbated
by the fact that recent approaches require a neural network
anchor policy to be used to support the sequential symbolic
training of each action dimension [2]. In practice, this implies
that you must first solve the problem using traditional Deep
RL techniques (which may itself scale poorly) before you can
begin “upgrading” the resulting policy to a symbolic form.
Not only can this regime take orders of magnitude longer to
train, it also limits the breadth of possible applications, and
stifles the potential symbolic policies that may have been
generated.

In this paper, we explore RL symbolic policy optimization
specifically within the domain of learning legged locomo-
tion control policies. Due to the complexity of learning
the control policy, the majority of existing legged systems
contain a relatively small number of legs (i.e. bipedal or
quadrupedal), keeping the dimensionality of the action space
small. However, systems with larger numbers of legs have
many practical benefits, including greatly increased tolerance
to hardware failure, increased stability, and the ability to



surmount more complex obstacles. Unfortunately, the control
policies of these more capable multi-legged systems are
complex to learn as there are more independent control
circuits to derive. Even if these control circuits exhibit
significant phase-based correlations, the control circuits have
no mechanism to exploit this redundancy during training.

Therefore, in this paper we propose Fast Symbolic Policy
(FSP) and Dim-X, two complementary contributions to ad-
dress these challenges and enhance the training procedure.
FSP is a novel anchor-free RL symbolic policy optimization
framework for learning all action dimensions in a symbolic
policy simultaneously, and Dim-X is a novel method for
reducing the effective dimensionality of a locomotion action
space through leveraging the inductive priors of legged
locomotion.

In FSP, multiple related but non-redundant action di-
mensions are learned jointly through a multi-dimensional
sequence generator. This addresses the challenges with tra-
ditional sequential anchor-based training regimes. Dim-X
exploits locomotion-specific inductive biases to drastically
reduce the size and redundancy of the control policies needed
for systems with large numbers of legs, as can be seen in
Figure 1. We do this by sharing the expressions of a symbolic
control policy between the different legs, while enforcing
different phase offsets and observation input transformations
onto the policy based on the positions of the legs. This makes
it possible to exploit the cyclical nature of a traditional legged
gait, and the self-similarity in the behaviors between different
legs, while retaining the flexibility of a deep RL training
regime and the efficiency of a symbolic policy.

To fully clarify the separation between the different con-
tributions: If we imagine a hexapod robot with 6 legs, each
having 3 joints, a modern RL symbolic policy optimization
approach would first train an 18-dimensional neural network
anchor policy, followed by 18 loops of symbolic policy
learning. In contrast, FSP allows us to jointly learn symbolic
policies for the hip, knee, and ankle joints of a leg within a
single process. Concurrently, Dim-X provides a mechanism
for these 3 jointly-learned policies to be transformed and
deployed across all 6 of the robot’s legs. Thus only a single
3-dimensional training process must be completed to control
the robot.

Within this paper, we exhaustively test the various combi-
nations of our proposed contributions across both symbolic
and traditional deep-policy RL regimes. Specifically, we test
Dim-X alone for learning both neural network and symbolic
control policies, then we evaluate both FSP on its own and
FSP with Dim-X for learning symbolic policies. These tests
are carried out on 7 different walker environments, each with
a different number of legs, ranging from a walker with 2 legs
to one with 128 legs.

II. LITERATURE REVIEW

A. Symbolic Regression

Symbolic regression is the process of identifying mathe-
matical expressions that fit the observed output data from a

process or system. Early methods utilized evolutionary algo-
rithms [3], such as genetic programming [4], whereas modern
techniques leverage deep learning for symbolic regression.
Petersen et al. [1] propose such a framework. They use a
Recurrent Neural Network (RNN) to emit a distribution over
mathematical expressions and employ a novel risk-seeking
policy gradient to train the network to generate better-fitting
expressions. However, Landajuela et al. [5] demonstrate
that this framework can suffer from an early commitment
phenomenon and from initialization bias, both of which limit
exploration. They present two exploration methods to tackle
these issues, building upon ideas of entropy regularization
and distribution initialization. Furthermore, Mundhenk et al.
[6] build upon this and show that introducing a genetic
programming component into this framework can improve
the expression recovery rate.

Other frameworks utilize a transformer instead of an
RNN to generate the expressions, which shows performance
benefits in some metrics [7]-[9]. Additionally, some frame-
works leverage pre-trained models to learn solutions more
efficiently, such as Holt et al. [10] which use generative
models and Silva et al. [11] which use language models.
Neuro-symbolic approaches have also been explored, which
leverage the advantages of both neural and symbolic methods
[12]-[14].

B. Application to Control

RL has been extensively applied to the problem of learning
locomotion controllers for legged systems. These controllers
are most frequently in the form of a neural network [15]-
[17]. More recent works have proposed using symbolic
regression for control, including for the control of legged
systems [2], [18]. The main challenge with this is that
legged systems often have multidimensional action spaces,
which means that their symbolic policy will contain multiple
expressions. Existing symbolic regression methods can only
learn one expression at a time. Landajuela et al. [2] address
this by proposing an “anchoring” algorithm that distills pre-
trained neural network-based policies into fully symbolic
policies, one action dimension at a time. This has the clear
limitation that a neural network policy needs to have solved
the control problem first before a symbolic solution can be
learned. To address this, we propose FSP, a method which
enables multiple expressions to be sampled at once, which
are then jointly evaluated. This crucially avoids the need for
a neural network anchoring policy.

I1I. METHOD
A. Fast Symbolic Policy (FSP)

FSP is an RL approach which seeks to produce symbolic
policies 7 that map from observed input states s to output
actions a. As outlined in Figure 2, these policies take the
form of tokenized sequences, which can be interpreted as
mathematical control equations. An RNN policy generator
recurrently samples these tokens from a library of tokens
and jointly generates these control equations for each action
dimension. Then Dim-X transforms observed input states to
share the sampled policy between the different limbs.



i ESP Policy Generator Dim-X s=1[6,H,Lp !
E i = [T0sT1y e Th) i i 5 =0+ ¢i, H,L;, p] i
' 7(s) a
mo(50) ) a
¢, e, ue, P(7e) l m1(80) ay
. mo(51) as
. m1(51) = || as
W Tt Tt ' WO(§2) a4
3 P P P O ok
Ed Ed (G e
: l : 1(53 7

Fig. 2: Flow diagram of the FSP with Dim-X system. The
environment has 4 legs, with 2 joints each, therefore a € RS,
Dim-X is used to reduce the dim of the action space to 2
(i.e. one for each joint in a leg) meaning that the symbolic
policy contains 2 expressions, which are used 4 times to get
the actions for all the legs

The training of the policy generator proceeds by first
sampling a batch of such symbolic policies. Each policy
then interacts with an environment in parallel to gather their
respective rewards. The policy generator is then updated
to favor the generation of policies which succeeded in the
environment, and to avoid policies with low rewards. The
process is then repeated.

Policy Definition Within our FSP framework, a multi-
dimensional symbolic control policy is defined as a collection
of scalar expressions all using the same state input

7w(s) = [mo(s), m1(8), ..., mn(s)], (D

where n is the dimensionality of the action space. Each scalar
sub-policy 7;(s) is itself a symbolic expression formed out
of a sequence of tokens

m = [T0,T1,...,Tu] Where T, € L, 2)

1 is the number of tokens in the sequence and L is the library
of available tokens, which in our experiments consists of
{50, 81, -+ $n, +, —, X, +, sin, cos, exp, log, 0.1, 1.0, 5.0}.
Policy Generator Formulation As shown in Figure 2, the
policy generator is an RNN which takes cell state ¢;, sampled
policy 7, input u; and prior P(73) as input. The cell state,
input and prior are defined using the standard Deep Sym-
bolic Policy (DSP) formulation [2], extended with multiple
dimensions to allow for the sampling of multiple expressions
simultaneously. The input w; = [T¢_1, Tparent; Tsiblings Ndangling]
where 7;_; is the previously sampled stack of tokens, Tparent
and Tgpling are the stacks of parent and sibling tokens of
T¢—1 in the expression tree, and Ngungling 18 the vector of

cumulative arities of the expression so far (i.e. the number
of nested and unclosed subexpressions). The prior P(7:)
encourages higher arity tokens at start of the sequence and
encourages terminal tokens later in the sequence.

Let ug be the initial input, %; be the one hot encoding of
ug, ¢o be the initial RNN cell state and P(7) be the initial
prior. Then the policy generator is defined as a recurrent
process. At each iteration, a softmax is applied to the cell
state in order to extract the token likelihoods

ci+1 = RNN(Ty, ¢r), 3)
P(’at|7't) = SMaX(Ct+1). (4)

These likelihoods are combined with the token prior
following Bayes’ rule, noting that both arguments are in log

form P(nla) = Padn) + P(r), 5)

and the policy’s next stack of tokens are sampled and
concatenated

Tt ~ P(1¢|ty), i m @1y 6)

After each newly sampled stack of tokens, the input state
is updated. The process then repeats until either ¢ exceeds
the maximum allowed length, or all the symbolic expressions
are fully complete (with the same number of terminal tokens
as branching tokens).

B. Joint Policy Evaluator

On each loop of FSP, an entire batch of possible policies
are sampled from the policy generator following the above
approach. The sampled batch of symbolic policy expressions
is then collectively evaluated by a joint policy evaluator. This
runs each complete policy in parallel for [NV, episodes and
obtains its return as the sum of the rewards at each step. The
average return R for a single policy across episodes is thus

defined as .
R(m) = =D . (7)

where 7 is the set of token sequences, IV, is the number
of episodes, 1" is the length of the episode and r; is the
reward at timestep ¢. The return is then passed to the FSP
loss function to update the policy generator.

C. Fast Symbolic Policy Loss

Our FSP policy generator is trained using an extension
of the risk-seeking policy gradient algorithm [1], with en-
tropy regularization [2]. More specifically, we optimize the
expectation of the returns across the generated policy batch.

The policy generator loss takes the sampled policy 7, the
input » and the return of the policy in the environment R,
from the filtered batch B = {(m,u,R) | R > R.}. This
contains all the experiences whose return is greater than or
equal to the (1 — €) quantile of rewards R., where € is a
hyperparameter controlling the degree of risk-seeking. The
loss is defined as

Lw) = & |2 toeme(rl) (R R
-8 B[], ®



where 7y, (7|u) is the probability of that policy according to
the policy generator and 3 is a hyperparameter controlling
the weight of the entropy term. The entropy term itself is
computed as

H(my () = =Y my(rlu)logmy(nlu).  ©)

This represents the entropy of the policy generator itself
rather than that of the generated policies.

D. Dim-X

The proposed Dim-X approach attempts to effectively re-
duce the dimensionality of the action space. To achieve this,
it leverages several inductive biases related to multi-legged
locomotion. The first is that in the absence of obstacles, the
optimal gait for an individual leg is cyclical in nature. The
second is that the different legs should behave similarly to
each other, under the same circumstances and at the same
point in their walking cycle (noting that the walking cycles
of different legs need not be in phase with each other).

Thus, the Dim-X regime drastically reduces the number
of control equations needed from the policy generator, by
sharing a smaller set of symbolic expressions across all the
legs. The only requirement is that the input observations must
be transformed into a different “leg-centric” frame and the
walking cycle must be offset by an appropriate leg specific
phase (which can be a learnable parameter).

More formally, the global observation space without Dim-
X is defined as

§= [97H7L7P]7 (10)

where 6 is the sine of the timestep, H is the hull pose

information, L is the concatenated pose information for all

the legs and p are the environmental readings (e.g. lidar).
We then define the leg-specific transformed observation

space as _
P 5, = [0+ ¢i, H, Ly, pl, (11)

where ¢; is the phase shift for leg ¢ and L; is the subset of
the leg pose information for leg .

We then define the result of the overall control policy for
the robot 7 as the concatenation of the results from the set
of expressions for a single leg, applied to each leg-specific
state observation

T‘-(S) - [”T(EO)a 71'(51), ) ’/T(EN)]?
where IV is the number of legs. We note that this approach
can be applied to both our FSP scheme as well as traditional
deep-policy RL approaches utilizing neural networks. We
contrast both options in our experiments.

E. Fast Symbolic Policy with Dim-X

Our combined FSP with Dim-X framework introduces the
FSP policy definition in equation 1 into the Dim-X approach
defined in equation 12. This joint framework is thus defined
as

12)

7(s) = [m0(50), 71(30), .-.7mn(50),
7T0(§1),7T1(§1), ...7Tn(§1),

T0(Sy )y T (S )s - Tn(5y)].  (13)

This yields an efficient framework which benefits from the
advantages of both FSP and Dim-X. The joint framework
thus avoids the need to iterate over action dimensions,
therefore not requiring a neural network anchor policy, and
reduces the complexity of the training challenge, through
leveraging the inductive priors of legged locomotion, further
speeding up the training time.

IV. RESULTS
A. Experimental Setup

We evaluate our technique using multiple custom vari-
ations of the Box2D [19] OpenAl Gym bipedal walker
environment [20]. These new environments include walkers
with 4, 8, 16, 32, 64 and 128 legs and are shown in Figure
3. This represents a broad range of action space dimension-
alities allowing us to evaluate the scaling performance of our
technique.

The main technique we present in this paper is FSP with
Dim-X (FSP w/ Dim-X), however we also evaluate FSP
on its own as an ablation. We compare these to a neural
network (NN) and a DSP baseline. Then as an independent
evaluation of our Dim-X approach, we also evaluate it on
its own applied to both a neural network (NN w/ Dim-X)
and a DSP policy (DSP w/ Dim-X). We compare the scaling
performance of these different frameworks against 3 metrics,
the distance covered (in 1000 timesteps), the train time (per
training iteration) and the inference time (per iteration).

B. Neural Network Baselines

For the neural network baseline experiments, and the
experiments applying Dim-X to neural network policies, we
trained using the StableBaselines3 [21] Twin Delayed Deep
Deterministic Policy Gradient (TD3) RL algorithm [22]. TD3
consists of two loss functions, a critic loss and an actor
loss. To mitigate overestimation bias, it employs two critic
networks. The critic loss takes the observations s, actions a,
rewards r, and next observations s’ from the replay buffer
D. The loss for each critic is defined as
Qo (s,0) =)’ .

L(0;) = (14)

(s,a,r,s")~D
where (g, are the critic networks and y is the expected Q
value at the next state. This is defined as
y=r+vy IIllIl QQ'-(Slva’,)a (15)
j=L2 "
where + is the discount factor and @’ is the action at the next
state selected as a’ = 7wy (s') + €, with € ~ N(0,0) being
clipped noise scaled by the target actor noise hyperparameter
.

The actor loss only utilizes one of the critic networks, Qy, ,
and is defined as

£(0) = -

S

E,_[Qo,(5,mo(s)]. (16)

where 7y is the current actor network.



(a) 2 legs

B R —

(b) 4 legs

(c) 8 legs

(d) 16 legs (e) 32 legs

(f) 64 legs

NIRR]

0022000002000000 002200000000 000002000020000000000000000000002))

(g) 128 legs

Fig. 3: The different walker environments

C. Deep Symbolic Policy (DSP) Baselines

For the DSP baseline experiments, and the experiments
applying Dim-X to DSP, we train using the standard DSP
framework [2]. As described in their paper, this approach can
only train the symbolic control expression for one action
dimension at a time. It is obvious that in this case the
training time and complexity scale poorly to environments
with higher dimensional action spaces. Adding to this is
the requirement for a neural network anchor policy, that
has already solved the control problem. This is needed to
populate the actions for dimensions that are not currently
being learned. This therefore has to be trained beforehand
adding an extra step to the training procedure.

The neural network baseline policies were used as the
anchor policies for the DSP baseline experiments, and the
neural network with Dim-X policies were used as the anchor
policies for the DSP with Dim-X experiments. DSP with
Dim-X already presents a massive improvement over de-
fault DSP, for environments with higher dimensional action
spaces, as it drastically reduces the effective size of the
action space for the policy. This therefore reduces the number
of action dimensions that have to be iterated over and the
number of independent symbolic expressions that have to be
learned.

D. Simulation Environment

The simulation environment utilized is a custom variation
of the common bipedal walker environment. This custom
environment takes the desired number of legs as an input
argument and recursively builds the walker. It also scales the
action and observation spaces accordingly. These different
legged environments can be seen in Figure 3. The reward
function for the environment is the standard bipedal walker
reward formulation, taking into consideration the additional
action dimensions. The reward r; is thus defined as

T =2 = Tprey — (0] = [Opre]) = > clip(lal,0,1) (17)

where = and Zpe, are the current and previous horizontal
positions of the hull respectively, § and 6, are the current
and previous orientations of the hull respectively, and a are
the actions.

The x — Zpey portion of the reward aims to maximize
the progress in the positive horizontal direction. The |6| —
|@prev| cost aims to minimize changes in the hull orientation
between timesteps, thereby keeping the walker upright and
penalizing tipping over. Finally, the > clip(]a|,0,1) cost
aims to minimize the amount of energy used at each timestep.
The actions are torques so their sum is the energy used.
Minimizing the energy used penalizes impractical gaits with



unnecessary leg movements that do not contribute to the goal
of moving forward.

E. Experimental Results

Framework vs Distance Traversed Each of the frame-
works were trained for 1000 iterations, with a batch size of
1000. However, note that for the frameworks which must
iterate over the action dimensions (DSP, DSP w/ Dim-X),
1000 iterations were carried out on each action dimension.
For the DSP baseline, the total number of iterations com-
pleted is dependent on the number of legs (e.g. with 16 legs
it would train for 16,000 iterations). For the DSP w/ Dim-X
experiments, this was reduced to just 2000 iterations for each
of the walker configurations, as Dim-X reduced the effective
dimensionality of the action space to 2 in each case from the
policy’s perspective.

The resultant policies obtained from the different frame-
works were then run on the different walker configurations
for 1000 timesteps, and the final distances in each case were
recorded. Each evaluation was repeated 100 times and the
results are presented in Table I and plotted in Figure 4.

TABLE I: Distance traversed in 1000 timesteps

Framework Number of legs

2 4 8 16 32 64 128
NN (baseline) 21,5 225 205 126 6.7 4.1 2.0
DSP (baseline) 213 211 197 94 - -
NN w/ Dim-X 202 214 182 163 149 140 138
DSP w/ Dim-X 199 202 171 144 123 106 99
FSP (ours) 207 215 94 2.8 1.5 0.2 0.2
FSP w/ Dim-X (ours) | 214 218 199 179 164 154 143

. ; e NN (baseline)

20 N DSP (baéeline)
NN w/ Dim-X

o DSP w/ Dim-X

FSP (ours)

154 FSP w/ Dim-X (ours)

10

Distance travelled (in 1000 timesteps)

2 4 8 16 32 64 128
Number of legs
Fig. 4: Chart showing the distance traveled in 1000 timesteps
vs the different numbers of legs for the different frameworks

It can be seen from Figure 4 that the 3 frameworks
utilizing Dim-X (NN w/ Dim-X, DSP w/ Dim-X, FSP w/
Dim-X) have the greatest scaling performance to higher
dimensional action spaces (number of legs). This shows that
Dim-X effectively reduces the complexity of the control
challenges in each case it is applied. However, both the
DSP baseline and our independent FSP framework struggle
to scale effectively. This is likely because of the added
complexity of the control problems, thus requiring more

training iterations to derive an optimal policy. Furthermore,
the DSP baseline could not feasibly be trained beyond 16
legs within a reasonable amount of time (24 hours), so these
experiments were omitted.

The independent FSP framework struggled to train beyond
8 legs due to the exponentially increasing size of the search
space, and the relatively few iterations it was allowed to
carry out compared to the number of legs in the environment.
However, it can be seen that the application of Dim-X to FSP
resolves this issue.

Framework vs Training Time The average time taken
for 1 full training iteration was recorded for each of the
frameworks and is presented in Table II and plotted in Figure
5. Note that for those frameworks which require a neural
network anchor policy (DSP, DSP w/Dim-X), the time taken
to train these anchors was not taken into account.

TABLE II: Time taken in seconds for 1 training iteration

Framework Number of legs
2 4 8 16 32 64 128
NN (baseline) 23.8 26.2 28.8 30.9 34.1 427 64.6
DSP (baseline) 337.0 1708.0 8476.6  27349.9 - -
NN w/ Dim-X 26.4 329 38.7 457 52.5 68.6 89.3
DSP w/ Dim-X 3374 3540 1919.1 34187 58685 9454.6 158737
FSP (ours) 168.5  277.0 859.5 1409.3 21342 32853  7593.1
FSP w/ Dim-X (ours) | 193.9  304.8 959.3 1679.0 24225 3568.7  8135.7
¢ NN (baseline)
25000 DSP (baseline)
NN w/ Dim-X
DSP w/ Dim-X

20000 FSP (ours)

FSP w/ Dim-X (ours)

15000

10000

5000

Training time in seconds (1 iteration)

2 a 8 16 2 64 128
Number of legs
Fig. 5: Chart showing the training time for 1 iteration vs the
different numbers of legs for the different frameworks

Figure 5 shows that the training time scaling performance
of the DSP baseline is by far the worst. This makes sense as
the framework has to iterate over all of the action dimensions
one by one. DSP w/ Dim-X has far better scaling perfor-
mance as Dim-X reduces the number of action dimensions
that have to be iterated over. Then both our FSP methods
improve on this and have similar performance to each other.
This is because they sample the expressions for all of the
action dimensions at once, therefore not needing to iterate
over them. Then finally both NN methods have the best
scaling performance, as they are also able to train in parallel
and do not have a recursive policy generation process.

Framework vs Inference Time The average time taken
for one inference iteration was measured for each trained pol-
icy obtained from the different frameworks and is presented
in Table IIT and plotted in Figure 6.



TABLE III: Time taken in nanoseconds for 1 iteration at
inference

Framework Number of legs

2 4 8 16 32 64 128
NN (baseline) 486.7 495.1 5092 5202 5399 5530 5741
DSP (baseline) 16.2 34.8 60.6 92.0 - - -
NN w/ Dim-X 780.7  799.1 8244 8557 8793 8994 9212
DSP w/ Dim-X 19.5 41.4 69.9 1114 1786 281.8 402.8
FSP (ours) 16.5 314 65.2 973 1509 2513 3925
FSP w/ Dim-X (ours) 19.1 40.7 63.3 93.8 1627 2372 399.8

e NN (baseline)
- DSP (baseline)
NN w/ Dim-X
DSP w/ Dim-X
FSP (ours)
FSP w/ Dim-X (ours)

=] o}
[=] =}
o o

[ ]
e o o 0

'S
=)
o

N
o
o

o

Inference time in nanoseconds (1 iteration)

2 4 8 16 32 64 128
Number of legs

Fig. 6: Chart showing the inference time for 1 iteration vs

the different numbers of legs for the different frameworks

Figure 6 shows that the symbolic policy based frameworks
are faster at inference time than the neural network based
frameworks. This is because symbolic policies are made up
of mathematical expressions, which are very fast to compute.
In contrast to this, the neural network based policies have to
perform many linear operations, which all together take a
longer time. For the symbolic policy frameworks, it can also
be seen that the inference time scales fairly linearly with
the number of legs, which makes sense as the number of
expressions the policy has the compute increases linearly
with the number of legs.

V. CONCLUSIONS

The work undertaken in this paper has led to Fast Sym-
bolic Policy (FSP) with Dim-X, two distinct contributions
which each have clear benefits in scaling performance over
existing state-of-the-art RL symbolic policy optimization
methods. We show that the technique scales effectively
in terms of policy success, training time, and inference
time across a broad range of action space dimensionalities.
Additionally, we demonstrate that FSP can effectively train
symbolic policies without needing a neural network anchor
policy, which is a major advantage of the technique. Dim-
X significantly reduces the training complexity of higher
dimensional environments, by leveraging the inductive pri-
ors of legged locomotion, to reduce the number of action
dimensions that have to be iterated over. We further show
how Dim-X can be used in other frameworks, including
those using non-symbolic policies. Overall, both proposed
contributions independently have clear advantages, and they

[1]

[2

—

[3]

[4]

[5]

[6

=

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]
[20]

[21]

[22]

effectively complement each other when combined, resulting
in a framework which inherits the benefits of both.

REFERENCES

B. K. Petersen, M. L. Larma, T. N. Mundhenk, C. P. Santiago,
S. K. Kim, and J. T. Kim, “Deep symbolic regression: Recovering
mathematical expressions from data via risk-seeking policy gradients,”
in International Conference on Learning Representations (ICLR),
2021.

M. Landajuela, B. K. Petersen, S. Kim, C. P. Santiago, R. Glatt,
N. Mundhenk, J. F. Pettit, and D. Faissol, “Discovering symbolic poli-
cies with deep reinforcement learning,” in International Conference on
Machine Learning (ICML), 2021.

N. L. Cramer, “A representation for the adaptive generation of simple
sequential programs,” in International Conference on Genetic Algo-
rithms (ICGA), 1985.

J. R. Koza, “Hierarchical genetic algorithms operating on populations
of computer programs,” in International Joint Conference on Artificial
Intelligence (IJCAI), 1989.

M. Landajuela, B. K. Petersen, S. K. Kim, C. P. Santiago, R. Glatt,
T. N. Mundhenk, J. F. Pettit, and D. M. Faissol, “Improving exploration
in policy gradient search: Application to symbolic optimization,” in
Mathematical Reasoning in General Artificial Intelligence Workshop,
International Conference on Machine Learning (ICML), 2021.

T. Mundhenk, M. Landajuela, R. Glatt, C. P. Santiago, D. faissol, and
B. K. Petersen, “Symbolic regression via deep reinforcement learning
enhanced genetic programming seeding,” in Conference on Neural
Information Processing Systems (NeurIPS), 2021.

P-A. Kamienny, S. d’Ascoli, G. Lample, and F. Charton, “End-to-
end symbolic regression with transformers,” in Conference on Neural
Information Processing Systems (NeurIPS), 2022.

P. Shojace, K. Meidani, A. B. Farimani, and C. K. Reddy,
“Transformer-based planning for symbolic regression,” in Conference
on Neural Information Processing Systems (NeurlPS), 2023.

S. Becker, M. Klein, A. Neitz, G. Parascandolo, and N. Kilbertus,
“Predicting ordinary differential equations with transformers,” in In-
ternational Conference on Machine Learning (ICML), 2023.

S. Holt, Z. Qian, and M. van der Schaar, “Deep generative symbolic
regression,” in International Conference on Learning Representations
(ICLR), 2023.

F. Silva, A. Goncalves, S. Nguyen, D. Vashchenko, R. Glatt, T. Desau-
tels, M. Landajuela, D. Faissol, and B. Petersen, “Language model-
accelerated deep symbolic optimization,” Neural Computing and Ap-
plications, 2023.

D. Yu, B. Yang, D. Liu, H. Wang, and S. Pan, “A survey on neural-
symbolic learning systems,” Neural Networks, 2023.

Q. Delfosse, H. Shindo, D. S. Dhami, and K. Kersting, “Interpretable
and explainable logical policies via neurally guided symbolic ab-
straction,” in Conference on Neural Information Processing Systems
(NeurIPS), 2023.

K. Acharya, W. Raza, C. Dourado, A. Velasquez, and H. H. Song,
“Neurosymbolic reinforcement learning and planning: A survey,” IEEE
Transactions on Artificial Intelligence, 2024.

A. Kumar, Z. Fu, D. Pathak, and J. Malik, “Rma: Rapid motor
adaptation for legged robots,” Robotics: Science and Systems, 2021.
J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning quadrupedal locomotion over challenging terrain,” Science
Robotics, 2020.

C. Yang, K. Yuan, Q. Zhu, W. Yu, and Z. Li, “Multi-expert learning
of adaptive legged locomotion,” Science Robotics, 2020.

W. Zheng, S. P. Sharan, Z. Fan, K. Wang, Y. Xi, and Z. Wang,
“Symbolic visual reinforcement learning: A scalable framework with
object-level abstraction and differentiable expression search,” IEEE
Transactions on Pattern Analysis & Machine Intelligence, 2025.

E. Catto, “Box2d physics engine,” http://box2d.org, 2006.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” arXiv:1606.01540, 2016.
A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and
N. Dormann, “Stable-baselines3: Reliable reinforcement learning im-
plementations,” in Journal of Machine Learning Research, 2021.

S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function approx-
imation error in actor-critic methods,” in International Conference on
Machine Learning (ICML), 2018.



