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Abstract— One of the largest challenges in the deployment
of legged robots in the real world is deriving effective general
gaits. In this paper, we present BeeTLe, which is a framework
that enables terrain aware locomotion without the need for
dedicated terrain sensors. BeeTLe is realised as a multi-expert
policy Reinforcement Learning (RL) algorithm. This enables
multiple gaits, applicable to different surface types, to be stored
and shared in a single policy. Sensor free terrain awareness
is incorporated using a Recurrent Neural Network (RNN) to
infer surface type purely from actuator positions over time. The
RNN achieves an accuracy of 94% in terrain identification out
of 8 possible options. We demonstrate that BeeTLe achieves
a greater performance than the baselines across a series of
challenges including: the traversal of a flat plane, a tilted plane,
a sequence of tilted planes and geometry modelling a natural
hilly terrain. This is despite not seeing the sequence of tilted
planes and the natural hilly terrain during training.

The code, policy and simulated environments are available
at: https://gitlab.surrey.ac.uk/rf00350/BeeTLe

I. INTRODUCTION
The derivation of effective gaits for real world legged

robots, remains a major challenge for the field. Different
environments required different strategies and gaits need to
be adaptable to on-the-fly changes in terrain. For example,
a gait strategy used to successfully walk across a slippery
laboratory floor, will not work when climbing a grassy
incline. Many existing gaits are hand-crafted for a set of
different terrain types that may be encountered. However, this
causes problems when traversing terrain types not originally
considered. This approach also implies an additional sensor
load, as the robot must be able to identify the type of surface
it is walking on.

In this paper, we propose BeeTLe as a solution to both
of these challenges. Firstly, RL is used to train an ensemble
of expert walking policies in an unsupervised manner. The
terrain types to be navigated are not restrictive. Instead,
when the robot encounters new terrain, an attention network
appropriately combines the knowledge from the experts to
derive a suitable new gait. This allows it to scale effectively
to a much larger range of surface types, including those not
seen during training as shown in Figure 1.

Secondly, we do not follow the traditional approach of
deploying additional sensors (and associated data processing)
to determine the characteristics of the surface being tra-
versed. Instead, we propose a purely proprioceptive attention
network. This observes the relationship between control
inputs and the robot’s internal state (i.e. the angular position
of actuators) over time. Based on this, an RNN infers the
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Fig. 1: Terrain aware hexapod robot using motor feedback
to determine terrain type and adjust its walking policy
accordingly

properties of the surface, and thus the suitability of the
various experts within the ensemble.

Finally, we implement a system that translates actions
from the policy trained in simulation, into control signals
understood by the actuators of a real hexapod robot. The
same system also translates back the angular positions read
from the robot’s actuators, into observations compatible with
the learnt policy. This allows us to demonstrate the real-life
deployment of our learned locomotion strategy.

To summarise the contributions of this paper are:
1) A general-purpose locomotion strategy based on blend-

ing an ensemble of expert policies on-the-fly.
2) A proprioceptive attention network, which infers ter-

rain type and estimates expert suitability, based entirely
on internal sensing of the robot’s state over time.

3) A practical demonstration on commercially available
robotic hardware, as well as a full code release in-
cluding both the trained policy and the simulated
environments, ensuring reproducibility.

II. LITERATURE REVIEW

A. Learned Legged Locomotion
Machine learning has been extensively applied to the

problem of locomotion. Specifically, algorithms have been
developed that allow legged robots to learn how to walk, run,
or perform complex movements while adapting to their sur-
roundings. Tan et al. [1] shows that a locomotion controller
can be learned from scratch using RL with simple reward
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signals. More advanced controllers utilise state history to im-
prove performance. Böhm et al. [2] use a gated recurrent unit
feature extractor to encode a low-dimension representation of
the state observation sequence before passing it to the RL
training procedure. Similarly, Lee et al. [3] utilise a temporal
convolutional network to produce a latent representation of
the environment information using the history of observa-
tions. Furthermore, Lai et al. [4] propose a transformer model
for locomotion control on various terrains.

To improve the generality of learned controllers, Christ-
mann et al. [5] propose distributing the complexity of differ-
ent gaits into dedicated locomotion policies, and transitioning
between them depending on the latent state representations.
Ubellacker and Ames [6] show that robustness in legged
locomotion can be achieved by switching to and transitioning
through suitable motion primitives. Yang et al. [7] propose
a multi-expert learning architecture, which contains multiple
expert neural networks and uses a gating neural network to
fuse them dynamically into a new neural network. BeeTLe
also consists of multiple expert networks, but utilises an RNN
to produce the weights by which to blend the output of each
expert.
B. Terrain Awareness for Locomotion

Common approaches for traversing varied terrains rely
heavily on visual perception. Gangapurwala et al. [8] utilise
proprioceptive and exteroceptive feedback to map sensory in-
formation and desired base velocity commands into footstep
plans using an RL policy. Miki et al. [9] integrate exterocep-
tive and proprioceptive perception using an attention-based
recurrent encoder to combine them into an integrated belief
state. Acero et al. [10] also propose a learning framework
that integrates exteroceptive and proprioceptive states, but
additionally show that perceptual locomotion can be achieved
using only sparse visual observations.

Many approaches seek to reduce the need for exterocep-
tive sensors by solely relying on proprioception [1], [7],
[11]–[16]. Kumar et al. [11] use an environment encoder
network, which initially uses privileged information about
the environment from the simulator, to produce a latent
space representation of the environment. Later, an adaptation
module is trained using supervised learning to mimic the
output of this environment encoder network using only the
action and state space history as an input. Their state consists
of joint positions, joint velocities, roll, pitch and binarized
foot contact indicators. These are collected from the motor
encoders, an IMU and foot sensors.

Nahrendra et al. [12], only use proprioceptive observations
from joint encoders and an IMU. They use a variational
autoencoder to implicitly imagine terrain properties from the
history of observations. These terrain properties are in the
form of a latent state, which is subsequently passed into a
main policy network. Margolis and Agrawal [16] also only
use proprioceptive observations, but use an accelerometer
instead of an IMU, as well as joint encoders, to estimate the
environment properties. In contrast to this, BeeTLe reduces
the sensor load out further and solely uses the observations
from joint encoders to predict the terrain properties.

III. METHOD
A. Policy Ensemble

Overview As outlined in Figure 2, the individual expert
policies within BeeTLe’s multi-expert ensemble operate in
an actor-critic framework. Specifically, the ensemble con-
tains n sets of independent actor and critic networks, each
pair of which is referred to as a single expert. The RNN
attention network produces a set of attention weights rating
the relevance of the current state to the different experts.
These attention weights are used to blend the outputs of the
individual experts, producing the final output.

Fig. 2: Flow diagram showing BeeTLe’s structure at training
time

Expert Networks Within the ensemble, the ith expert
network learns how to rate the value Vi(st) of a particular en-
vironmental state st (the critic), and how to map observations
to actions ai (the actor policy πi(ai|st)), in a manner that
results in walking for its observed training terrain type. The
overall output of the ensemble is the average of the individual
expert outputs, weighted according to the attention network
scores ωi

a =

n∑
i=1

aiωi(st), V (st) =

n∑
i=1

Vi(st)ωi(st). (1)

We then define our RL losses using the standard Proximal
Policy Optimization (PPO) formulation [17], which are the
value loss LV and the policy loss Lπ , using these ensemble
outputs as follows

LV =
1

T

T∑
t=1

(V (st)− (rt + γV (st+1)))
2
, (2)



where T is the number of timesteps in the rollout buffer, rt
is the reward obtained at timestep t and γ is the discount
factor that determines the importance of future rewards. As
well as

Lπ = − 1

T

T∑
t=1

min

(
π(a|st)
πold(a|st)

A(st, a),

clip
(

π(a|st)
πold(a|st)

, 1− ϵ, 1 + ϵ

)
A(st, a)

)
, (3)

where π(a|st) is the current policy’s probability of taking
action a in state st, πold(a|st) is the probability of taking
action a according to the policy at the previous iteration,
A(st, a) is the advantage function (which is the difference
between the Q function and the value function) and ϵ is a
hyperparameter that determines the extent of policy clipping.

Thus each critic uses the reward returned by the envi-
ronment to tell each actor how well it did. It is worth
noting that on the backward pass, gradients are distributed
to the individual experts according to their blending weights
ω. As such, experts which have a greater impact on the
result experience a more significant update to their model
parameters.

Intuitively, if we imagine the attention network as an
oracle function O, which groups input states into non-
overlapping clusters based on terrain categories, then the
attention weights become a one-hot vector. In this case,
a single expert is chosen to act alone at each step. This
approach is easy to learn, and is used to initialise the training
of BeeTLe. However, it is restrictive as only a limited number
of terrain categories can be modelled, and there is no elegant
way to handle new terrain types. It also leads to significant
redundancy as there are certain skills that must be learned
by every expert, as there is no sharing of information.

In contrast, our “soft-blending” approach enables infor-
mation sharing between experts and a far more nuanced
handling of diverse terrain types.

Attention Network The attention network is formed of
an RNN and a cross entropy loss function. It produces the
expert blending weights ωt using the observation from the
environment st, as well as its previous hidden state ht−1

ht(st) = b2h +W 2
h max

(
0, b1h +W 1

h (st ⊕ ht−1)
)
, (4)

ωt(st) = σ
(
b2ω +W 2

ω max
(
0, b1ω +W 1

ω (st ⊕ ht−1)
))

,
(5)

where b are the biases and W are the weights for the various
linear network layers and σ is a softmax function, which the
RNN output is passed through to form the final attention
weights. Here the ⊕ symbols represent concatenations.

The gradients from the RL losses of equation 3 also impact
the attention network. Specifically, the attention network
will be encouraged to route particular training examples to
the experts which perform best on the given terrain type.
Similarly, the experts to whom the examples are routed
will be further refined to operate more effectively on that
class of example. Over the course of training, these two
interactions lead to an emergent unsupervised clustering

behaviour. Terrain types are naturally grouped into subsets
that can effectively exploit the same walking policy, and the
experts are tuned to specialise on these subsets.

During the earlier stages of training, an additional loss is
introduced to simplify the training of the attention network.
This helps to initialise the attention network and expert
policies in a mutually effective arrangement. Here, the es-
timated blending weights are also passed to a cross entropy
loss function, along with the “ground truth” from the oracle
function O above

L(st) = −
n∑

i=1

gi log (ωi (st)) , (6)

where gi is the ground truth label and ωi is the output of the
attention network.

B. Training
The ensemble of expert policies and attention network

in BeeTLe are trained via a 3 step curriculum learning
procedure. In practice, we found that training all components
simultaneously from a random initialisation was ineffective,
due to the heavy interdependence of the modules explained
above.

The curriculum learning procedure consists of first training
the individual experts, via RL, on different pre-selected
surface types using the oracle function, with the RNN frozen.
Next, with the experts frozen, the RNN attention network
is trained, via supervised learning, to identify those pre-
selected surface types and produce an attention matrix that
maps the correct expert to the output, roughly mirroring the
oracle function. Finally, the cross-entropy loss is disabled
and all components are jointly refined solely using the RL
losses. This enables the grouping of states to be adapted
away from the oracle function, enabling BeeTLe to discover
more effective subsets of terrain type.

C. Simulation Environment
The simulator utilised during training is MuJoCo [18],

using a custom environment modelled after a real hexapod
robot, which can be seen in Figure 3. The hexapod consists
of 18 actuators, which are position servos. The dynamics
of the custom environment were set such that the simulated
model behaved similarly to the real robot, given the same
actions. The environment follows the Open AI Gym API
[19], making it easy to integrate into other RL algorithms.
It takes an action at and returns an observation st, as well
as a reward rt. The action is the set of 18 goal angular
positions to be executed by the actuators. The observation
is made up of the current angular positions of each of the
actuators, followed by their angular velocities. The reward
for the environment is defined as follows

rt = ẏt − cctrl
∑

(at − at−1)
2, (7)

where ẏt is the y velocity at time t and cctrl is the control
cost weight. The actions at and at−1 are the joint positions
at time t and t − 1 respectively. In this equation, the ẏt
term encourages movement in the forward direction, while
cctrl

∑
(at − at−1)

2 discourages large changes in positions
between timesteps.



(a) Flat plane (b) Upward steps (c) Downward steps (d) Plane with gaps

(e) -20◦ tilted plane (f) -10◦ tilted plane (g) 10◦ tilted plane (h) 20◦ tilted plane

Fig. 3: MuJoCo training environments

IV. RESULTS
A. Experimental Setup

BeeTLe was implemented as a new PPO RL algorithm
within the stablebaselines3 [20] library. The policy class has
n sets of actors and critics, and an RNN attention network,
which produces the attention weights by which to blend the
values produced by each of these actor and critic networks.
The robot model was created by modelling the real hexapod
robot in a MuJoCo xml file. This xml file also defines the
terrain. A new Gym environment class was written to manage
the hexapod locomotion challenge.

BeeTLe was instantiated, with randomly initialised
weights for each of the networks, and saved into a state dic-
tionary. Next, 8 individual policies were trained on different
terrains. These terrains include a flat plane, upward steps,
downward steps, a flat plane with gaps and 4 tilted planes,
which can all be seen in Figure 3. The distance between
steps and gaps is randomised. The tilted planes were set to
tilts of -20, -10, 10 and 20 degrees.

These policies formed the pre-trained experts for stage 1 of
curriculum learning using the losses in equations 2 and 3, and
the oracle function to produce ω. A dataset was then created
from this partially pre-trained multi-expert policy. To create
the dataset, every policy and terrain type combination was
run for 200 timesteps, and the observations were recorded
and associated with a label corresponding to the terrain type.
As there are 8 different terrain types and 8 different experts,
a total of 64 combinations were recorded. Each combination
was repeated 1000 times for the training dataset, and 100
times for the test dataset. These datasets were saved into an
FFCV [21] database.

These train and test datasets were then used to pre-
train the attention RNN in a supervised manner for stage

2 of curriculum learning. The cross-entropy loss function of
equation 6 was used to train this. As there are 64 types of
sequences and 8 possible labels, an untrained model would
be expected to have an average accuracy of 12.5%, when
attempting to associate a sequence of observations to a terrain
type. Our RNN achieved an accuracy of 94% after training.
A learning rate scheduler was used to refine the model when
the training loss would reach a plateau.

Finally, all of the networks within BeeTLe were trained at
once, which is the last step of the curriculum learning proce-
dure. In this step, the RL algorithm’s optimiser has access to
all of the network parameters within BeeTLe, including those
of all the experts and those of the attention network. Thus
the optimiser has the opportunity to redistribute knowledge
in a more effective way.

B. Simulation Comparison
The performance of BeeTLe after training was compared

against 4 baselines. The first of these was the manufacturer’s
default handcrafted gait. This is a set of 4 poses that the
robot repeatedly cycles through at predefined time intervals.
The second baseline was a simple neural network trained via
imitation learning to imitate the behaviour of the manufac-
turer’s gait. The third and fourth were a trained PPO [17] and
a trained Soft Actor-Critic (SAC) [22] policy respectively.

To create the imitation learning baseline, a dataset of
observations, and the corresponding actions given by the
manufacturer’s gait, was recorded and then used to train
a neural network via supervised learning. The end result
is a neural network which imitates the behaviour of the
manufacturer’s gait.

Testing was performed in various different scenarios,
including on complex varying terrains that were not seen



during training. Specifically, the testing modes were:
• Flat plane - A smooth horizontal plane (Figure 3a)
• Tilted plane - A plane tilted at 10 degrees (Figure 3g)
• Sequence of planes - A sequence of planes consisting

of an uphill plane, followed by a flat plane, a downhill
plane and then by another uphill plane (Figure 4a)

• Natural hilly terrain - A geometry modelling a natural
hilly terrain, implemented via a height map (Figure 4b).

(a) Sequence of tilted planes (b) Natural terrain

Fig. 4: MuJoCo testing environments

Two key metrics were identified which well represent the
performance of the different policies. These are:

• Distance - The distance from the origin after 1000
timesteps, where 1 timestep is 0.05 seconds

• Control cost per unit distance - The total control costs
over 1000 timesteps divided by the distance covered.

Covering a large distance while exerting little energy, which
we define as control cost, usually indicates an effective and
efficient gait. A timestep of 0.05 seconds was chosen as this
is approximately the amount of time spent communicating
with the actuators on the real robot during each iteration of
the control loop. In the simulator, this is broken down into 5
discrete steps of 0.01 seconds. This means that the simulator
internally takes 5 steps with the same action before returning
a new state observation.

The distance, in meters, was obtained by taking the y
position of the hexapod’s torso after 1000 timesteps. The
control cost was defined using the angular positions slice of
the state (i.e. the first 18 values), via the following equation

Costctrl =

T∑
t=0

18∑
i=1

(st − st−1)
2, (8)

where T is the number of timesteps (1000) and st − st−1

is an angular displacement in radians. The experiments
were repeated 100 times and the average of each metric is
presented in Table I and Table II respectively. It can be seen
from Tables I and II that the performance of BeeTLe is better
than that of the baselines for all of the more complex terrains,
these being the tilted plane, the sequence of tilted planes and
the natural hilly terrain. In each instance, greater progress
was made in the forward direction while using less energy
per unit distance than the baselines. Some of the baselines
would result in the robot walking or sliding in the incorrect
direction, down a slope, leading to negative distance scores.

TABLE I: Simulation test results - Distance (m)

Policy
Terrain

Flat Plane Tilted Plane Sequence Natural Hilly

Mfr. gait 3.85 2.51 3.89 -2.69

Imitation 3.76 2.23 3.67 -2.43

PPO [17] 346.64 88.65 20.62 4.74

SAC [22] 425.30 137.33 34.20 9.74

BeeTLe (Ours) 339.49 276.89 78.25 28.10

TABLE II: Simulation test results - Ctrl cost / unit distance

Policy
Terrain

Flat Plane Tilted Plane Sequence Natural Hilly

Mfr. gait 5.18 8.12 6.49 23.48

Imitation 4.97 8.56 6.73 25.61

PPO [17] 6.67 9.01 8.01 26.30

SAC [22] 4.85 8.82 7.28 20.73

BeeTLe (Ours) 5.00 4.13 5.82 12.16

The imitation learning baseline obtained very similar re-
sults to the manufacturer’s gait on all of the terrains. This
shows that the imitation learning procedure was successful
in training a neural network to imitate the output of the
manufacturer’s gait.

The distance performance of BeeTLe on the flat plane is
lower than that of the RL baselines. This implies that there
is still a trade off between the generality of the locomotion
policy, and its effectiveness. The SAC baseline resulted in the
greatest distance covered on the flat plane test. It can also be
seen that the SAC baseline covered a greater distance then
the PPO baseline in all of the environments, while also using
less energy per unit distance, thus demonstrating that SAC
is superior to PPO by all testing metrics.

During the natural hilly terrain test, BeeTLe approaches
terrain which it has not seen during training, but it is still
able to successfully traverse it. This is significant as it shows
that BeeTLe is able to use expertise from its bank of experts
to derive an effective new gait for the unseen terrain.

The performance of the attention network on live data
was also separately verified by testing a BeeTLe checkpoint,
which was saved after stage 2 of curriculum learning, on the
sequence of tilted planes test. By inspection of the attention
matrix throughout the run, it was able to successfully identify
the different terrains on-the-fly, while traversing the different
portions of the sequence. This is shown in Figure 5. After
stage 3 of curriculum learning, the direct expertise of each
expert moves away from how they were initialised, and thus
it is no longer possible to directly interpret the output of the
attention network.

C. Real World Validation
To validate that BeeTLe also works in the real world,

our translation system was used to test the policy on a real
hexapod robot. The policy was run both in simulation and
then on the real robot, and the behaviour was compared.
It can be seen from Figure 6 that the real robot is able to
behave similarly to how its model does in simulation, despite



Fig. 5: Attention matrix at 4 points in time on the sequence
of tilted planes test

never being fine-tuned on real-life data. Next, the policy was
tested on the real robot for a variety of other terrain types
including: on a laboratory floor, tilted board, lumpy carpet
and grass. These tests can be seen in the supplementary video
and in Figure 1. It can be seen from the video that BeeTLe
was able to effectively traverse the various terrains that it
encountered. This is good evidence that the policies learned
in simulation generalise, and that the translation system is
effective at running these learned policies on real hardware.

Fig. 6: Hexapod robot walking in simulation (left) and in the
real world (right)

V. CONCLUSIONS

The work undertaken has led to BeeTLe, which has clear
benefits over the baselines on more complex terrains. This
makes it more suitable for deployment in the real world,
where terrains are often not simple. Each individual section
of the framework was built and verified separately, before
being merged into the multi-expert framework. This includes
the attention network, which was shown to have an accuracy
of 94% on unseen data after pre-training, and the individual
experts, which were each shown to have effective gaits for the
environment they were set to specialise in. The verification
of the individual portions of the network helped to ensure

good performance from the full framework, and show that
none of the portions are redundant.
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