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Abstract

Sign languages, often categorised as low-resource languages, face significant challenges in achieving accurate

translation due to the scarcity of parallel annotated datasets. This paper introduces Select and Reorder (S&R),

a novel approach that addresses data scarcity by breaking down the translation process into two distinct steps:

Gloss Selection (GS) and Gloss Reordering (GR). Our method leverages large spoken language models and

the substantial lexical overlap between source spoken languages and target sign languages to establish an initial

alignment. Both steps make use of Non-AutoRegressive (NAR) decoding for reduced computation and faster

inference speeds. Through this disentanglement of tasks, we achieve state-of-the-art BLEU and Rouge scores on

the Meine DGS Annotated (mDGS) dataset, demonstrating a substantial BLUE-1 improvement of 37.88% in Text

to Gloss (T2G) Translation. This innovative approach paves the way for more effective translation models for sign

languages, even in resource-constrained settings.

Keywords:Sign Language Translation (SLT), Natural Language Processing (NLP), Non-AutoRegressive (NAR)

Generation

1. Introduction

Sign languages are multi-channel visual lan-

guages with complex grammatical rules and struc-

ture (Stokoe, 1980). The World Health Organisa-

tion estimates that 430 million people worldwide

are Deaf or Hard of Hearing (HOH) (WHO, 2021),

hence the need for accessibility and inclusivity.

Sign languages are visual forms of communica-

tion, expressed through the manual articulation of

gestures and non-manual features. The gram-

mar and lexicon of the world’s 300 sign languages

are country-dependent and variations can develop

from region to region, often sharing a large lexi-

cal overlap with each country’s respective spoken

language (National Geographic Society, 2017). In

the USA, where 90% of deaf children are born to

hearing families (Schein and Delk, 1974) sign lan-

guages may be acquired at different ages (LeMas-

ter and Monaghan, 2005), resulting in potential

grammar variations (Cormier et al., 2012; Skotara

et al., 2012).

Sign Language Production (SLP) aims to generate

sign language sequences from spoken language

sentences, it is often decomposed into two concur-

rent tasks: Text to Gloss (T2G), translating spoken

language to gloss sequences, and Gloss to Sign

(G2S), creating sign language videos from gloss

intermediaries. The quality of SLP videos depends

on the initial T2G translation. However, current

research has predominantly focused on G2S pro-

duction (Saunders et al., 2020a; Hwang et al.,

2021; Huang et al., 2021; Rastgoo et al., 2021;

San José-Robertson et al., 2004), leaving a cru-

cial gap in the SLP pipeline. This paper addresses

this gap with a novel Select and Reorder (S&R) ap-

proach to T2G translation. While it is possible to

directly synthesise a sign language sequence from

a spoken language sentence (Text to Pose (T2P)),

a two-step approach has been shown to yield su-

perior translations (Saunders et al., 2020a).

To achieve an effective T2G translation, it is es-

sential to transform the source spoken language

sentence into the target gloss representation while

preserving the original meaning. This transforma-

tion must include a change in lexicon and in or-

der (El-dali, 2011), as shown by Figure 1. Se-

mantic notations of sign language, such as gloss,

share a large proportion of vocabulary with their

country of origin. This causes T2G translation to

have a high lexical overlap between the source

and target sequences, a unique property of sign

language translation. By first formatting the gloss

tokens with lemmatization we find that datasets

such as Meine DGS Annotated (mDGS) Kon-

rad et al. (2020) and RWTH-PHOENIX-Weather-

2014T (PHOENIX14T) (Camgoz et al., 2018) have

a lexical overlap of 35% and 33%, respectively.

Neural Machine Translation (NMT) typically re-

quires around 15 million sequences of parallel

data to outperform statistical approaches (Koehn

and Knowles, 2017). By this definition, sign

languages can be defined as low-resource lan-

guages, with the largest annotated datasets con-

taining only 50k parallel examples Konrad et al.



Figure 1: An example of Gloss Selection (GS) and Gloss Reordering (GR) being applied to a sentence

from the RWTH-PHOENIX-Weather-2014T (PHOENIX14T) dataset.

(2020). In an attempt to circumvent this limita-

tion and exploit the lexical overlap, we propose

S&R, an approach that breaks down the transla-

tion task into two sub-tasks, Gloss Selection (GS)

and Gloss Reordering (GR).

As the first step in the S&R pipeline, GS learns

to predict the corresponding gloss for each word

in the spoken language sentence, thus produc-

ing Spoken Language Order (SPO) gloss (Mar-

shall and Hobsbaum, 2015). To create the ground

truth SPO gloss for training, we obtain a one-to-

one alignment between the text and gloss, exploit-

ing the lexical overlap found using large spoken

language models such as BERT and Word2Vec.

For the next step, GR changes the gloss sequence

from SPO to Sign Language Order (SIO). We

explore two approaches, a statistical based pre-

reordering method (Nakagawa, 2015) and a deep

learning approach. The statistical approach uses

a Top-Down Bracketing Transduction Grammar

(BTG) based pre-ordering model, that learns a

number of reordering rules using our alignment,

Part Of Speech (POS) tags and word classes.

The corresponding deep learning approach uses

a transformer with a reordering mask at inference

time. The mask constrains the model to only pre-

dict tokens that are present at the input, meaning

the model can only reorder.

Both GS and GR are Non-AutoRegressive (NAR)

models, executing decoding in a single pass. This

characteristic leads to decreased computational

requirements and accelerates the inference pro-

cess, which is a valuable asset for real-time trans-

lation.

The key contributions of this work can be summa-

rized as the following:

• S&R, a novel two step approach to T2G trans-

lation.

• An approach to building a pseudo alignment

between two paired sequences.

• State-of-the-art BLEU and Rouge scores on

mDGS and PHOENIX14T.

The rest of this paper is organised as follows: In

section 2 we provide an overview of the litera-

ture, then in section 3 we explain our S&R ap-

proach to T2G NMT. Section 4 explains the setup

for the proceeding experiments in section 5 where

we present quantitative and qualitative results. Fi-

nally, in section 6 we draw conclusions from the

experiments and suggest possible future work.

2. Related Work

Sign Language Recognition & Translation: For

the last 30 years computational sign language

Translation has been an active area of research

(Tamura and Kawasaki, 1988). Initial neural re-

search focused on isolated Sign Language Recog-

nition (SLR), where Convolutional Neural Network

(CNN) were used to classify isolated instance of

a sign (Lecun et al., 1998). Advancements in

the field led to Continuous Sign Language Recog-

nition (CSLR), where a video must first be seg-

mented into constituent signs before being clas-

sified (Koller et al., 2015). The task of Sign to spo-

ken language translation aims to convert contin-

uous sign language to spoken language text, di-

rectly (Sign to Text (S2T)) or via gloss (Sign to

Gloss to Text (S2G2T)) (Camgoz et al., 2018).

Sign Language Production (SLP): SLP is the re-

verse task of SLT, which aims to produce a con-

tinuous sequence of sign language given a spo-

ken language sentence. As above, this can be

performed either using gloss as an intermediate

representation (Text to Gloss to Pose (T2G2P))

(Stoll et al., 2018) or directly from the spoken lan-

guage (T2P) (Saunders et al., 2020a). State-of-

the-art approaches use a transformer with Multi-

Headed Attention (MHA) (Saunders et al., 2020c;

Stoll et al., 2022). The output pose of these sys-

tems can be mapped to a photo-realistic signer



(Saunders et al., 2020b) or 3D mesh (Stoll et al.,

2022). Older approaches used a parameterized

gloss that is converted to a pose and mapped to

a graphical avatar (Bangham et al., 2000; Cox

et al., 2002; Zwitserlood et al., 2004; Efthimiou

et al., 2012; Van Wyk, 2008), but this suffers

from lack of non-manuals, under-articulation and

robotic movement. Recently, alternate represen-

tations to gloss have been explored (Jiang et al.,

2022; Walsh et al., 2022), namely SignWriting

(Kato, 2008) and the Hamburg Notation System

(HamNoSys) (Hanke, 2004). However, previous

work has failed to achieve high T2G results, due

to the limited dataset size. In this paper, we at-

tempt to overcome the data deficiency by using a

S&R approach.

Machine Translation (MT): MT is an NLP task

that deals with the automatic translation from a

source to a target language. Prior to the introduc-

tion of deep learning approaches to the field (Singh

et al., 2017), statistical based methods were state-

of-the-art (Della Pietra, 1994; Och and Ney, 2002;

Koehn et al., 2003). However, thesemodels strug-

gled when the source and target languages had

large changes in word order (Genzel, 2010). To

overcome the issues with long-distance word de-

pendencies, pre-reordering was used, where the

source language is reordered into the target lan-

guage order. This was shown to improve the

performance of phase based statistical machine

translation systems (Neubig et al., 2012; Hitschler

et al., 2016; Nakagawa, 2015). To train these sta-

tistical models an alignment between the source

and target words is found (Della Pietra, 1994; Vo-

gel et al., 1996). Since then pre-reordering has

been applied to NMT with limited success (Zhao

et al., 2018; Du andWay, 2017; Sabet et al., 2020).

Recently word alignment has been used to train

multilingual models and has shown good perfor-

mance when applied to low resource languages

(Lin et al., 2020).

Low resource NMT: NMT has shown signifi-

cant performance in large data scenarios but often

struggles on low-resource languages (Stoll et al.,

2018). For SLP, there is a lack of large annotated

text to sign corpora. To overcome this, common

NLP approaches are transfer learning (Zoph et al.,

2016), use of large language models (Zhu et al.,

2020) or data augmentation (Moryossef et al.,

2021).

3. Methodology

Text to Gloss (T2G) translation aims to learn

the mapping from a source spoken language se-

quence X = (x1, x2, ..., xW ) with W words, to a

sequence of glosses, Y = (y1, y2, ..., yG) with G

glosses. Therefore, a T2G model learns the con-

ditional probabilities p(Y |X).

A model that learns p(Y |X) jointly learns a change
in lexicon and order, a challenging task. In this

paper, we disentangle the two tasks into GS and

GR, as shown in Figure 2, and define a new task of

Text to Spoken LanguageOrder Gloss (T2SPOG).

Figure 2: A overview of the Select and Reorder

(S&R) approach

The GS model learns the mapping of a se-

quence of words X = (x1, x2, ..., xW ), to a se-

quence of SPO glosses and pad tokens, Y SPO =
(ySPO

1 , ySPO
2 , ..., ySPO

W ). Our approach relies on

creating a one-to-one alignment, A, of words to

glosses, which limits us to sequences where (W ≥
G), henceX and Y SPO share the same sequence

length, W. To create the gloss in SPO for the GS

model the alignment, A(), is applied to the gloss;

Y SPO = A(Y ) (1)

We define GR as a permutation task, where the

model learns to reorder words in spoken lan-

guage order, X, to words in sign order, XSIO =
xSIO
1 , xSIO

2 , ..., xSIO
W ). The source and target se-

quence share the same vocabulary and sequence

length, W. Thus, GR learns p(XSIO|X). To create
the text in sign order for the GR model the align-

ment, A(), is applied to the text;

XSIO = A(X) (2)

As shown by Figure 2, to obtain a full translation

the outputs of the GS and the GR networks must

be joined. We call this full method Select and

Reorder (S&R). To correctly join the outputs the

GR subtask creates a mappingM(). Applying the
mapping to the SPO gloss gives a full translation

(gloss in sign language order);

p(Y |X) = M(p(Y SPO|X)) (3)

Both input and target sequences are tokenized at

the word level. The GS and GR networks are



trained using cross-entropy loss, Lcross, calcu-

lated using the predicted target sequence, x̂ and

the ground truth sequence, x∗.

In the following sub-sections, we provide an

overview of GS followed by GR. Firstly, we show

how we create an alignment between the source

and target languages, using two different word

embeddings. Subsequently, we explain how this

alignment is used in conjunction with theGSmodel

to predict the intermediary SPO glosses. Finally,

we outline two methods for GR, followed by an ex-

planation of how the two sub-tasks are joined to

obtain a full translation.

3.1. Select

As shown by Figure 1 (top to middle row), GS can

be defined as the task of choosing the correspond-

ing glosses for each word of a given spoken lan-

guage sentence. To achieve this, an alignment

must first be found to create a pseudo gloss se-

quence in SPO.

3.1.1. Alignment

Using the lexical overlap between the source

and target language, a pseudo alignment can be

found. For example given the sentence ”what is

your name?” it is clear to see which words cor-

respond to which glosses in the translation ”YOU

NAME WHAT?”. Using two different word embed-

ding techniques, Word2Vec (Mikolov et al., 2013)

and BERT (Chan et al., 2020), we create a map-

ping between our spoken language words, X, and

our glosses, Y. We can define a word gloss pair as

a strong alignment if they share the same mean-

ing. A strong connection can be established if the

pair share a similar lexical form (e.g. word = run,

gloss = RUN), for which we useWord2Vec. Where

an accurate lexical mapping cannot be found, we

use BERT to find connections based on meaning

(e.g. word = weather, gloss = WEATHERFORE-

CAST). When using German Sign Language -

Deutsche Gebärdensprache (DGS) we first apply

a compound word splitting algorithm (Tuggener,

2016) before creating the alignment.

For a sequence of words, X, and a sequence of

gloss, Y we apply Word2Vec as:

XV ec = Word2V ec(X) (4)

YV ec = Word2V ec(Y ) (5)

where XV ec ∈ RW×E and YV ec ∈ RG×E . We take

the outer product between the resultant two em-

beddings to give us the Word2Vec alignment:

AV ec = YV ec ⊗XV ec (6)

where AV ec ∈ RG×W . We filter the strongest con-

nections, only keeping those that are above a con-

stant, α. Then we repeat the process this time us-
ing BERT:

XBERT = BERT (x) (7)

YBERT = BERT (y) (8)

ABERT = YBERT ⊗XBERT (9)

Where XBERT ∈ RW×E , YBERT ∈ RG×E and

ABERT ∈ RG×W . When embedding with BERT,

a wordpiece tokenizer is applied to the text. We

average the sub-unit alignment in order to create

an alignment at the word level. We find BERT

embeddings capture the meaning of tokens, mak-

ing this approach better for finding alignment be-

tween words and glosses that have different lexi-

cal forms. The BERT alignment is used to find any

remaining connections not found by theWord2Vec

alignment, where our final alignment is defined as;

A = ABERT + (α ∗AV ec) (10)

Note, as the alignment creates a one-to-one map-

ping, the proposed approach is limited to many-to-

one sequences e.g. where the source sequence

is longer than the target, (W ≥ G). Furthermore,
as the T2SPOG task is a many-to-one task, any

words that are not aligned are mapped to a pad

token, ’*’. This ensures the sequence lengths of

Y SPO and X are the same.

Figure 3 and 4 shows a heat map of the align-

ment found between a German spoken language

sentence and the corresponding gloss sequence

from the PHOENIX14T and mDGS dataset, re-

spectively. Figure 3 shows a clear alignment is

found between the word and gloss ”MORGEN”, as

they share the same lexical form. Additionally, an

alignment is found between words with the same

meaning e.g. ”JETZT” and ”nun”.

Figure 3: An example of the alignment found

using BERT embeddings to connect the spoken

language to the glosses on the PHOENIX14T

dataset. (SRC: ”and now the weather forecast for

tomorrow thursday the twelfth of august”, TRG:

”now weather tomorrow thursday twelve february”)



Figure 4: An example of the alignment found us-

ing BERT embeddings to connect the spoken lan-

guage to the glosses on themDGS dataset. (SCR:

”when you keep in touch you automatically be-

come healthy and happy”, TRG: ”contact care au-

tomatic body healthy glad”)

3.1.2. Architecture

We build our GS model as an encoder-decoder

transformer (Vaswani et al., 2017). We pass the

encoder and decoder the same spoken language

sentence, whilst removing the auto-regressive fea-

ture of the decoder for reduced computational

cost. This also makes each prediction indepen-

dent of the previous, removing any possible nega-

tive feedback from incorrect guesses at inference

time. Additionally, we alter the decoder’s forward

masking to allow the model to see all tokens in the

sequence.

3.2. Reorder

The goal of the second sub-task, GR, is to create

a mapping, M(), that reorders a sequence from

SPO to SIO. By comparing the index movements

of words between the input and output of the mod-

els we create a mapping. A visualization of apply-

ingM() can be seen in Figure 1 (middle to bottom
row).

To facilitate the creation of ground-truth data for

this task, we can leverage the alignment discussed

in section 3.1.1, referred to as A. This alignment
enables us to generate SPO gloss and text in SIO.

Consequently, we have the option to train our re-

ordering model on either the gloss or the text. We

opt to train on the text for two reasons. Firstly,

gloss does not offer a perfect representation of

sign language due to its inherent limitations. Sec-

ondly, we hypothesise that training on the higher-

resourced language (text) will yield superior per-

formance, as it contains richer structural informa-

tion about the language.

In this section, we propose two approaches to

tackle GR. We start by explaining the statistical

approach from Nakagawa (2015), followed by our

deep learning method.

3.2.1. Statistical Approach

Our first approach uses the BTG method to learn

a mapping from spoken to sign order (Nakagawa,

2015). The approach represents a source sen-

tence as a binary tree, where each non terminal

node can be one of three types: straight, inverted

or terminal. The structure of the tree is dependent

on the POS tags andword classes of the sentence.

To create our word classes we use the Brown clus-

tering method (Brown et al., 1992). Words are

grouped into a single cluster if they are semanti-

cally related. Words are assumed to be semanti-

cally related if the distribution of surrounding words

are similar. We use a pre-trained language model

to tag the spoken language words with their POS.

The model acquires a set of rules designed to re-

structure the tree in a manner that maximises re-

ordering accuracy. To assess this accuracy, we

rely on the alignment provided in section 3.1.1.

3.2.2. Learned Approach

Our second approach uses deep learning to learn

p(XSIO|X), using an encoder-decoder trans-

former. Once again we remove the auto-

regressive feature from the decoder and change

the mask to allow the model to see all tokens in

the input sequence. At inference time we apply a

mask to the output of the model, which ensures

the model predicts all tokens that are present on

the input, hence the model is limited to reorder-

ing. The mask is a binary vector with entries only

in the index’s of the tokens present in the input.

At each decoding step, the predicted token is re-

moved from the mask. If duplicates of the gloss

are present then it is only removed once all copies

have been predicted.

3.3. Select and Reorder

The GS model learns p(Y SPO|X) and the GR

model learns p(XSIO|X). To obtain a full trans-

lation the output of the two models must be joined,

as shown by Figure 2. As depicted, the predic-

tions of the GR cannot be directly applied to the

gloss in SPO. By analysing the index movement

of words between the input and output a mapping,

M , can be created that changes the order from

spoken to sign. We train each task independently

and join the outputs by applying the mapping,M()
from GR to the output of the GS model;

Y = M(YSPO) (11)

This provides a full translation from a spoken lan-

guage input sequence to a target gloss sequence.

4. Experimental Setup

In this section, we explain the experimental setup

for the proceeding experiments.



PHOENIX14T DEV SET TEST SET

BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE

GS (Spoken order) 62.69 41.22 29.04 21.31 58.32 60.12 39.22 27.40 20.19 57.10

GS (Sign order) 62.69 38.86 25.67 17.84 56.37 60.13 35.15 21.84 14.49 54.60

Table 1: A table showing the result of performing Gloss Selection (GS) on the RWTH-PHOENIX-

Weather-2014T (PHOENIX14T) dataset.

mDGS DEV SET TEST SET

BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE

GS (Spoken order) 42.91 23.21 12.47 6.89 42.63 43.06 23.23 12.71 7.02 42.65

GS (Sign order) 42.91 20.51 9.86 4.95 40.63 43.06 20.97 10.48 5.39 40.60

Table 2: A table showing the result of performing Gloss Selection (GS) on the Meine DGS Annotated

(mDGS) dataset.

To initialize the encoder and decoder of the trans-

former we use xavier initializer (Glorot and Ben-

gio, 2010) with zero bias and Adam optimization

(Kingma and Ba, 2014). The initial learning rate

is set to 10−4 with a decrease factor of 0.7 and

patience of 5. During training we employ dropout

connections, therefore we apply a dropout proba-

bility of 0.35 and 0.2 for the GS and GR models

respectively (Srivastava et al., 2014). When de-

coding we apply a greedy algorithm on both mod-

els. We filter the confidence of the word2vec align-

ment, AV ec, with a factor of 0.9. We train the BTG

prereorder model for 30 iterations with a beam size

of 20 on the training set only. We set the number

of word classes to 50 when clustering with Brown

et al. (1992) and we tag the spoken language with

POS using the Spacy python implementation for

German.

Our code base comes from the Kreutzer et al.

(2019) NMT toolkit, JoeyNMT (Kreutzer et al.,

2019) and is implemented using Pytorch (Paszke

et al., 2019). When embedding with BERT, we use

an open source pre-trained model from Deepset

(Chan et al., 2020). Finally, we used fasttext’s im-

plementation of Word2Vec for word level embed-

ding (Mikolov et al., 2013).

To evaluate our models, we use the Public Cor-

pus of German Sign Language, 3rd release, the

mDGS dataset (Konrad et al., 2020) and the

PHOENIX14T dataset (Camgoz et al., 2018).

mDGS contains aligned spoken German sen-

tences and gloss sequences, from unconstrained

dialogue between two native deaf signers (Konrad

et al., 2020) and we use the translation protocol

set in Saunders et al. (2022).

mDGS is 7.5 times larger compared to

PHOENIX14T with 330 deaf participants perform-

ing free-form signing and a source vocabulary

of 18,457. Note we remove the gloss variant

numbers to reduce singletons. We use BLEU

scores (BLEU-1,2,3 and 4) and Rouge score to

evaluate all methods.

5. Experiments

5.1. Quantitative Experiments

In this section, we evaluate our proposed ap-

proaches on the mDGS and the PHOENIX14T

dataset. We group our experiments in four sec-

tions:

1. Gloss Selection (GS).

2. Gloss Reordering (GR).

3. S&R (GS+GR) and State-of-the-art Compar-

ison.

4. Inference speed tests.

5.1.1. Gloss Selection

Firstly, we evaluate our GS approach. As dis-

cussed in section 3.1 we create an alignment for

both datasets in order to perform GS. Table 1 and

2 show the results. In both cases, the GS output

is the same but compared against the SPO (row

1) and the ground truth gloss (SIO) (row 2), hence

the BLEU-1 score is the same. As the model was

trained to predict SPO order, it is not surprising

that the BLEU-4 score is higher. However, the per-

formance drop when evaluated against sign order

is small. The high BLUE-1 scores demonstrate the

effectiveness of this method, achieving 42.91 on

the challenging mDGS dataset.

5.1.2. Gloss Reordering

Next, we compare our different reordering ap-

proaches. When evaluating the GR model any

words not present in the training set are replaced

with unknown tokens. Thus, the BLEU score for

the learnt method is not 100, even though the

model has to predict all words that are present

at the input. As can seen from table 3 and 4,

the statistical method outperforms the learnt ap-

proach, with the statistical method achieving 26.51

and 28.64 BLEU-4 higher on the PHOENIX14T

and mDGS dev sets respectively. Suggesting that

POS tags and word classes are effective features

for reordering. The learnt method is found to be



PHOENIX14T DEV SET TEST SET

Mapping: BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE

GT (Aligned Gloss) 100.00 66.36 48.72 37.43 76.21 100.00 64.00 45.60 34.07 76.17

Learnt 99.14 60.14 39.50 26.93 59.17 99.20 59.43 38.58 25.74 58.28

Statistical 100.00 76.52 62.83 53.44 84.61 100.00 61.87 42.64 31.05 74.66

Table 3: A table showing the results of performing Gloss Reordering (GR) from Spoken Language Order

(SPO) to Sign Language Order (SIO) on the RWTH-PHOENIX-Weather-2014T (PHOENIX14T) dataset.

mDGS DEV SET TEST SET

Mapping: BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE

GT (Aligned Gloss) 100.00 65.20 43.72 29.89 80.20 100.00 64.69 42.98 29.35 80.37

Learnt 97.62 59.45 40.40 29.29 60.75 97.60 59.36 40.36 29.33 60.32

Statistical 100.00 82.12 68.67 57.93 91.24 100.00 60.06 36.87 22.91 77.47

Table 4: A table showing the results of performing Gloss Reordering (GR) from Spoken Language Order

(SPO) to Sign Language Order (SIO) on the Meine DGS Annotated (mDGS) dataset.

detrimental to the ordering of the SPO gloss. We

believe this result is due to the lack of large-scale

training data. As suggested by Lin et al. (2020)

15 million parallel examples are needed for learnt

methods to start outperforming statistical meth-

ods.

Row 1 of both tables shows the BLEU scores be-

tween the ground truth gloss and the SPO gloss,

which gives an indication of the performance if the

GS was 100% accurate. Table 3 shows a high

BLEU-4 score of 37.43, which is the reordering

score if we do not apply the GR mapping. There-

fore, the GS output has the potential to generate a

valid translation. Additionally, a proportion of the

Deaf community are familiar with SPO (Lucas and

Valli, 2014), whilst somemay even prefer the SPO.

However, further research is required to ascertain

whether SPO translation is useful for the commu-

nity.

5.2. State-Of-The-Art Comparison

The end-to-end S&R approach joins the output

from the GS model and the mapping, M(), from
GR to produce a full translation e.g. p(Y |X) =
M(p(Y SPO|X)). We used the mapping from the

statistical approach as it was shown to give the

best performance in section 5.1.2. In table 6

(PHOENIX14T) and 7 (mDGS) we compare our

S&R approach to state-of-the-art work. Note we

can only compare scores that are publicly avail-

able, therefore ’-’ denotes where the authors did

not provide results.

For comparison on mDGS, we train a T2G trans-

former that achieves a competitive BLEU-4 score

compared to (Saunders et al., 2022). The model is

trained till convergence with a beam size of 5 and

a word level tokenizer.

Our results show that reordering is beneficial to

the GS model, increasing the BLEU-4 score by

1.23 and 1.11 on the PHOENIX14T Dev and Test

sets respectively. On the mDGS dataset the re-

ordering mapping was found to only benefit the

dev set, increasing the BLEU-4 by 1.4, whilst being

detrimental to the test set, decreasing the BLEU-

4 by 1.25. The reordering performance is signifi-

cantly reduced when applied to the output of the

GS model, decreasing from the theoretical maxi-

mum of 53.44 to 19.07 on PHOENIX14T. We ar-

gue this is due to the number of false positives and

false negatives in the output of the GS model.

As can be seen from table 6 and 7 our models out-

performed all other methods on BLEU-1 score (Li

et al., 2021; Saunders et al., 2020c, 2022; Stoll

et al., 2018), setting a new state-of-the-art BLEU-1

on PHOENIX14T and mDGS, with a 12.65% and

37.88% improvement, respectively. We find our

approach outperforms a neural editing program (Li

et al., 2021), RNN (Stoll et al., 2018) and a ba-

sic transformer (Saunders et al., 2022) on BLEU-1

to 2 and Rouge scores on PHOENIX14T. While

on mDGS our approach outperforms a traditional

transformer on all metrics.

5.3. Model Latency

Table 5 demonstrates the significant advantages

of our S&R model. It achieves an impressive 3.08

times speedup when compared to a traditional

transformer architecture. Both GS and GR mod-

els utilize the same NAR decoder, but the incor-

poration of a reordering mask results in increased

latency for the GR model. In contrast, our GS

model, which has shown strong translation perfor-

mance on its own, exhibits a large speed increase

of 18.32 times. These findings highlight the prac-

tical utility of our approach, particularly in compu-

tationally constrained scenarios.

Model Latency Speedup

T2G Transformer 4380ms 1.00x

GS 239ms 18.32x

GR 1181ms 3.71x

S&R 1420ms 3.08x

Table 5: Inference latency comparison on mDGS.



PHOENIX14T DEV SET TEST SET

Approach: BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE

T2G Stoll et al. (2018) 50.15 32.47 22.30 16.34 48.42 50.67 32.25 21.54 15.26 48.10

T2G Saunders et al. (2020c) 55.65 38.21 27.36 20.23 55.41 55.18 37.10 26.24 19.10 54.55

T2G Li et al. (2021) - - 25.51 18.89 49.91 - - - - -

GS 62.69 38.86 25.67 17.84 56.37 60.13 35.15 21.84 14.49 54.60

S&R 62.69 40.01 27.07 19.07 56.83 60.13 35.10 22.65 15.60 53.78

Table 6: Baseline comparison results for Text to Gloss (T2G) translation on the PHOENIX14T dataset.

mDGS DEV SET TEST SET

Approach: BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE

T2G Saunders et al. (2022) - - - 3.17 32.93 - - - 3.08 32.52

T2G transformer 31.12 14.32 6.49 3.04 34.71 31.25 15.08 7.26 3.38 34.98

GS 42.91 20.51 9.86 4.95 40.63 43.06 20.97 10.48 5.39 40.60

S&R 42.91 22.37 11.77 6.35 41.74 43.06 19.46 8.88 4.14 39.40

Table 7: Baseline comparison results for Text to Gloss (T2G) translation on the Meine DGS Annotated

(mDGS) dataset.

5.4. Qualitative Experiments

Figure 5 shows example translations from the

mDGS test set. We compare our approach to the

baseline transformer that achieved 31.12 BLEU-1

and 3.04 BLEU-4. We show the output from the

S&R approach as well as the intermediate output

from GS.

Figure 5: Example mDGS translations from a

baseline transformer, the GS and S&R models )

These translations show that our approach is bet-

ter at retaining the meaning of the spoken lan-

guage sentence, likely due to the 37.88% improve-

ment in BLUE-1 score. However, in some cases,

GS can over predict the number of tokens, espe-

cially for long input sequences as shown by the

third example.

6. Conclusion

In this paper we presented Select and Reorder

(S&R), a novel two step approach to T2G trans-

lation, splitting the problem into two concurrent

tasks of Gloss Selection (GS) and Gloss Reorder-

ing (GR). This approach disentangles the order

from the vocabulary, allowing the GS model to fo-

cus on maximizing the correct vocabulary whilst

leaving arguably the more difficult ordering task to

a separate model. We showed our proposed GS

model achieves a significant increase in BLEU-1

score of 11.79 on the mDGS dataset. In addi-

tion, we showed that reordering can be learnt by a

GR model, but statistical based methods perform

stronger with the current data limitations. Finally,

we showed the result of combining the GS with the

statistical reordering mapping, finding the S&R ap-

proach outperformed a neural editing program (Li

et al., 2021), RNN (Stoll et al., 2018) and a basic

transformer (Saunders et al., 2022).

It’s clear that one major challenge to the field is

the lack of quality gloss labelled data. Therefore,

in the future it would be interesting to see if data

augmentation could be used to pool sign language

resources from different languages (e.g. DGS,

BSL and ASL). A shared lexicon would need to be

established across the datasets to combine all of

the parallel bilingual data. Alternatively, using the

proposed alignment a multilingual model could be

trained using Randomly Aligned Substitutions (Lin

et al., 2020).
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