
2024 18th International Conference on Automatic Face and Gesture Recognition (FG)

A Data-Driven Representation for Sign Language Production

Harry Walsh1, Abolfazl Ravanshad2, Mariam Rahmani2 and Richard Bowden1

1 CVSSP, University of Surrey, Guildford, United Kingdom
2 OmniBridge.ai, an Intel Venture, USA

Abstract— Phonetic representations are used when record-
ing spoken languages, but no equivalent exists for recording
signed languages. As a result, linguists have proposed several
annotation systems that operate on the gloss or sub-unit level;
however, these resources are notably irregular and scarce.

Sign Language Production (SLP) aims to automatically
translate spoken language sentences into continuous sequences
of sign language. However, current state-of-the-art approaches
rely on scarce linguistic resources to work. This has limited
progress in the field. This paper introduces an innovative solu-
tion by transforming the continuous pose generation problem
into a discrete sequence generation problem. Thus, overcoming
the need for costly annotation. Although, if available, we
leverage the additional information to enhance our approach.

By applying Vector Quantisation (VQ) to sign language
data, we first learn a codebook of short motions that can
be combined to create a natural sequence of sign. Where
each token in the codebook can be thought of as the lexicon
of our representation. Then using a transformer we perform
a translation from spoken language text to a sequence of
codebook tokens. Each token can be directly mapped to a
sequence of poses allowing the translation to be performed
by a single network. Furthermore, we present a sign stitching
method to effectively join tokens together. We evaluate on
the RWTH-PHOENIX-Weather-2014T (PHOENIX14T) and the
more challenging meineDGST (mDGS) datasets. An extensive
evaluation shows our approach outperforms previous methods,
increasing the BLEU-1 back translation score by up to 72%.

I. INTRODUCTION

Sign language is a rich and complex form of communica-
tion that relies on visual-spatial elements rather than spoken
words [42]. It serves as the primary mode of communication
for the deaf community [45].

Sign languages are composed of cheremes, analogous to
the phonemes found in spoken languages [29]. Cheremes
from the Greek word for hand, describe features such as
handshape, orientation, location, movement and non-manual
expressions. These fundamental units can be combined to
create a natural sequence of signing. When transcribing sign
language, linguists commonly employ sub-unit and gloss1

level representations [14], [44]. Unfortunately, curating tran-
scriptions is time-consuming and costly, and as a result,
linguistic resources are often limited or even non-existent
[3].

Sign Language Production (SLP) is the task of translating
from a spoken language sentence to a continuous sign

This work was supported by Intel, the SNSF project ‘SMILE II’ (CRSII5
193686), the European Union’s Horizon2020 programme (‘EASIER’ grant
agreement 101016982) and the Innosuisse IICT Flagship (PFFS-21-47). This
work reflects only the author’s view and the Commission is not responsible
for any use that may be made of the information it contains.

1Gloss is the written word associated with a sign

language sequence. To facilitate natural communication, SLP
must include both manual and non-manual components 2.
Previous works have attempted to learn a direct mapping
from Text-to-Pose (T2P). However, they suffer from re-
gression to the mean [38]. Alternative two-step methods
(Text-to-Gloss-to-Pose (T2G2P)) rely on expensive linguistic
annotation [13], [15], [37].

In this paper, we propose creating a data-driven represen-
tation of sign language that can be used as a replacement
for expensive linguistic annotation. Our approach learns a
codebook of motions from continuous 3D pose data using
a Noise Substitution Vector Quantization (NSVQ) model
[47]. The codebook can be considered the lexicon of our
new representation and used to tokenise a continuous pose
sequence into a sequence of discrete codes. As depicted in
Fig. 1, we then tackle the problem as a traditional sequence-
to-sequence task, translating from a spoken language sen-
tence (Fig. 1.1) to a sequence of codebook tokens (Fig. 1.2).
Unlike the previous two-step approaches our intermediary
representation can be directly mapped to a sequence of poses
(Fig. 1.3) and includes non-manual key points. Furthermore,
we show how our representation can be enhanced when
limited linguistic annotation is available, and by introducing
a novel stitching module we create more natural continuous
signing.

We show state-of-the-art results on RWTH-PHOENIX-
Weather-2014T (PHOENIX14T) and the more challenging
Meine DGS Annotated (mDGS) dataset. An extensive abla-
tion study reveals the effectiveness of our approach compared
to previous works. Increasing the back translation scores by
up to 72%. Finally, we share quantitative results.

We can summarise the contribution of this paper as:
• A novel architecture for creating a data-driven represen-

tation of sign language.
• Sign stitching, a method to improve the back translation

performance.
• A contrastive learning approach that enhances the rep-

resentation.
• State-of-the-art SLP performance on PHOENIX14T and

the more challenging mDGS dataset.

II. RELATED WORK

A. Sign Language Translation (SLT)

Over the past three decades, computational sign language
translation has remained an active area of interest [46]. Initial

2Manual components include hand shape and motion. While non-manual
components include facial expressions, body movements, eye gaze etc.

979-8-3503-9494-8/24/$31.00 ©2024 IEEE

Fig. 1. A overview of our approach to Sign Language Production (SLP). Showing 1) the source spoken language sentence, 2) our intermediate representation
of sign, 3) the synthesized sequence of signing, and, 4) the original video.

research focused on isolated Sign Language Recognition
(SLR), where a Convolutional Neural Network (CNN) is
used to classify a single instance of a sign [30]. Advances
in the field led to Continuous Sign Language Recognition
(CSLR), which requires both the segmentation of a video
into its constituent signs and their classification [26]. Since
then the more challenging task of Sign-to-Text (S2T) was
introduced [4], where continuous sign language sequences
are directly converted into spoken language sentences. How-
ever, it is shown that translating via a gloss intermediary
gives better performance (Sign-to-Gloss-to-Text (S2G2T).
Transformers [48] have been applied to the problem, and
demonstrated state-of-the-art performance [5]. Thus, we
utilise this architecture to evaluate the performance of our
approach, similar to [37], [38], [39].

B. Sign Language Production (SLP)

SLP is the task of translating from spoken language
sentences to a continuous sequence of sign language. Early
approaches to SLP use animated avatars with a dictionary
lookup [10], [20], [33]. The first deep SLP pipeline broke
down the task into three steps, first, a translation from Text-
to-Gloss (T2G) followed by a second Gloss-to-Pose (G2P)
translation and finally a mapping from Pose to Sign (P2S)
[43]. Saunders et al. introduced the Progressive transformer
[38] an encoder-decoder transformer architecture that gen-
erates a continuous pose sequence given a spoken language
sentence (T2P), simplifying the SLP pipeline. They demon-
strated that better translation results were achieved using a
gloss intermediary (T2G2P). However, the approach suffers
from regression to the mean, resulting in under-articulated
signing. In an attempt to reduce the problem, adversarial
training and Mixture Density Network (MDN) are added
to the model [37]. Alternatively, Huang et al. proposed a
non-autoregressive G2P architecture [15], which produces
the sign sequence in a single step.

Alternative representations to gloss have been explored
namely the Hamburg Notation System (HamNoSys) [14] and
SignWriting [44]. HamNoSys is a transcription system that

is used to describe sign language at the phonetic level, where
each sign consists of a description of the initial posture and
the action over time. HamNoSys can be mapped directly to
an avatar making it a suitable alternative for gloss in the SLP
pipeline [21]. Furthermore, Walsh et al. defined the task of
Text-to-HamNoSys (T2H) and showed improved translation
performance by using it as an intermediate representation
[49]. A similar translation task has been explored with
translating text to SignWriting [18] and animating from
SignWriting [2].

Modern deep learning is heavily dependent on data, ap-
proximately 15 million sentence pairs are required before
deep learning starts to outperform statistical approaches
[25]. In contrast, sign language datasets are limited. For
example, mDGS has only 50k parallel sentences with gloss
and HamNoSys annotations [27]. These annotation systems
are time-consuming and costly to create, and this has limited
the size of the available datasets. Therefore, in this paper,
we propose learning a representation from 3D pose data
that can be used as a substitute for gloss or HamNoSys.
But unlike gloss, our representation can be mapped directly
to a sequence of poses, removing the need for expensive
annotation. But to build a discrete vocabulary we need to
quantise the data.

C. Vector Quantized Models

Kingma et al. [24] introduced the first Variational Autoen-
coder (VAE) and showed impressive results. However, they
struggled to capture fine-grained structures. Van Den Oord
[34] improved on this by introducing the Vector Quantized
Variational Autoencoder (VQ-VAE) architecture. The model
integrates Vector Quantisation (VQ) into the latent space of
a VAE. Forcing the embedding space of the VAE to be
discrete, allowing state-of-the-art image and audio genera-
tion. Since then, VQ has been applied to several problems
including music generation using a hierarchical VQ-VAE
[6], speech synthesis using self-supervised training [1], and
more recently image generation using a diffusion model
[13]. The original VQ-VAE architecture used an argmin

operation to select the closest matching codebook entry. As
a result, the model used straight-through gradient estimation
to make the model differentiable. Consequently, the model
uses three separate losses to train: a reconstruction loss, a
codebook loss and a commitment loss. Kaiser et al. [19] used
an exponentially moving average to update the codebook.
This simultaneously helped stabilise training and reduced
the required loss functions to two. Vali et al. [47] then
reduced the required losses to one by introducing the NSVQ
technique. Here the vector quantization error is approximated
by substituting it for a product of the original error and a
normalised noise vector. The result allows for end-to-end
training of the model showing faster convergence compared
to straight-through estimation and exponential moving av-
erages models. Therefore, we adopt this architecture in our
approach.

VQ has been previously applied to the SLP problem [16],
[50]. Xie et al. broke the human skeleton into three separate
codebooks and used a diffusion model with codeUnet [50]
to translate from G2P. The approach still relies on expensive
linguistic annotation, and qualitative results show a lack of
detail in the hands resulting in under-articulated signing. In
contrast, we propose approaching the task using a trans-
former to construct the codebook and perform the translation.
We believe that the attention mechanism is more adept to
modelling long-range dependencies and the change in order
between the source and target. Consequently, we apply our
approach to the more challenging task of T2P translation and
show higher back translation scores.

III. METHODOLOGY

The aim of SLP is to enable seamless translation from
spoken to signed languages. To accomplish this, we con-
vert a source spoken language sequence, denoted as X =
(x1, x2, ..., xW) with W words, into a continuous sequence
of poses, denoted as P = (p1, p2, ..., pU) with U frames.
Where each pose consists of J joints in D dimensional space
e.g. pi ∈ RJ×D. SLP is a significant challenge, considering
that the target length is substantially greater than the source,
such as U >> W . This inherent difficulty persists even when
employing state-of-the-art sequence-to-sequence models for
the translation task [48]. To overcome this, we first learn a
codebook of tokens, that each represent a short sequence of
signing and can be directly mapped back to a sequence of
poses. Then we perform a translation from spoken language
text to a sequence of latent codes, as shown in Fig. 1.1 to 1.2.
The individual architectures of this pipeline are illustrated in
Fig. 2, and we elaborate on each stage in the subsequent
sections.

A. Pose Codebook

The objective of the codebook is to learn a set of motions
from a dataset of continuous signing. Our approach employs
a transformer encoder-decoder architecture with a NSVQ.
Next, we explain each module in turn, following Fig. 2.a
from left to right;

Encoder: Given a short sequence of poses, P =
(p1, p2, ..., pUcb

) with Ucb frames, we add positional encod-
ing to each pose. We then embed the sequence using a linear
layer which acts only in the spatial dimension. Then the
sequence is passed to the spatial-temporal transformer en-
coder, allowing the network to learn long-range dependencies
within the sequence. The embedded features can be defined
as z ∈ RUcb×H , where H is the embedding size. Note we
train each codebook entry to represent a sub-unit of a full
continuous sequence, hence Ucb << U .

VQ: The NSVQ codebook learns a set of tokens from the
encoder, we denote the codebook as CB = [t1, t2, ..., tN],
where N is the number of tokens in the codebook and
each ti ∈ RUcb×H . Therefore, the length of each pose
sequence, Ucb, determines how many frames each codebook
token represents. To train this module, each output from the
encoder, z, is mapped to a single codebook token ti. This is
called VQ and is defined as;

ti ; i = argmin
ti

||z − ti||2 (1)

Eq. (1) is non-differentiable. To overcome this the NSVQ
simulates the quantization error by adding noise to the
input vector, such that the simulated noise forms the same
distribution as the original VQ error. The NSVQ is trained
end-to-end and the output to the decoder can be defined as;

ẑ = z + ||z − ti|| ∗
V

||V ||
(2)

Where V is a normally distributed noise source. Fig. 2.a
(NSVQ) depicts how Eq. (1) and (2) are used during training.

Decoder: The decoder learns to reconstruct the original
pose sequence from the quantized embedding. Here we use
counter decoding from Saunders et al. [38] to drive the
decoder, and therefore, we use non-autoregressive decoding.
Meaning a sequence is processed in a single step, for reduced
computational cost and faster inference speeds. We find using
this approach outperforms a simple multilayer perceptron on
reconstruction error. The value of the counter is defined as;

cu =
u+ 1

Ucb
(3)

Where u is the current position in the sequence and Ucb is the
total sequence length. As shown in Fig. 2.a (Decoder), we
add positional encoding and use a linear layer to embed the
counter values. We then apply a spatial-temporal transformer
decoder, that uses cross and self-attention to produce the
output embedding. From this, we project the embedding back
to the pose and counter values using two linear layers. Our
architecture is trained end-to-end using the following loss
function;

LCodebook =
1

Ucb

Ucb∑
u=1

(Pu − P̂u)
2 + α(cu − ĉu)

2 (4)

where α is a scaling factor that we determine empirically
and P̂ , ĉ, are the predicted pose and counter values.

Fig. 2. An overview of the architecture used in our approach. Showing a) The Codebook training architecture and b) the Text-to-Codebook Tokens
Translation architecture.

B. Codebook Replacement

Codebook collapse is a significant challenge when training
codebooks with VQ [7]. This is when several tokens within
the codebook are no longer selected during the quantization
process, resulting in dead codebook tokens. This can occur
when the data distribution of the embedding space no longer
matches the tokens. Strategies exist to detect and replace
these dead tokens [9], [47], [51].

We employ two replacement strategies to reduce dead
codebook entries and evenly distribute active entries. Code-
book entries whose usage fall below a threshold percentage
are replaced with either, 1) a randomly selected active entry,
plus a small magnitude of normal noise, or, 2) a randomly
selected embedding from the encoder, z. By tracking the
usage of each token over a given number of batches we can
determine active tokens when the percentage used is greater
than β and dead tokens when the percentage used is less than
γ. We set a schedule for training, initially using replacement
more often and slowly decreasing the frequency throughout
training. Once the learning rate decreases past a given factor
we stop using replacement allowing the network to fine tune
its parameters.

C. Contrastive Learning

When linguistic annotation is available we apply an ad-
ditional contrastive loss. Specifically, we add a supervised
contrastive loss [22] to the encoder of the codebook trans-
former, as shown in Fig. 2. This makes use of gloss labels
and time stamps to tag each input sequence with its cor-
responding gloss ID. For long input sequences that contain
frames from multiple glosses, we select the most common
ID. The contrastive loss pulls sequences belonging to the
same gloss together, while simultaneously pushing apart
sequences belonging to different glosses. We hypothesise that
the additional loss allows the encoder to overcome the natural
variation between signers, helping the model become person-
invariant. We define the loss as,

LsupCon =

I∑
i=0

−1

|A(i)|

A(i)∑
a=0

(
exp(zi · za/τ)∑B(i)
b=1 exp(zi · zb/τ)

) (5)

Here i is the index of the anchor. A(i) is the set of indices
that correspond to positive samples in the batch and |A(i)|
is the number of samples in a batch. While, B(i), is the set
of the negative samples. τ is a scalar temperature parameter.
We define a sequence to be positive if it shares the same
gloss ID with the anchor, while we define a negative sample
if it has a different ID. The contrastive loss is scaled by δ
before being added to the codebook loss. Therefore, the total
loss is defined as;

LTotal = LCodebook + δLsupCon (6)

D. Pose Sequence Tokenization

To perform a translation from text to tokens, we first tok-
enize the continuous pose sequence. We build the codebook
to be a sub-unit representation. Thus, given a continuous
sequence of poses, P , we create a sequence of tokens,
T = (t1, t2, ..., tM) where M is the number tokens, which
corresponds to the length of the original sequence, such that
M = ⌊Ucb/U⌋. Therefore, when tokenizing a sequence we
lose any tailing frames. We freeze the encoder and codebook
and pass each segment through the encoder. To find the
corresponding token we then apply Eq. (1).

De-tokenization: A mapping between the codebook to-
kens and their corresponding pose sequences is obtained by
passing each token through the decoder, such that;

P = D(T) (7)

We apply this mapping when evaluating the translation
model’s performance in the pose space.

E. Text-to-Codebook Translation

Given a spoken language sequence, X = (x1, x2, ..., xW)
we aim to produce the corresponding sequence of codebook
tokens, T = (t1, t2, ..., tM), therefore the translation model
learns the conditional probability p(T |X). First, positional
encoding is added to the spoken language sequence, X . After
it is embedded with a linear layer and passed through the
encoder giving the context embedding used by the decoders
cross attention layers. We apply autoregressive decoding,
starting with the beginning of sentence token and we con-
tinue decoding until the end of sentence token is predicted,

as illustrated in Fig. 2. Similar to the encoder, positional
encoding is added before each token is embedded using a
linear layer.

F. Codebook Stitching

As discussed, the predicted sequence of tokens, T , can
be directly mapped to a sequence of poses, P . However,
discrepancies may arise between the final pose of one token
and the initial pose of the next, resulting in discontinuities.
To address this we employ linear interpolation to stitch code-
book entries together, as a result we generate more natural
continuous sequences. Furthermore, to maintain temporal
consistency with the original sequence we fit a high-order
spline curve [8] and re-sample. This maintains the number
of poses in the sequence.

IV. EXPERIMENTAL SETUP

A. Implementation Details

In our experiments, we search for the best hyper-
parameters and find the following settings the most effective.
We build our encoder-decoder translation model using a
single layer with four heads, opting for an embedding size
of 512 and a feed-forward size of 1024. The resultant
architecture contains 7.8 million parameters. When decoding
we employ a beam search algorithm with a size of 5 and a
length penalty of 2.0.

Our codebook model consists of a smaller encoder-
decoder that has 1.2 million parameters. The model has 2
layers with 4 heads and is built with an embedding and
feed-forward size of 128. We set a codebook replacement
threshold of 0.1%. Initially, we conduct replacement once
per epoch and gradually reduce the frequency by 10 every 50
epochs. We set the initial learning rate to 10−4 and stop the
codebook replacement once the learning rate reaches 10−6.

Both models employ dropout with a probability of 0.1
[41]. We use Relu activation between the layers and ap-
ply pre-layer normalisation for regularisation and training
stability. We train with a reduce on plateau scheduler with
a patience of 5 and a decrease factor of 0.9. To initialize
the transformer encoder and decoder layers we employ a
Xavier initializer [11] with zero bias and Adam optimization
[23]. The learning rate is initially set to 10−4 and we train
the model till convergence. Our translation model code base
comes from the Kreutzer et al. NMT toolkit, JoeyNMT [28]
and is implemented using Pytorch [36].

For comparison on the mDGS dataset, we train two
variants of the progressive transformer till convergence with
the settings presented in [38].

B. Dataset

To assess our models, we employ the Public Corpus of
German Sign Language, 3rd release, the mDGS dataset
[27], and the PHOENIX14T dataset (as introduced by Cam-
goz et al., 2018 [4]). The mDGS dataset is comprised
of aligned spoken German sentences and gloss sequences,
obtained from unconstrained dialogues between two native
deaf signers. Whereas the PHOENIX14T dataset comes from

German weather broadcasts and includes 8257 sequences
performed by 9 signers. Resulting in 1066 signed glosses
and a spoken language vocabulary of 2887. Notably, the
mDGS is 7.5 times larger than PHOENIX14T, featuring 330
deaf participants engaging in free-form signing and a spoken
language vocabulary of 18,457. We follow the formatting
conventions set out by Saunders et al. in [40]. In addition,
we eliminate gloss variant numbers to mitigate singletons
when translating G2P, in Section V-A.5.

To obtain the pose from the original video, we employ
Mediapipe to extract 61 2D keypoints (comprised of 21 for
each hand, 9 for the body, and 10 for the face) [32]. To
ensure the accurate elevation from 2D to 3D, we adopt the
methodology outlined in [17]. This approach utilises forward
kinematics and a neural network to predict both bone lengths
and angles from the 2D pose. Each pose is represented as
a hierarchical tree, enforcing physical limits to constrain the
pose and ensure it remains valid. When two camera angles
are available (such as in the mDGS dataset) we extract
3D pose using the method above and run an additional
optimization, minimizing the error between the two predicted
poses. The mDGS and PHOENIX14T datasets are captured
at 50 and 25 frames per second (fps), respectively. We reduce
the frame rate by subsampling each pose sequence by a
factor of 3, this removes redundant information and speeds
up training.

C. Evaluation Metrics

For evaluation purposes, we employ the back translation
metric [38]. For which we use the state-of-the-art CSLR
architecture (Sign Language Transformers [5]), the same as
[15], [37], [39], [50]. The model is a transformer encoder-
decoder which predicts a spoken language sentence given a
pose sequence. The model employs Connectionist Temporal
Classification (CTC) loss [12] as additional supervision to
predict gloss tokens. We train a model for each dataset and
freeze the parameters so results are consistent across runs.
We compute BLEU scores (BLEU-1,2,3, and 4) [35] and
ROUGE scores [31] against the original input text or gloss.

To evaluate the accuracy of the poses we use Dynamic
Time Warping Mean Joint Error (DTW-MJE), this metric
aligns two-time series by stretching or compressing them
locally in time to find the optimal match, minimizing the
overall distance between the ground truth (GT) and predicted.
Thus, we first calculate the index alignment;

Ai,j = DTW (pu, p̂u) (8)

After the alignment, we compute the mean joint error be-
tween the two;

DTW-MJE =

U∑
u=0

|pu[Ai]− p̂u[Aj]| (9)

Note we normalise the skeletons between the range of zero
and one before calculating DTW-MJE.

TABLE I
THE RESULTS OF TRANSLATING FROM SPOKEN LANGUAGE TEXT-TO-POSE WITH DIFFERENT CODEBOOK VOCABULARY SIZES ON THE

RWTH-PHOENIX-WEATHER-2014T DATASET.

PHOENIX14T TEST SET DEV SET
Vocabulary Size: DTW-MJE BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE DTW-MJE BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE

500 0.08563 24.24 13.11 9.31 7.41 25.064 0.08548 23.71 12.68 8.79 6.84 24.19
1,000 0.09401 24.78 13.96 9.85 7.71 25.90 0.09336 24.37 13.31 9.08 6.97 25.34
3,000 0.1029 25.70 14.48 10.179 7.90 26.68 0.1039 25.08 13.72 9.53 7.316 26.27
4,000 0.1047 27.74 16.36 11.75 9.20 27.93 0.1036 27.85 16.71 12.19 9.64 28.87
5,000 0.1036 24.71 13.39 9.39 7.22 26.03 0.1029 24.99 13.47 9.20 6.955 25.74
6,000 0.1044 22.81 12.35 8.93 7.16 24.33 0.1045 25.37 14.65 10.66 8.36 27.14

TABLE II
THE RESULTS OF TRANSLATING FROM SPOKEN LANGUAGE TEXT-TO-POSE WITH DIFFERENT CODEBOOK VOCABULARY SIZES ON THE MEINE DGS

ANNOTATED (MDGS) DATASET.

mDGS TEST SET DEV SET
Vocabulary Size: DTW-MJE BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE DTW-MJE BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE

500 0.1090 14.94 3.05 0.57 0.15 21.54 0.1078 14.80 3.01 0.632 0.21 21.14
1,000 0.1071 14.72 3.04 0.73 0.27 21.25 0.1069 14.84 2.83 0.59 0.18 21.01
2,500 0.1153 15.83 2.99 0.77 0.19 21.21 0.1157 15.71 2.80 0.72 0.00 20.82
3,000 0.1251 15.08 2.84 0.70 0.21 20.66 0.1245 15.25 2.78 0.71 0.23 20.54
3,500 0.1241 15.45 3.06 0.79 0.29 21.41 0.1227 15.43 3.01 0.72 0.21 20.91
5,000 0.1288 14.95 2.63 0.68 0.24 21.12 0.1306 14.87 2.74 0.86 0.38 20.99

10,000 0.1262 7.55 1.37 0.36 0.00 20.71 0.1271 7.58 1.29 0.31 0.098 20.58
25,000 0.1203 10.23 1.75 0.34 0.00 21.49 0.1193 10.19 1.72 0.41 0.14 21.13

V. EXPERIMENTS

A. Quantitative Evaluation

In this section, we provide a quantitative evaluation of our
SLP approach. Initially, we search for the optimal vocabulary
size and window size for our codebooks, showing the result
is dataset dependent. Following this, we conduct an ablation
study on the mDGS dataset, demonstrating the advantages
of both the contrastive loss and the stitching model. We
then apply an enhanced codebook trained on the mDGS to
the PHOENIX14T dataset. Finally, to facilitate a meaningful
comparison on the PHOENIX14T, we train a G2P model and
assess its performance against prior works.

1) Codebook Vocabulary Size: Our first experiment
searches for the best vocabulary size for each dataset. We
fixed the window size to 4 frames and trained each codebook
till convergence. After we freeze the codebook and use it to
tokenize each dataset for translation.

As shown in Table I the best vocabulary size is found to
be 4,000 on PHOENIX14T, achieving an impressive 27.85
BLEU-1 and 28.87 ROUGE score. The optimum is roughly 4
times larger than the original gloss vocabulary, suggesting the
model is distinguishing between lexical variations. Whereas,
on the larger dataset, mDGS, a smaller vocabulary is found
to be optimal at 2,500 as shown in Table II. Suggesting the
model is finding a subunit representation given the original
gloss vocabulary was approximately 4,500. At the optimal
vocabulary, a reasonable score of 15.83 BlEU-1 and 21.21
ROUGE were achieved. However, the model showed limited
performance on BLEU-2 to 4 metrics. This is due to the
limits of the back translation model, as on the ground truth
data, the model achieved only 0.8 BLEU-4 (shown in row
1 Table V, GT). Relative to this theoretical maximum our

model performs well.
The smaller the codebook size the more data points map to

a single token, as a result, tokens can suffer from regression
to the mean, resulting in under-articulated signing. Hence,
on both datasets, the lowest DTW-MJE is achieved at small
codebook sizes as each token is more likely to contain a mean
pose. Therefore we choose to follow BLEU and ROUGE
scores when deciding the best vocabulary size.

On PHOENIX14T we find our best codebook used 3985
tokens to tokenize the training data, a 99.6% vocabulary
usage. mDGS has a similar result, with 99.8% of tokens
being used. The aggressive codebook replacement strategy
effectively removes dead tokens, enabling the high codebook
utility.

2) Codebook Window Size: Next, we investigate the best
window size for each codebook entry. The vocabulary is fixed
to the optimum found in the previous experiment, 4,000 on
PHOENIX14T and 2,500 on mDGS. On PHOENIX14T we
find a BLEU and ROUGE of 27.85 and 28.87 respectively,
as shown in Table III. On mDGS a window size of 8 frames
was found to be the optimum (Table IV). However, both
correspond to 0.48 seconds of signing, since PHOENIX14T
and mDGS were captured at 25 and 50 fps, respectively.

Examination of both Table IV and Table III reveals that
increasing the window size beyond 4 and 8, respectively,
decreased the BLEU and ROUGE scores while improving
the DTW-MJE. The minimum DTW-MJE was observed at a
window size of 24. Possibly due to the reduced number of
tokens in the target sequence that led to fewer discontinuities
in the pose sequence.

3) Ablation Study: We start by sharing the results of
training the back translation model (GT Table V). The model
achieves good BLEU-1 and ROUGE scores. However, the

TABLE III
THE RESULTS OF TRANSLATING FROM SPOKEN LANGUAGE TEXT-TO-POSE WITH DIFFERENT CODEBOOK WINDOW SIZES ON THE

RWTH-PHOENIX-WEATHER-2014T DATASET.

PHOENIX14T TEST SET DEV SET
Window Size: DTW-MJE BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE DTW-MJE BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE

2 0.0975 23.85 12.26 8.26 6.38 24.15 0.1004 23.03 11.85 7.88 5.89 24.08
4 0.1047 27.74 16.36 11.75 9.20 27.93 0.1036 27.85 16.71 12.19 9.64 28.87
8 0.0983 23.37 12.67 8.97 7.05 24.77 0.9953 23.32 12.91 9.34 7.58 25.34

12 0.1000 21.12 11.27 8.16 6.58 23.49 0.0997 21.48 11.40 8.02 6.30 23.74
16 0.0924 19.17 9.59 6.63 5.21 21.37 0.0917 19.43 9.83 6.85 5.36 22.17
24 0.0893 19.07 9.77 7.00 5.63 22.33 0.0899 17.94 9.20 6.42 5.07 21.67
32 0.0914 19.03 9.72 7.32 5.89 21.74 0.8925 17.82 8.80 5.83 4.48 20.93

TABLE IV
THE RESULTS OF TRANSLATING FROM SPOKEN LANGUAGE TEXT-TO-POSE WITH DIFFERENT CODEBOOK WINDOW SIZES ON THE MEINE DGS

ANNOTATED (MDGS) DATASET.

mDGS TEST SET DEV SET
Window Size: DTW-MJE BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE DTW-MJE BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE

2 0.1321 14.59 2.49 0.54 0.00 21.05 0.1326 14.38 2.37 0.51 0.14 20.70
4 0.1277 15.45 3.12 0.70 0.00 21.38 0.1269 15.46 2.90 0.62 0.25 20.95
8 0.1153 15.83 2.99 0.77 0.29 21.21 0.1157 15.71 2.80 0.71 0.00 20.82

12 0.1147 14.75 2.72 0.57 0.21 20.82 0.1142 15.05 2.79 0.63 0.00 20.93
16 0.1120 14.22 2.72 0.74 0.26 19.79 0.1115 14.31 2.54 0.63 0.23 19.73
24 0.1113 12.05 1.89 0.44 0.13 17.95 0.1092 12.01 1.76 0.33 0.00 18.05
32 0.1124 11.35 1.20 0.32 0.10 16.51 0.1118 11.34 1.80 0.35 0.00 16.62

TABLE V
THE RESULTS OF TRANSLATING FROM TEXT-TO-POSE WITH DIFFERENT APPROACHES ON THE MEINE DGS ANNOTATED (MDGS) DATASET.

mDGS TEST SET DEV SET
Approach: DTW-MJE BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE DTW-MJE BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE

GT 0.000 20.87 5.60 1.89 0.80 23.78 0.000 20.75 5.43 1.81 0.76 23.41

Quantization 0.0612 17.88 3.59 0.76 0.22 20.86 0.0611 17.97 3.35 0.81 0.25 20.73
PT 0.2291 6.11 0.94 0.21 0.05 8.36 0.2284 6.22 0.98 0.17 0.00 8.44

PT + GN 0.2245 7.18 1.48 0.40 0.01 8.38 0.2241 9.22 1.63 0.38 0.01 8.57
Codebook 0.1153 15.83 2.99 0.77 0.19 21.21 0.1157 15.71 2.80 0.72 0.00 20.82

Codebook + Stitching 0.1135 16.32 3.12 0.80 0.00 20.96 0.1137 16.11 3.02 0.79 0.19 20.72
Codebook + Contrastive 0.0882 17.44 3.66 0.99 0.35 22.25 0.0879 17.45 3.78 1.20 0.46 21.98

Codebook + Contrastive + Stitching 0.0865 17.62 3.72 1.04 0.39 22.23 0.0866 17.53 3.76 1.15 0.43 22.15

performance was limited on BLEU-2 to 4. The mDGS
dataset is challenging with a spoken language lexicon of
29,275 (10 times that of PHOENIX14T) which limits the
back translation results. As such, row 1, GT, should be
considered the upper bound for all experiments on mDGS.

Tokenizing a pose sequence with a codebook causes two
quantization errors. Firstly, tailing frames are lost if the
sequence is not a multiple of the window size, and, secondly,
an error in the pose is caused by selecting the closest
codebook token. As shown in Table V the accumulation of
these errors reduced the performance from the GT (row 1) to
Quantized (row 2), a decrease in BLEU-1 to 4 of 2.78, 2.08,
1.00 and 0.51 on the Dev set, a relatively small decrease in
performance.

For comparison, the following two rows (PT and PT +
GN) of Table V show the results of training a Progressive
Transformer on the same pose data with the same normal-
isation. Adding Gaussian noise (GN) to the input at a rate
of 5 increased the BLEU-1 and ROUGE scores by 3.00 and
0.13, respectively on the Dev set (shown in row 4, PT + GN).
Despite this augmentation, our baseline approach was shown
to outperform both versions of the progressive transformer.

Showing an impressive BLEU-1 increase of 8.65 and 6.49
on the Test and Dev set.

Now we present two additional techniques to improve
the performance of our baseline model. 1) A supervised
contrastive learning technique, described in Section III-C
and, 2) a codebook stitching approach, described in III-F.

When training the codebook we apply an additional loss
to the encoder of the model, this encourages sequences
from the same gloss to have a similar embedding, while
simultaneously pushing them away from sequences with a
different ID. We believe this helps the model to ignore the
natural variation between signers, allowing it to focus on
the core similarities. As shown in Table V ”Codebook +
Contrastive” (row 6) the incorporation of the loss improved
the performance on all metrics. The DTW-MJE improved by
23% and 24% on the test and dev set, respectively, while
the BLEU-1 score increased by 1.61 and 1.74. Showing
that linguistic annotation can be used to further improve the
approach.

The stitching module is applied to the predicted sequence
to create smoother transitions between codebook tokens, as
described in Section III-F. Table V ”Codebook + Stitching”

TABLE VI
THE RESULTS OF TRANSLATING FROM SPOKEN LANGUAGE

TEXT-TO-POSE ON THE RWTH-PHOENIX-WEATHER-2014T WITH A

CODEBOOKS TRAINED ON DIFFERENT DATASET.

PHOENIX14T TEST SET DEV SET
Approach: DTW-MJE BLEU-1 ROUGE DTW-MJE BLEU-1 ROUGE

PHIX Codebook 0.1014 24.68 23.89 0.0997 24.40 24.21
mDGS Codebook 0.1108 22.51 23.38 0.1106 22.71 23.92

mDGS Codebook+ 0.1064 24.32 24.03 0.1046 24.03 23.31

TABLE VII
THE RESULTS OF TRANSLATING FROM GLOSS-TO-POSE ON THE

RWTH-PHOENIX-WEATHER-2014T DATASET.

PHOENIX14T
Approach: DTW-MJE BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE

GT 0.000 32.41 20.19 14.41 11.32 32.96

PT [38] 0.191 11.45 7.08 5.08 4.04 -
NAT-AT [15] 0.177 14.26 9.93 7.11 5.53 -
NAT-EA [15] 0.146 15.12 10.45 7.99 6.66 -

PoseVQ-MP [50] 0.146 15.43 10.69 8.26 6.98 -
PoseVQ Diffusion [50] 0.116 16.11 11.37 9.22 7.50 -

G2P Ours 0.098 25.46 14.40 10.33 8.17 26.898
T2P Ours 0.105 27.74 16.36 11.75 9.20 27.93

shows the stitching module increased the back translation
BlEU-1 score by 0.49, while also improving the mean joint
error. This also had qualitative improvements reducing the
number of discontinuities in the predicted sequences, and
as a result, the sequence was more realistic. To evaluate
this experimentally we average the velocity of the signer’s
skeleton and find that the original data has a standard
deviation of 0.044. In contrast, the quantized sequence has a
deviation of 0.056. By applying the stitching module to the
output the standard deviation moves closer to the original
data to 0.039.

4) Cross-Corpus Codebook Study: Here we investigate if
a codebook trained on a high-resource dataset can be applied
to another. We take a codebook trained on the mDGS and use
it to perform translation on the PHOENIX14T dataset. As a
baseline, we train a codebook with the same hyperparameters
(Table VI row 1, PHIX Codebook). We use two codebooks, a
normal model (mDGS Codebook) and an enhanced codebook
with stitching plus contrastive learning (mDGS Codebook+).

The results show codebooks can be shared across datasets,
although with some reduction in performance, compared to
training on the original data. Between Table VI rows 1 and
2, we see a small decrease in BLEU-1 and ROUGE of 1.69
and 0.29, on the Dev set respectively. However, applying the
enhanced codebook to the PHOENIX14T dataset recovered
the majority of the lost performance.

5) State-of-the-art Comparison: Finally, to compare
against previous works we take our best-performing param-
eters found in Section V-A.1 and V-A.2 and apply them
to the G2P task. Results for comparison are provided by
[50]. We find our approach outperforms all previous meth-
ods on all metrics, including the progressive transformer
[38], a non-autoregressive transformer [15] and a diffusion-
based approach [13]. Compared to the next best model we
achieve improvements of 10.5% and 72.2% in DTW-MJE
and BLEU-1.

Surprisingly, we find the best performance when trans-
lating from text. This could be because of two reasons, 1)
gloss is not a perfect representation of sign language and
lacks many essential channels (mouthing, body posture and
facial expression) increasing the difficulty in this context. 2)
the additional context within the spoken language assists the
model. Overall we find the BLEU-1 and 4 scores increase
by 2.28 and 1.42 when translating from text. Our approach
circumvents the need for expensive gloss annotation, paving
the way for better communication with the deaf community.

B. Qualitative Evaluation
Fig. 3 shows a translation example from the

PHOENIX14T dataset. The figure shows the model is
able to faithfully translate a given sentence. However, note
that some details are missing in the hands caused by the
quantization error from the codebook.

In addition, we share video outputs from our best models
on the mDGS and PHOENIX14T datasets3. To ensure a real-
istic evaluation we also share failure cases. Finally, we share
PCA plots of the codebook’s embedding space, showing the
effect of our replacement strategy and contrastive loss.

Fig. 3. A Translation example produced by our best model on the RWTH-
PHOENIX-Weather-2014T dataset.

VI. CONCLUSION
In this work, we presented a novel approach to T2P

translation. Previously the task was treated as a pose re-
gression problem, where the goal was to synthesize a pose
sequence directly from text. As a result, the resulting poses
suffered from regression to the mean. Here we propose
performing a discrete sequence-to-sequence translation us-
ing a transformer. To accomplish this we create a discrete
representation of sign language, in which the tokens can be
combined to create continuous natural expressive signing.
We explored the application of sign stitching to generate
seamless, more natural sequences. Furthermore, we showed
how linguistic annotation can be leveraged to improve our
approach. In cases where linguistic annotation is absent,
we demonstrated the feasibility of sharing codebooks across
datasets. We evaluate our approach on the PHOENIX14T
and mDGS dataset, showing state-of-the-art back translation
and DTW-MJE scores.

3https://github.com/walsharry/VQ_SLP_Demos

https://github.com/walsharry/VQ_SLP_Demos

REFERENCES

[1] A. Baevski, Y. Zhou, A. Mohamed, and M. Auli. wav2vec 2.0:
A framework for self-supervised learning of speech representations.
Advances in neural information processing systems, 33:12449–12460,
2020.

[2] Y. Bouzid and M. Jemni. An avatar based approach for automatically
interpreting a sign language notation. In 2013 IEEE 13th International
Conference on Advanced Learning Technologies, pages 92–94. IEEE,
2013.

[3] D. Bragg, O. Koller, M. Bellard, L. Berke, P. Boudreault, A. Braffort,
N. Caselli, M. Huenerfauth, H. Kacorri, T. Verhoef, et al. Sign
language recognition, generation, and translation: An interdisciplinary
perspective. In Proceedings of the 21st International ACM SIGAC-
CESS Conference on Computers and Accessibility, pages 16–31, 2019.

[4] N. C. Camgoz, S. Hadfield, O. Koller, H. Ney, and R. Bowden. Neural
sign language translation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018.

[5] N. C. Camgoz, O. Koller, S. Hadfield, and R. Bowden. Sign
language transformers: Joint end-to-end sign language recognition and
translation. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 10023–10033, 2020.

[6] P. Dhariwal, H. Jun, C. Payne, J. W. Kim, A. Radford, and
I. Sutskever. Jukebox: A generative model for music. arXiv preprint
arXiv:2005.00341, 2020.

[7] S. Dieleman, A. van den Oord, and K. Simonyan. The challenge of
realistic music generation: modelling raw audio at scale. Advances in
neural information processing systems, 31, 2018.

[8] P. Dierckx. Algorithms for smoothing data with periodic and paramet-
ric splines. Computer Graphics and Image Processing, 20(2):171–184,
1982.

[9] A. Gersho and R. M. Gray. Vector quantization and signal compres-
sion, volume 159. Springer Science & Business Media, 2012.

[10] J. R. Glauert, R. Elliott, S. J. Cox, J. Tryggvason, and M. Sheard.
Vanessa–a system for communication between deaf and hearing peo-
ple. Technology and disability, 18(4):207–216, 2006.

[11] X. Glorot and Y. Bengio. Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of the 13th International
Conference on Artificial Intelligence and Statistics, 2010.

[12] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber. Connectionist
temporal classification: labelling unsegmented sequence data with
recurrent neural networks. In Proceedings of the 23rd international
conference on Machine learning, pages 369–376, 2006.

[13] S. Gu, D. Chen, J. Bao, F. Wen, B. Zhang, D. Chen, L. Yuan, and
B. Guo. Vector quantized diffusion model for text-to-image synthesis.
In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 10696–10706, 2022.

[14] T. Hanke. Hamnosys-representing sign language data in language
resources and language processing contexts. In LREC, volume 4, pages
1–6, 2004.

[15] W. Huang, W. Pan, Z. Zhao, and Q. Tian. Towards fast and high-
quality sign language production. In Proceedings of the 29th ACM
International Conference on Multimedia, pages 3172–3181, 2021.

[16] E. J. Hwang, H. Lee, and J. C. Park. Autoregressive sign language
production: A gloss-free approach with discrete representations. arXiv
preprint arXiv:2309.12179, 2023.

[17] M. Ivashechkin, O. Mendez, and R. Bowden. Improving 3d pose
estimation for sign language. In 2023 IEEE International Conference
on Acoustics, Speech, and Signal Processing Workshops (ICASSPW),
pages 1–5, 2023.

[18] Z. Jiang, A. Moryossef, M. Müller, and S. Ebling. Machine transla-
tion between spoken languages and signed languages represented in
signwriting. arXiv preprint arXiv:2210.05404, 2022.

[19] L. Kaiser, S. Bengio, A. Roy, A. Vaswani, N. Parmar, J. Uszkoreit, and
N. Shazeer. Fast decoding in sequence models using discrete latent
variables. In International Conference on Machine Learning, pages
2390–2399. PMLR, 2018.

[20] K. Karpouzis, G. Caridakis, S.-E. Fotinea, and E. Efthimiou. Educa-
tional resources and implementation of a greek sign language synthesis
architecture. Computers & Education, 49(1):54–74, 2007.

[21] K. Kaur and P. Kumar. Hamnosys to sigml conversion system for sign
language automation. Procedia Computer Science, 89:794–803, 2016.

[22] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola,
A. Maschinot, C. Liu, and D. Krishnan. Supervised contrastive learn-
ing. Advances in neural information processing systems, 33:18661–
18673, 2020.

[23] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
arXiv:1412.6980, 2014.

[24] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114, 2013.

[25] P. Koehn and R. Knowles. Six challenges for neural machine
translation. arXiv preprint arXiv:1706.03872, 2017.

[26] O. Koller, J. Forster, and H. Ney. Continuous sign language
recognition: Towards large vocabulary statistical recognition systems
handling multiple signers. Computer Vision and Image Understanding,
141:108–125, 2015. Pose & Gesture.

[27] R. Konrad, T. Hanke, G. Langer, D. Blanck, J. Bleicken, I. Hofmann,
O. Jeziorski, L. König, S. König, R. Nishio, A. Regen, U. Salden,
S. Wagner, S. Worseck, O. Böse, E. Jahn, and M. Schulder. Meine
dgs – annotiert. öffentliches korpus der deutschen gebärdensprache, 3.
release / my dgs – annotated. public corpus of german sign language,
3rd release, 2020.

[28] J. Kreutzer, J. Bastings, and S. Riezler. Joey nmt: A minimalist nmt
toolkit for novices. arXiv:1907.12484, 2019.

[29] J. Laver. Linguistic phonetics. The handbook of linguistics, pages
150–179, 2001.

[30] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE,
1998.

[31] C.-Y. Lin. Rouge: A package for automatic evaluation of summaries.
In Text summarization branches out, pages 74–81, 2004.

[32] C. Lugaresi, J. Tang, H. Nash, C. McClanahan, E. Uboweja, M. Hays,
F. Zhang, C.-L. Chang, M. G. Yong, J. Lee, et al. Mediapipe:
A framework for building perception pipelines. arXiv preprint
arXiv:1906.08172, 2019.

[33] J. McDonald, R. Wolfe, J. Schnepp, J. Hochgesang, D. G. Jamrozik,
M. Stumbo, L. Berke, M. Bialek, and F. Thomas. An automated
technique for real-time production of lifelike animations of american
sign language. Universal Access in the Information Society, 15:551–
566, 2016.

[34] A. v. d. Oord, O. Vinyals, and K. Kavukcuoglu. Neural discrete
representation learning. arXiv preprint arXiv:1711.00937, 2017.

[35] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a method
for automatic evaluation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computational Linguistics,
pages 311–318, 2002.

[36] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information
Processing Systems 32. Curran Associates, Inc., 2019.

[37] B. Saunders, N. C. Camgoz, and R. Bowden. Adversarial train-
ing for multi-channel sign language production. arXiv preprint
arXiv:2008.12405, 2020.

[38] B. Saunders, N. C. Camgoz, and R. Bowden. Progressive transformers
for end-to-end sign language production. In European Conference on
Computer Vision, 2020.

[39] B. Saunders, N. C. Camgoz, and R. Bowden. Mixed signals: Sign
language production via a mixture of motion primitives. In Proceed-
ings of the IEEE/CVF International Conference on Computer Vision,
pages 1919–1929, 2021.

[40] B. Saunders, N. C. Camgoz, and R. Bowden. Signing at Scale:
Learning to Co-Articulate Signs for Large-Scale Photo-Realistic Sign
Language Production. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2022.

[41] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov. Dropout: A simple way to prevent neural networks from
overfitting. The Journal of Machine Learning Research, 2014.

[42] W. C. Stokoe. Sign language structure. Annual Review of Anthropol-
ogy, 1980.

[43] S. Stoll, N. C. Camgoz, S. Hadfield, and R. Bowden. Text2sign:
towards sign language production using neural machine translation and
generative adversarial networks. International Journal of Computer
Vision, 128(4):891–908, 2020.

[44] V. Sutton. Lessons in SignWriting. SignWriting Press, 2022.
[45] R. Sutton-Spence and B. Woll. The linguistics of British Sign

Language: an introduction. Cambridge University Press, 1999.
[46] S. Tamura and S. Kawasaki. Recognition of sign language motion

images. Pattern Recognition, 1988.
[47] M. H. Vali and T. Bäckström. Nsvq: Noise substitution in vector

quantization for machine learning. IEEE Access, 10:13598–13610,
2022.

[48] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin. Attention is all you need.
Advances in neural information processing systems, 30, 2017.

[49] H. Walsh, B. Saunders, and R. Bowden. Changing the representation:
Examining language representation for neural sign language produc-
tion. arXiv preprint arXiv:2210.06312, 2022.

[50] P. Xie, Q. Zhang, Z. Li, H. Tang, Y. Du, and X. Hu. Vector quan-
tized diffusion model with codeunet for text-to-sign pose sequences
generation. arXiv preprint arXiv:2208.09141, 2022.

[51] N. Zeghidour, A. Luebs, A. Omran, J. Skoglund, and M. Tagliasacchi.
Soundstream: An end-to-end neural audio codec. IEEE/ACM Transac-
tions on Audio, Speech, and Language Processing, 30:495–507, 2021.

	INTRODUCTION
	RELATED WORK
	slt
	Sign Language Production (SLP)
	Vector Quantized Models

	METHODOLOGY
	Pose Codebook
	Codebook Replacement
	Contrastive Learning
	Pose Sequence Tokenization
	Text-to-Codebook Translation
	Codebook Stitching

	EXPERIMENTAL SETUP
	Implementation Details
	Dataset
	Evaluation Metrics

	EXPERIMENTS
	Quantitative Evaluation
	Codebook Vocabulary Size
	Codebook Window Size
	Ablation Study
	Cross-Corpus Codebook Study
	State-of-the-art Comparison

	Qualitative Evaluation

	CONCLUSION
	References

