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Abstract

Sign Language Production (SLP) is a challenging task, given the limited resources
available and the inherent diversity within sign data. As a result, previous works have
suffered from the problem of regression to the mean, leading to under-articulated and
incomprehensible signing. In this paper, we propose using dictionary examples to cre-
ate expressive sign language sequences. However, simply concatenating the signs would
create robotic and unnatural sequences. Therefore, we present a 7-step approach to ef-
fectively stitch the signs together. First, by normalising each sign into a canonical pose,
cropping and stitching we create a continuous sequence. Then by applying filtering in the
frequency domain and resampling each sign we create cohesive natural sequences, that
mimic the prosody found in the original data. We leverage the SignGAN model to map
the output to a photo-realistic signer and present a complete Text-to-Sign (T2S) SLP
pipeline. Our evaluation demonstrates the effectiveness of this approach, showcasing
state-of-the-art performance across all datasets.

1 Introduction
Sign Language Production (SLP) is an essential step in facilitating two-way communication
between the Deaf and Hearing communities. Sign language is inherently multi-channelled,
with channels performed asynchronously and categorised into manual (hands and body) and
non-manual (facial, rhythm, stress and intonation) features. For sign language to be truly
understandable, both manual and non-manual features must be present. Analogous to the
tone and rhythm used in spoken language, signed language exhibits prosody. The natural
rhythm, stress and intonation that signed languages use to convey information [39].

Sign language corpora containing linguistic annotation are limited due to the cost and
time required to create such annotations [15]. Previous works have attempted to directly
regress a sequence of poses from the spoken language or representations such as gloss
[10, 11, 24, 28, 31, 33, 40, 41]. However, given that sign language is a low-resource lan-
guage and the complexity is under-represented in small datasets, previous approaches have
suffered from regression to the mean, resulting in under-articulated and incomprehensible
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Figure 1: Overview of our approach. a) Spoken language to gloss, duration, facial expression
and cutoff translation. b) Pose sequence generation. c) Photorealistic signer production.

signing. Additionally, previous works have implicitly modelled prosody, but due to the lim-
ited resources, it is often lost in production.

In this paper, we propose a novel approach to SLP that effectively stitches together dic-
tionary examples to create a meaningful, continuous sequence of sign language. By using
isolated signs, we ensure the sequence remains expressive, overcoming previous shortcom-
ings related to regression to the mean. However, each example lacks non-manual features,
so we propose a Noise Substitution Vector Quantization (NSVQ) transformer architecture
to learn a dictionary of facial expressions that can be added to each sign to create a realis-
tic sequence. To the best of our knowledge, we are the first to explicitly model aspects of
signed prosody in the context of SLP. By training a translation model to predict glosses,
alongside a duration, facial expression and a cutoff value, we can modify the sequence to
eliminate robotic and unnatural movements. Resampling each sign to the predicted duration
allows us to alter the velocity associated with signing stress and rhythm [38]. Furthermore,
by applying filtering in the frequency domain, we can adjust the trajectory of each sign to
create softer signing, akin to how signers modify a sign to convey sentiment [2, 9, 23]. Our
approach demonstrates it is capable of modifying the stitched sequence to emulate aspects
of prosody seen in the original continuous data. Evaluation of the produced sequence with
back translation showcases state-of-the-art performance on all three datasets.

Furthermore, to conduct a realistic user evaluation we use SignGAN, a Generative Ad-
versarial Network (GAN) capable of generating photo-realistic sign language videos from a
sequence of poses [25]. Thus, we present a full Text-to-Sign (T2S) SLP pipeline that con-
tains both manual and non-manual features. The user evaluation agrees that the approach
outperforms the baseline method [26] and improves the realism of the signed sequence. An
overview of the approach can be seen in Fig. 1.

2 Related Work
Sign language Translation: For the last 30 years Computational Sign Language Trans-
lation (SLT) has been an active area of research [32]. Initially focusing on isolated Sign
Language Recognition (SLR) where a single instance of a sign was classified using a Con-
volutional Neural Network (CNN) [16]. Subsequent works extended to Continuous Sign
Language Recognition (CSLR), which requires both the segmentation of a video into its
constituent signs and their respective classification [14]. Later Camgoz et al. introduced the
task of Sign-to-Text (S2T) [4] using neural networks, an extension of CSLR that requires
the additional task of translation to spoken language. S2T performance was later improved
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using a Transformer [36]. Although there has been a lot of work since, the architecture has
since become the standard when computing back-translation performance [24, 26, 28].

Sign Language Production: SLP is the reverse task to SLT, which aims to translate
spoken sentences into continuous sign language. Early approaches to SLP used an animated
avatar driven with either motion capture data or parameterised glosses [1, 6, 7, 8, 35, 42].
These works all required expensive annotation systems, such as the Hamburg Notation Sys-
tem (HamNoSys) [21] or SigML [13] and have shown to be unpopular with the Deaf commu-
nity due to the robotic motion and under articulated signing [22]. None of these approaches
attempt to join the isolated signs effectively. Instead opting to play each sign in the sequence,
with unnatural transitions in between.

Early deep learning SLP approaches used Neural Machine Translation (NMT) and broke
the task down into three steps, Text-to-Gloss (T2G), Gloss-to-Pose (G2P) and Pose-to-
Sign (P2S) [31]. Saunders et al. introduced the Progressive Transformer (PT) [26], a trans-
former architecture that synthesises poses directly from text. Although better results were
achieved using gloss as an intermediate representation, the approach suffered from regres-
sion to the mean, caused by the lack of training data and the diversity of lexical variants. To
reduce the problem, adversarial training and Mixture Density Network (MDN) were applied
[24, 28] and since then a range of approaches have been proposed [10, 11, 27, 33, 40, 41].
However, visual inspection of the results shows that the approaches still suffer from regres-
sion to the mean, and as a result, they fail to effectively convey the translation. Here we
propose a method to effectively join isolated signs, which means the produced sequences are
guaranteed to be expressive and do not suffer from regression to the mean.

Furthermore, preliminary experiments reveal that each sign language sequence contains
a distinct range of frequencies correlated to the signer’s style. Fast motions contain high fre-
quencies, while soft, slow signing involves lower frequencies, typically within the range of
1 to 25 Hz. To emulate this characteristic we filter the produced sequences in the frequency
domain using a low-pass Butterworth filter [3]. This ensures the movements are stylisti-
cally cohesive. In addition, by adjusting the duration of each sign, we recreate the prosody
observed in the original data.

3 Methodology

SLP aims to facilitate the continuous translation from spoken to signed languages by con-
verting a source spoken language sequence, X = (x1,x2, ...,xW ) with W words into a video
of photo-realistic sign, denoted as V = (v1,v2, . . . ,vU ) with U frames. To accomplish this
the approach uses two intermediate representations, following Fig. 1 from left to right. First,
the spoken language is translated to a sequence of glosses, Y = (y1,y2, . . . ,yG), face tokens,
F t = ( f t

1, f t
2, . . . , f t

G) and duration’s, D = (d1,d2, . . . ,dG), all with length G. Additionally,
for each sequence, we predict a low pass cutoff, C, which we use to filter the movements
(Fig. 1.a). Each gloss and facial expression is stitched together using these parameters,
to produce a continuous sequence of poses, denoted as P = (p1, p2, ..., pU ) with U frames
(Fig. 1.b). Finally, we use the pose sequence to condition the SignGAN module allowing us
to produce a photo-realistic signer. Next, we provide a detailed explanation of each step in
our pipeline, following the order illustrated in Fig. 1 from left to right. We then elaborate on
the process of generating the cutoff frequencies and the dictionary of facial expressions.
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3.1 Translation Model
Given a spoken language sequence X = (x1,x2, ...,xW ), our goal is to generate a correspond-
ing sequence of glosses Y = (y1,y2, ...,yG). We design the transformer with four output
layers, enabling the model to predict the corresponding duration (in frames) and facial ex-
pression for each gloss, plus a low-pass filter cutoff in Hz for each sequence. Thus the model
learns the conditional probability p(Y,D,F t ,C|X).

Figure 2: An overview of the Translation module.

The model is an encoder-decoder transformer with Multi-Headed Attention (MHA). The
spoken language and gloss sequences are tokenized at the word level, and the embedding for
a sequence is generated using a token embedding layer. Following the embedding layer, we
add sine and cosine positional encoding.

The encoder learns to generate a contextualized representation for each token in the se-
quence. This representation is then fed into the decoder, which consists of multiple layers of
self and cross MHA along with feedforward layers, and residual connections. The gloss, fa-
cial expression and duration predictions are obtained by passing the decoder output through
their respective output layers. To obtain the cutoff prediction, we pool the decoder embed-
ding across each time step and pass the output through a linear layer. The model is trained
end-to-end with the following loss function;

Ltotal = λy

Y

∑
i=1

ŷi log(yi)+λ f

F

∑
i=1

F̂i log(Fi)+λd
1
n

n

∑
i=1

(di − d̂i)
2 +λC(C−Ĉ)2 (1)

Each component is scaled by a factor, λy, λd , λ f and λC before being combined to give
the total loss, Ltotal . The predictions from this model are passed to the stitching module to
generate a pose sequence.

3.2 Stitching
For each dataset, we collect an isolated instance of each gloss in our target vocabulary. For
each sign, we extract Mediapipe skeletons [18] and run an additional optimization to uplift
the 2D skeletons to 3D [12]. The optimisation uses forward kinematics and a neural network
to solve for joint angles, Ja. We choose to store our dictionary as joint angles, as this allows
us to apply a canonical skeleton. This ensures the stitched sequence is consistent even if the
original signers have different bone lengths. We define a dictionary of, Ns, signs as DS =
[S1,S2, ...,SNs ] where each sign in the dictionary consists of a sequence of angles, such that
Si = (a1,a2, ...,aUs) and ai ∈ RJa , where Us is the duration in frames. In addition we define
a learnt dictionary of, N f , facial expressions as DF = [F1,F2, ...,FN f ], where Fi ∈ RU f ×J×D.
Fig. 3 illustrates our seven-step stitching pipeline, we now detail each step.
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Figure 3: An overview of the stitching module.

Step 1) Given a list of glosses, Y , we select the corresponding signs in our dictionary. If
a gloss is absent from the dictionary, we initially lemmatize and format the gloss. If still, we
are unable to find a match in the dictionary, we apply a word embedding model and compute
the cosine similarity with all words in the dictionary. We then select the closest sign as the
substitute. Such that;

jsub = argmax
j
(

∑
Ns
j=1 ε(yq) · ε(DSy

j)√
ε(yq)2 ·

√
∑

Ns
j=1 ε(DSy

j)
2
) S = DS[ jsub] (2)

Here ε() represents the word embedding model, yq is the query gloss and DSy is the dictio-
nary’s corresponding gloss tags. We find word embeddings capture the meaning of words,
enabling substitutions such as replacing RUHRGEBIET (RUHR AREA) with LANDSCHAFT
(LANDSCAPE). Simultaneously, in this step, we select the corresponding facial expressions,
F , from the dictionary, DF , given the predicted face tokens, F t .

Step 2) The selected signs are converted from angles into a 3D canonical pose. We
normalise the rotation of the signer, such that the midpoint of the hips is located at the origin
and the shoulders are fixed on the y plane. This ensures the skeleton is consistent across all
the signs. Consequently, we convert from a sequence of angles Sn ∈RUs×Ja to a sequence of
poses, P=(p1, p2, ..., pUs) with the same number of frames, Us. Each pose, pu, is represented
in D-dimensional space and consists of J joints, denoted as pu ∈ RJ×D.

Step 3) The dictionary signs often start and end from a rest pose. Therefore, to avoid
unnatural transitions we cropped the beginning and end of each sign. For this, we track the
keypoint T corresponding to the wrist of the signer’s dominant hand and measure the dis-
tance travelled. Thus, for each dictionary sign we create a sequence, P∆ = (p∆

2 , p∆
3 , . . . , p∆

Us
)

n ∈ 2,3, . . . ,Us, representing the distance travelled for a dictionary sign. We remove the
beginning frames once the sign has moved by a threshold, αcrop. The crop index is given by:

indexstart = argmax
u

(
Us

∑
u=1

P∆
u −αcrop ·

max(Us)

∑
u=1

P∆
u

)
(3)

To crop the end, we reverse the order of frames and repeat the process.
Step 4) As detailed above, we predict the duration of each gloss. Here, we utilize the

duration to resample the length of each sign and facial expression, emulating the natural
rhythm in the original data. This process involves upsampling or downsampling the sign
using linear interpolation. Once the facial expression and sign are resampled to the same
length, we shift and rotate the face onto the body creating the complete skeleton.
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Step 5) Having created a list of signs in a canonical pose, cropped, and resampled to
match the original data, the next step involves joining these signs into a single sequence
using the smart stitching module. The objective is to achieve a natural transition between the
end of one sign and the start of the next. To accomplish this, we track the dominant hand of
the signer and calculate the distance, ∆, between the end of the first sign and the start of the
second sign. Then we can determine the required number of frames, Ustitch, needed to create
a smooth transition. Such that:

Ustitch = argmin
u
(Vmin <

fps∗∆

u
<Vmax) (4)

Where Vmax and Vmin are the start and end velocities of the two signs. This calculation
ensures that the signer’s velocity is bounded by the end velocity of sign one and the initial
velocity of sign two. In cases where multiple solutions exist, we select Ustitch that minimizes
the standard deviation between the start and end velocity. Following this, we employ linear
interpolation to generate the missing frames.

Step 6) We concatenate the signs and the stitched frames to form a single sequence. We
then sum all the predicted durations and resample the sequence to match the ground truth.

Step 7) Finally, we apply a low-pass Butterworth filter to each keypoint over time [3].
The predicted cutoff value determines which frequencies are removed, and corresponds to the
-3dB attenuation point. This step aims to enhance the stylistic cohesiveness of the sequence
by smoothing out any sharp, quick movements not present in the original sequence. The
transfer function can be formulated as;

H(z) =
(
(1+

( z
e j·ωc

)2N
)−1

(5)

Here we apply a 4th order filter thus, N is 4, and the angular cutoff frequency is given by
ωc = 2πC. z corresponds to the z-transform of the pose sequence. Applying the bilinear
transform to Eq. (5) gives the discrete formula that we apply. This process generates natural
pose sequences, that remain expressive and are stylistically cohesive. Next, we map these
poses to a photo-realistic signer.

3.3 SignGAN
Skeleton outputs have been shown to reduce Deaf comprehension compared to a photo-
realistic signer [37]. Therefore, to gain valuable feedback from the Deaf community we
train a SignGan model [25]. Given a pose sequence, P = (p1, p2, . . . , pU ), generated by our
stitching approach the model aims to generate the corresponding video of sign language,
V = (v1,v2, . . . ,vU ) with U frames.

3.4 Facial Expression Generation
To be truly understandable and accepted by the Deaf community non-manual features must
be present in the final output. Here we are using a discrete sequence-to-sequence model to
generate the translation. Therefore, we must learn a discrete vocabulary of facial expressions,
DF , that can be added to the isolated signs. We design a transformer base NSVQ architecture
to learn a spatial-temporal dictionary of facial expressions. Using the ground truth gloss
timing information, we extract the corresponding face mesh sequence, denoted as F . We then
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resample each sequence to a constant length, U f and scale it to be a constant size. Signers
in the dataset are often looking off center, therefore we normalize the average direction of
the face so that it is looking directly forward. Similar to Fig. 2 (Encoder) we add positional
encoding and then embed the sequence using a single linear layer. After the embedding is
passed through the transformer encoder to the codebook. The NSVQ codebook learns a set
of N f embeddings [34]. We denote the embedded face sequence and therefore each codebook
entry as Fz

i ∈ RU f ×H , where H is the embedding dimension. Each input is mapped to one
codebook entry, the difference between the selected codebook entry and the input is then
simulated using a normally distributed noise source. A product of the simulated noise and
the encoder output is then passed to the decoder. We use the counter decoding technique from
the PT [26], to drive the decoder. The decoder learns to reconstruct the original face sequence
and the input counter values. Thus, the model is trained end-to-end with the following loss
function;

LFace =
1

U f

U f

∑
u=1

(( fu − f̂u)
2 +λCN(cu − ĉu)

2) (6)

Where λCN is a scaling factor and c is the counter value. Once fully trained we pass each
codebook embedding, Fz

i , through the decoder to give the learnt dictionary of facial expres-
sions in Euclidean space, DF = [F1,F2, ...,FN f ].

3.5 Cutoff Generation
To generate the ground truth cutoffs used in training, we once again apply our stitching
approach. For each sequence in the ground truth data, P, we produce the equivalent stitched
sequence, Pstitch. We then apply a low-pass filter to Pstitch within the range of 1 to 25 Hz
and measure the intersection and set difference of the frequencies, denoted as (FT (P)∩
FT (Pstitch)) and (FT (P)\FT (Pstitch)), where the Fourier transform is represented as FT ().
Subsequently, we fit a parametric spline curve to the intersection and set difference. To
determine the cutoff we find the frequency that maximises the intersection while minimising
the set difference. This provides the cutoff frequency for that sequence. We opt to use this
method over just analyzing the frequency in the original sequence as we do not have an ideal
filter. Thus, the Butterworth filter has unintended effects on frequencies below the cutoff.

4 Experiments

4.1 Implementation Details
We apply the approach to three datasets, the Public Corpus of German Sign Language, 3rd re-
lease, the Meine DGS Annotated (mDGS) dataset [15], RWTH-PHOENIX-Weather-2014T
(PHOENIX14T) [4] and the BSL Corpus T (BSLCPT) [29]. To evaluate our approach we
employ a CSLR model (Sign Language Transformers [5]) to conduct back-translation, the
same as [10, 24, 28, 40]. BLEU [19], Rouge [17], and chrF [20] scores are computed
between the predicted text and the ground truth. Finally, to evaluate the pose we employ
Dynamic Time Warping Mean Joint Error (DTW-MJE). In the following experiment, we
test two different dictionaries: 1) collected from isolated examples, and 2) a dictionary cre-
ated from continuous data. Noted as Isolated and continuous in the following tables. Further
information about the datasets, dictionaries and model implementation can be found in the
supplementary material.
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4.2 Quantitative Evaluation
Text-to-Gloss Translation Results: We start by evaluating the T2G translation performance
described in Section 3.1. Table 1 shows the performance on all three datasets. We suggest
that the difficulty of a dataset is proportional to the vocabulary and the total number of
sequences used in training. We find the best performance on PHOENIX14T data which
has the highest number of sequences per token, achieving 18.11 BLEU-4. In comparison
to previous works, we find by having the model predict duration, face and cutoff we can
achieve higher BLEU-1 scores, but at the cost of a lower BLEU-4 in comparison to [26]. On
the more challenging mDGS dataset we find a considerably lower BLUE-4 score due to the
larger domain of discourse. The BSLCPT has a smaller domain of discourse in comparison
to mDGS but has the fewest sequences per token. Thus, understandably we only achieve a
BLEU-4 of 1.67 on the test set. Overall we find the model to be performing as expected.

TEST SET DEV SET
Dataset: BLEU-1 BLEU-2 BLEU-3 BLEU-4 chrF ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4 chrF ROUGE

BSLCPT 26.02 11.19 4.15 1.67 23.54 25.06 26.88 11.40 4.72 1.28 23.59 26.96
mDGS 30.13 13.04 5.45 2.36 29.24 31.43 29.72 12.46 4.89 1.87 28.90 30.90

PHOENIX14T 55.48 36.54 25.18 18.11 49.30 53.83 56.55 37.32 25.85 18.74 48.91 54.81
PHOENIX14T [26] 55.18 37.10 26.24 19.10 - 54.55 55.65 38.21 27.36 20.23 - 55.41
PHOENIX14T [30] 50.67 32.25 21.54 15.26 - 48.10 50.15 32.47 22.30 16.34 - 48.42

Table 1: The results of translating from Text-to-Gloss on the BSL Corpus T, RWTH-
PHOENIX-Weather-2014T and Meine DGS Annotated dataset.

Text-to-Pose Translation Results: Note in the following experiments the back-translation
model’s performance (shown as GT top row of Table 2, 3 and 4) should be considered the
upper limit of performance. In this section, we evaluate the Text-to-Pose (T2P) performance
using back translation. To allow for a comparison we train two versions of the PT with the
setting presented in [26]. PT is the standard architecture, while PT + GN is trained with
Gaussian Noise added to the input. In line with the original paper, we find Gaussian Noise
improves the performance, however, our approach still outperforms both models except on
DTW-MJE. As discussed previously, other works suffer from regression to the mean caused
by the models attempting to minimise their loss function and thus, are incentivised to predict
a mean pose. This metric fails to evaluate the content of the sequence, but the higher score
does indicate our model is expressive as it is producing sequences further from the mean. For
back-translation, we outperform the PT on all metrics. Showing significant improvements in
BLEU-1 score of 98% and 269% on the mDGS and BSLCPT dev set (comparing PT + GN
and Stitcher (continuous), Table 2 and 3).

Deep learning models exhibit a bias toward the data they were trained on and often show
poor out-of-domain performance. Unsurprisingly, the performance improves when using the
continuous dictionary. We find only a small increase in BLEU-1 of 0.13 on the BSLCPT dev
set (Table 2), most likely due to the isolated dictionary containing the lexical variants found

BSLCPT TEST SET DEV SET
Approach: DTW-MJE BLEU-1 BLEU-2 BLEU-3 BLEU-4 chrF ROUGE DTW-MJE BLEU-1 BLEU-2 BLEU-3 BLEU-4 chrF ROUGE

GT 0.000 17.3 3.96 1.37 0.54 13.00 21.76 0.000 17.32 3.71 1.08 0.39 13.04 21.89

PT [26] 0.288 4.40 0.65 0.18 0.00 5.80 8.22 0.292 4.00 0.61 0.10 0.00 5.69 8.02
PT + GN [26] 0.267 4.96 0.55 0.13 0.00 6.38 8.82 0.258 4.47 0.63 0.09 0.00 6.14 8.89

Stitcher (Isolated) 0.588 16.37 2.86 0.75 0.28 14.07 20.84 0.592 16.39 2.82 0.58 0.00 13.9 19.55
Stitcher (continuous) 0.575 16.99 3.65 1.03 0.41 14.32 20.65 0.573 16.52 3.19 0.73 0.00 14.34 20.53

Table 2: The results of translating from Text-to-Pose on the BSL Corpus T dataset.

Citation
Citation
{Saunders, Camgoz, and Bowden} 2020{}

Citation
Citation
{Saunders, Camgoz, and Bowden} 2020{}

Citation
Citation
{Stoll, Camg{ö}z, Hadfield, and Bowden} 2018

Citation
Citation
{Saunders, Camgoz, and Bowden} 2020{}

Citation
Citation
{Saunders, Camgoz, and Bowden} 2020{}

Citation
Citation
{Saunders, Camgoz, and Bowden} 2020{}



H. WALSH, B. SAUNDERS, R. BOWDEN: SIGN STITCHING 9

mDGS TEST SET DEV SET
Approach: DTW-MJE BLEU-1 BLEU-2 BLEU-3 BLEU-4 chrF ROUGE DTW-MJE BLEU-1 BLEU-2 BLEU-3 BLEU-4 chrF ROUGE

GT 0.000 20.87 5.60 1.89 0.80 17.56 23.78 0.000 20.75 5.43 1.81 0.76 17.63 23.41

PT [26] 0.229 6.11 0.94 0.21 0.05 8.07 8.36 0.228 6.22 0.98 0.17 0.00 8.23 8.44
PT + GN [26] 0.2245 7.18 1.48 0.40 0.01 8.46 8.38 0.2241 9.22 1.63 0.38 0.01 8.94 8.57

Stitcher (Isolated) 0.581 16.63 3.75 0.94 0.22 13.39 21.69 0.592 16.9 3.67 0.95 0.32 13.9 21.34
Stitcher (Continuous) 0.637 18.64 4.17 1.07 0.39 16.86 21.80 0.637 18.27 4.07 1.19 0.43 16.75 21.25

Table 3: The results of translating from Text-to-Pose on the Meine DGS Annotated (mDGS)
dataset.

PHOENIX14T
Approach: DTW-MJE BLEU-1 BLEU-2 BLEU-3 BLEU-4 chrF ROUGE

GT 0.000 32.41 20.19 14.41 11.32 33.84 32.96

PT [26] 0.197 6.27 3.33 2.14 1.59 14.52 9.50
PT + GN [26] 0.191 11.45 7.08 5.08 4.04 19.09 14.52
NAT-AT [10] 0.177 14.26 9.93 7.11 5.53 21.87 18.72
NAT-EA [10] 0.146 15.12 10.45 7.99 6.66 22.98 19.43

PoseVQ-MP [40] 0.146 15.43 10.69 8.26 6.98 - -
PoseVQ-DDM [40] 0.116 16.11 11.37 9.22 7.50 - -

Stitching G2P (Isolated) 0.593 21.47 8.79 4.25 2.49 23.74 20.32
Stitching G2P (Continuous) 0.587 23.58 12.31 8.05 5.95 28.85 24.84

Stitching T2P (Isolated) 0.594 22.78 9.68 5.17 3.12 24.27 21.30
Stitching T2P (Continuous) 0.572 25.14 13.54 8.98 6.67 29.5 26.49

Table 4: The results of translating from Gloss-to-Pose (G2P) and Text-to-Pose (T2P) on the
RWTH-PHOENIX-Weather-2014T test set.

in the original data. Whereas we see a larger increase on the mDGS dataset (Table 3).
Previous work has primarily focused on G2P translation, therefore to facilitate a mean-

ingful comparison we present two versions of the model. First, a G2P version, where we use
the ground truth data and just apply the stitching module, and, secondly our T2P approach
(translation then stitching). Results for comparison are provided by [40]. Note that the pre-
vious approaches do not use a dictionary of signs and instead attempt to regress the pose
directly from the spoken language. We find our approach outperforms previous work on the
BLEU-1 to 2 scores increasing the score by 56% and 19%, respectively (comparing Table 4,
row 7 and 11). We also find significant improvement in ROUGE and chrF metrics.

Using a continuous dictionary we can outperform all models except for the Vector Quan-
tisation (VQ) based approaches on BLEU-3 to 4. As the VQ model is learning sub-units of
a gloss sequence we suggest this gives it an advantage on higher n-grams, as each token that
is predicted can represent multiple signs.

4.3 Qualitative Evaluation

Visual Outputs: To demonstrate the approach’s effectiveness, we present skeleton and video
outputs for two sign languages (BSL and DGS)1. Furthermore, in the supplementary mate-
rial, we share visualizations of the produced sequence.

Survey Results: The survey presented a comparison to PT, followed by an ablation of
different components of the stitching approach. 17% of people surveyed were native Deaf
signers, while 34% were L2 signers or language learners. 87.5% preferred our approach
compared to the PT, while the rest selected no preference. 100% of people agreed that
applying the filter improved the realism compared, while resampling was found to be less
important, with 37.5% selecting no preference between the resampled and normal sequence.

1https://github.com/walsharry/Sign_Stitching_Demos
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5 Conclusion
In this paper, we presented a novel approach to SLP. Previous works have suffered from
the problem of regression to the mean and have mainly focused on manual features. Here
we have overcome the problem by using a dictionary of expressive examples. The stitching
effectively joins the signs together creating a natural continuous sequence and by clustering
facial expressions into a vocabulary we can create a sequence that contains both manual
and non-manual features. We eliminated unnatural transitions and enhanced the stylistic
cohesiveness through the approach. As a result, we present state-of-the-art performance.
Finally, the user evaluation agrees with the quantitative results, indicating our approach can
produce realistic expressive Sign language.
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Bojar, Rajan Chatterjee, Christian Federmann, Barry Haddow, Chris Hokamp, Matthias
Huck, Varvara Logacheva, and Pavel Pecina, editors, Proceedings of the Tenth Work-
shop on Statistical Machine Translation, pages 392–395, Lisbon, Portugal, September
2015. Association for Computational Linguistics. doi: 10.18653/v1/W15-3049. URL
https://aclanthology.org/W15-3049.

[21] Siegmund Prillwitz and Hamburg Zentrum für Deutsche Gebärdensprache und Kom-
munikation Gehörloser. HamNoSys: Version 2.0; Hamburg notation system for sign
languages; an introductory guide. Signum-Verlag, 1989.

[22] Razieh Rastgoo, Kourosh Kiani, Sergio Escalera, and Mohammad Sabokrou. Sign lan-
guage production: A review. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 3451–3461, 2021.

[23] Judy S Reilly, Marina L McIntire, and Howie Seago. Affective prosody in american
sign language. Sign Language Studies, pages 113–128, 1992.

[24] Ben Saunders, Necati Cihan Camgoz, and Richard Bowden. Adversarial training for
multi-channel sign language production. arXiv preprint arXiv:2008.12405, 2020.

[25] Ben Saunders, Necati Cihan Camgoz, and Richard Bowden. Everybody sign now:
Translating spoken language to photo realistic sign language video. arXiv preprint
arXiv:2011.09846, 2020.

[26] Ben Saunders, Necati Cihan Camgoz, and Richard Bowden. Progressive transformers
for end-to-end sign language production. In European Conference on Computer Vision,
2020.

[27] Ben Saunders, Necati Cihan Camgoz, and Richard Bowden. Continuous 3d multi-
channel sign language production via progressive transformers and mixture density
networks. International journal of computer vision, 129(7):2113–2135, 2021.

[28] Ben Saunders, Necati Cihan Camgoz, and Richard Bowden. Mixed signals: Sign lan-
guage production via a mixture of motion primitives. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 1919–1929, 2021.

[29] Adam Schembri. British sign language corpus project: Open access archives and the
observer’s paradox. In sign-lang@ LREC 2008, pages 165–169. European Language
Resources Association (ELRA), 2008.

[30] Stephanie Stoll, Necati Cihan Camgöz, Simon Hadfield, and Richard Bowden. Sign
language production using neural machine translation and generative adversarial net-
works. In Proceedings of the 29th British Machine Vision Conference, 2018.

https://aclanthology.org/W15-3049


H. WALSH, B. SAUNDERS, R. BOWDEN: SIGN STITCHING 13

[31] Stephanie Stoll, Necati Cihan Camgoz, Simon Hadfield, and Richard Bowden.
Text2sign: towards sign language production using neural machine translation and
generative adversarial networks. International Journal of Computer Vision, 128(4):
891–908, 2020.

[32] Shinichi Tamura and Shingo Kawasaki. Recognition of sign language motion images.
Pattern Recognition, 1988.

[33] Shengeng Tang, Richang Hong, Dan Guo, and Meng Wang. Gloss semantic-enhanced
network with online back-translation for sign language production. In Proceedings of
the 30th ACM International Conference on Multimedia, pages 5630–5638, 2022.

[34] Mohammad Hassan Vali and Tom Bäckström. Nsvq: Noise substitution in vector quan-
tization for machine learning. IEEE Access, 10:13598–13610, 2022.

[35] Desmond Eustin Van Wyk. Virtual human modelling and animation for real-time sign
language visualisation. 2008.

[36] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30, 2017.

[37] Lucas Ventura, Amanda Duarte, and Xavier Giró-i Nieto. Can everybody sign
now? exploring sign language video generation from 2d poses. arXiv preprint
arXiv:2012.10941, 2020.

[38] Ronnie B Wilbur. Stress in a sl: Empirical evidence and linguistic i ssues. Language
and speech, 42(2-3):229–250, 1999.

[39] Ronnie B Wilbur. Effects of varying rate of signing on asl manual signs and nonmanual
markers. Language and speech, 52(2-3):245–285, 2009.

[40] Pan Xie, Qipeng Zhang, Zexian Li, Hao Tang, Yao Du, and Xiaohui Hu. Vector quan-
tized diffusion model with codeunet for text-to-sign pose sequences generation. arXiv
preprint arXiv:2208.09141, 2022.

[41] Pan Xie, Qipeng Zhang, Peng Taiying, Hao Tang, Yao Du, and Zexian Li. G2p-ddm:
Generating sign pose sequence from gloss sequence with discrete diffusion model. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pages 6234–
6242, 2024.

[42] Inge Zwitserlood, Margriet Verlinden, Johan Ros, Sanny Van Der Schoot, and
T Netherlands. Synthetic signing for the deaf: Esign. In Proceedings of the conference
and workshop on assistive technologies for vision and hearing impairment (CVHI),
2004.


