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Fig. 1: Examples of images, generated by the proposed method (column 6) and the state-of-the-art diffusion models (columns
1 to 5), given the pose condition (final column) and the text description.

Abstract— Recent years have seen significant progress in
human image generation, particularly with the advancements
in diffusion models. However, existing diffusion methods en-
counter challenges when producing consistent hand anatomy
and the generated images often lack precise control over
the hand pose. To address this limitation, we introduce a
novel approach to pose-conditioned human image generation,
dividing the process into two stages: hand generation and
subsequent body outpainting around the hands. We propose
training the hand generator in a multi-task setting to produce
both hand images and their corresponding segmentation masks,
and employ the trained model in the first stage of generation.
An adapted ControlNet model is then used in the second stage
to outpaint the body around the generated hands, producing
the final result. A novel blending technique is introduced
to preserve the hand details during the second stage that
combines the results of both stages in a coherent way. This
involves sequential expansion of the outpainted region while
fusing the latent representations, to ensure a seamless and
cohesive synthesis of the final image. Experimental evaluations
demonstrate the superiority of our proposed method over state-
of-the-art techniques, in both pose accuracy and image quality,
as validated on the HaGRID dataset. Our approach not only
enhances the quality of the generated hands but also offers
improved control over hand pose, advancing the capabilities of
pose-conditioned human image generation. The source code is
available here. 1

1https://github.com/apelykh/hand-to-diffusion

I. INTRODUCTION

Controllable human image generation is an important task
in the field of visual content production with applications
in advertising, game character creation and E-commerce
amongst others. In recent years, diffusion models have
overtaken the field with their flexibility and unprecedented
quality of results. They dominate over other generative model
types such as Generative Adversarial Networks (GAN) and
Variational Auto-Encoders (VAE) [7]. Many works have also
explored ways to add pose control to diffusion generators [3,
14, 26, 37, 42]. Some approaches [26, 42] add a trainable
branch on top of a frozen pre-trained Stable Diffusion (SD)
model [33]. Other works [3, 14] propose natively guided
diffusion models that receive conditioning in concatenation
with the input.

Despite the remarkable results and increased flexibility of
pose-guided approaches, diffusion models often struggle to
achieve high-quality hand generation, leading to inaccuracies
such as extra or missing fingers, distorted hand poses, and
the presence of visual artifacts (see Fig. 1). As the human
brain is highly attuned to recognizing the details of human
anatomy, including the structure and shape of hands, such
failure cases are easily spotted and perceived as unnatural
and eerie. In addition, modern diffusion generators do not
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provide precise control over hand pose and struggle to model
hand interactions due to possible occlusions and the anatomic
complexity of hands [14, 21].

The fact that hands are high-fidelity objects with many
degrees of freedom and a high probability of occlusion makes
it a challenge to generate them realistically. At the same
time, maintaining the model’s generalization in terms of
appearance and visual style while producing consistent hand
anatomy is challenging. Training datasets rarely combine the
volume and diversity of samples needed with high curation
quality and precise annotation. Publicly available datasets
that include annotated hands and hand interactions often
lack visual diversity and tend to concentrate only on hands
without including the rest of the body [24, 25, 45]. Using
such narrow-domain datasets, that do not present high variety
in appearance and style for fine-tuning a pre-trained diffusion
model, is typically detrimental. It can lead to decreased
generality and expressiveness of the generator. This effect
is referred to as ”catastrophic forgetting” in the literature
[14].

Recent works such as HandRefiner [21] and Concept
Sliders [8] attempt to fix the quality of hand generation in
SD and SDXL [29] respectively. Gandikota et al. identify
a low-rank direction in the parameter space of a diffusion
model that targets hand quality and allow it to be modified
via a Concept Slider. On the other hand, in HandRefiner
Lu et al. propose to repaint hands in the generated images
with a depthmap-conditioned ControlNet [42]. While both
approaches show improved hand quality, they aim for general
visual plausibility and do not allow pose control, which is a
paramount factor in numerous application areas of generative
models.

This work tackles the problem of high-quality hand gen-
eration in diffusion models while aiming to deliver precise
control over the pose and preserve generality and high
visual controllability. To our best knowledge, it is the first
diffusion approach capable of high quality hand generation
with pose control. This is achieved by dividing the task into
two sub-tasks, namely hand generation and body outpainting
around the generated hands. Such an architectural decision
is motivated by the idea of decreasing the variability of data
that the hand generator needs to learn from and allowing it
to favour pose precision and articulation. At the same time,
the outpainting stage leverages a conditional diffusion model
that is tuned to accommodate complex hand shapes and is
capable of synthesizing diverse appearances and styles. The
hand generator is trained in a multi-task setting to produce a
segmentation mask along with the main denoising objective,
enabling precise body outpainting. To bring the two sub-
components together in a coherent way and mitigate artifacts
on the mask border, we propose a blending approach that
utilizes sequential mask expansion.

The contributions of this work are summarized as follows:
• We propose a novel two-stage diffusion-based approach

to human image generation that is capable of producing
high-quality hands with precise control over their pose.

• We show that conditional diffusion models can be

successfully trained in a multi-task setting, predicting
both the added noise and the semantic segmentation
mask of the generated object.

• We introduce a blending technique that relies on se-
quential expansion of the outpainting region. It enables
harmonious fusion of the both stages of the generation
process while ensuring seamless transition between re-
gions and preservation of detail.

• To demonstrate the effectiveness of the proposed so-
lution, we conduct extensive experiments and com-
parisons with state-of-the-art models measuring pose
precision, including a separate evaluation of hand pose,
image quality and text-image consistency.

II. RELATED WORK

A. Image Generation with Diffusion Models

Recently, there has been a significant increase of interest
in diffusion models from the computer vision community
due to their flexibility and high quality of results, that
often dominate other generative model types [7]. A notable
branch of research in diffusion models is Denoising Dif-
fusion Probabilistic Models (DDPM) [13, 39] that utilize
two Markov chains: a forward chain that noises the data,
and a reverse chain that recovers data from noise. Ho et
al. [13] and Dhariwal and Nichol [7] demonstrated the
capability of denoising diffusion models to generate high-
quality samples unconditionally with Song et al. [40] and
Nichol and Dhariwal [28] further proposing optimizations
to the inference that allow for a significant speed up of
the generation process. GLIDE [27] combined a diffusion
model with text conditioning by encoding the input prompt
into a sequence of embeddings with a transformer, which
is then concatenated with the attention context of each
layer. Similarly, DALL-E2 [32] and Imagen [34] employed a
modified GLIDE architecture to map the CLIP [30] and T5-
XXL encoder [31] embedding space correspondingly into
the image space via the reverse diffusion process, generating
images that convey the semantic information of the input
caption. While early diffusion approaches were performed in
pixel space, Rombach et al. [33] proposed Latent Diffusion
by moving the denoising process to the lower-dimensional
latent space of a pre-trained autoencoder, benefiting from
perceptual compression of the modelled data and unlocking
greater flexibility for solving various image-to-image and
text-to-image tasks.

B. Pose-Conditioned Human Image Generation

Although unconditional and text-conditioned approaches
can often produce high-quality realistic results, the limited
control over generation makes such models unusable for
many content production use-cases.

Generative Adversarial Networks (GAN) [9] have been
widely used to introduce pose control to image genera-
tion. Ma et al. [23] utilized explicit appearance and pose
conditioning of a two-stage GAN architecture to generate
difference maps between the coarsely generated image and
the target to ensure faster model convergence. In contrast,



Siarohin et al. [38] proposed an end-to-end method that
explicitly models pose-related spatial deformations by em-
ploying deformable skip-connections. However, their method
requires extensive computations of affine transformations to
solve pixel-level misalignment caused by pose differences.
Zhu et al. [44] introduced a progressive scheme that transfers
the initial pose to the target through a sequence of interme-
diate representations using Pose-Attentional Transfer Blocks.
Subsequently, Zhou et al. [43] proposed a cross-attention-
based module that distributes features from semantic regions
of the source image to satisfy the target pose instead of
directly warping the source features. The aforementioned
approaches were mostly developed using fashion datasets
and/or low-resolution images without account for the hand
pose. With this in mind, Saunders et al. proposed GAN-
based methods [35, 36] for sign language applications that
aim to generate fine-grained hand details. Although the
approaches explicitly model hands, they can only produce
appearances seen during training and do not generalize to
out-of-distribution visual conditions.

Diffusion models have seen extensive use for pose-
conditioned human image generation. Bhunia et al. [4]
achieve pose control by concatenating the skeleton condition
to the model input. Additionally, the style image features
are passed to cross-attention blocks to better exploit the
correspondences between the source and target appearances.
Building up on Latent Diffusion [33], a number of works [3,
14, 26, 42] extended it to condition the denoising process on
various modalities such as human pose keypoints, sketches,
edge maps, depth maps, colour palette etc. ControlNet [42]
introduces a trainable copy of a Stable Diffusion (SD)
encoder to extract features from the condition while keep-
ing the base model frozen during training. Similarly, T2I-
Adapter [26] uses lightweight composable adapter blocks
for condition feature extraction which can be combined for
multi-condition setting. In [42] and [26], the features learned
by encoders are combined with the features of the frozen
backbone model in an additive manner which may provoke
trainable-frozen branch conflicts, as discussed in HumanSD
[14]. To mitigate this issue, Ju et al. do not employ additional
encoders and make all the parameters of the underlying
Stable Diffusion model trainable, while trying to mitigate
the issue of catastrophic forgetting by using the proposed
heatmap-guided denoising loss. They achieve pose control by
concatenating the skeletal condition with noisy input latents.
Similarly, Baldrati et al. [3] extend the input of the SD model
to include the human pose image and garment sketch, with
textual description being encoded with CLIP and passed into
the model through a cross-attention mechanism. Notably,
most of the recent pose-conditioned approaches to image
generation [3, 4, 14, 26, 37] do not include hand keypoints
into a skeleton representation and therefore do not offer
control over the hand pose. On the other hand, the models
that offer such control, e.g. ControlNet, fail to produce
realistic and anatomically correct hands. This shortcoming
is tackled by our proposed approach.

III. PROPOSED METHOD

A general overview of the proposed framework is shown
in Fig. 2. In this work, we propose to break the image
generation task into two sub-problems: hand generation and
body outpainting around the hands. Firstly, the hand image
and the corresponding segmentation mask are produced by
the diffusion-based generator, guided with the hand pose
condition in the form of a keypoint heatmap. It is possible
due to the multi-task training setting that we propose for
the generator. The obtained results are further resized and
aligned with the global body skeleton to serve as input to
the outpainting module. The final image is produced during
the second stage by outpainting around the generated hands
using the ControlNet [42] model. It is guided by the skeleton
image and the segmentation mask, obtained at the previous
stage. We are able to bring the two stages together in a
harmonious way by using the proposed blending strategy
with sequential mask expansion. The division into two sub-
components intends to decrease the complexity of the task
for the hand generator, enabling it to prioritize pose precision
and articulation. At the same time, employing a separate
model for the outpainting stage allows our system to have
greater control over the generated appearance and style via
the text prompt.

In Section III-A we outline the Latent Diffusion paradigm
that serves as the foundation for our work. Sections III-B and
III-C further describe each stage of the generation process
in detail, while Section III-D explains the proposed blending
technique that unifies both sub-components and helps to
produce a coherent output image.

A. Latent Diffusion Models

The idea of Latent Diffusion [33] is to perform the diffu-
sion process in the latent space of a pre-trained autoencoder
to decrease the dimensionality of the data and operate on
the feature level instead of raw pixels. The input image
I ∈ RH×W×3 is put through an encoder E to obtain its
latent representation x0 = E(I), where x0 ∈ RH

8 ×W
8 ×4.

The latents are subsequently corrupted by noise, following
the forward diffusion process, a Markov chain of Gaussian
transitions:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI), (1)

where t = 1, ..., T is the time step that defines the strength
of the added noise, βt is the noise variance and q(xt|xt−1)
is the conditional probability of xt given xt−1. By utilizing
the properties of the above process and performing a repa-
rameterization trick, we can obtain xt from any time step in
the closed form:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), (2)

where ᾱt =
∏t

i=1(1− βi).
Our goal is to restore a clean sample x̂0 from the noise

xT . However, the reverse process q(xt−1|xt) is intractable
in general case, therefore it is approximated with a Gaussian



Fig. 2: General overview of the proposed approach. We divide image generation into two sub-tasks: (I) hand generation (top
part) and (II) body outpainting around the hands (bottom part).

generative process that utilizes a U-Net model ϵθ, trained to
predict the added noise and subsequently recover x̂0:

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt), (3)

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)). (4)

In DDPM [13] the mean of the reverse diffusion process
µθ(xt, t) is reparameterized in the following way:

µθ(xt, t) =
1
√
αt

(xt −
1− αt√
1− ᾱt

ϵθ(xt, t)), (5)

where ϵθ(xt, t) is the predicted noise. DDIM [40] further
generalizes DDPM and defines a family of non-Markovian
processes with the sampling of a denoised element defined
as:

pθ(xt−1|xt, x0) = N (
√
αt−1

(
xt −

√
1− ᾱt · ϵθ(xt, t)√

ᾱt

)
+
√
1− αt−1 − σ2

t · ϵθ(xt, t), σ
2
t I).

(6)

DDIM significantly accelerates the generative process by
considering sampling trajectories of length smaller than T
without retraining the model.

Latents x̂0, obtained from the denoising process, are then
translated back to the pixel space using the decoder D to
form the resulting generated image Î = D(x̂0).

B. Multi-Task Hand Generation

We use a pre-trained SD model as the foundation for the
proposed hand generator Hθ and finetune it in a multi-task
setting to predict the noise together with the segmentation
mask of the generated hands. Baldrati et al. [3] and Ju
et al. [14] demonstrated that the SD architecture can be
successfully conditioned by concatenating additional inputs
without employing a separate encoder. Taking inspiration
from [3] and [14], our hand generator accepts an additional
condition cp ∈ RK×Hh×Wh that is concatenated with the
noisy input latents, guiding the generation process towards
the specified hand shape. The noise term ϵθ(xt, t) in (6)
is denoted here as ϵ̂θ, which is predicted by the proposed
conditional model along with the segmentation mask mθ:

ϵ̂θ,mθ ← Hθ(xt, t, cp). (7)

At each step of the diffusion process, a denoised hand latent
x̂0 is obtained with DDIM sampling (6) using the predicted
noise ϵ̂θ.

In this work, a conditional input cp has K = 11 chan-
nels, where 10 channels are occupied by the hand keypoint
heatmap and 1 channel represents the hand segmentation
mask. Each channel of the heatmap contains the keypoints
of an individual finger to provide better separability in
situations when fingers overlap or are occluded. Furthermore,
a segmentation mask of the hands is included in the input
to bring additional spatial guidance to the model. During



training, the mask is filled with zeros with the probability
p = 0.5 to increase the robustness of the model and
enable mask-free inference. Both the keypoint heatmap and
the hand segmentation mask are downsized to the latent
dimension with bilinear interpolation to provide explicit pose
and layout control to the generator. To accommodate the
increased number of input channels, we extend the first
convolutional layer of the pre-trained SD architecture with
randomly initialized weights and further train the network.

Hand segmentation masks are predicted by a stack of 4
transposed convolutional layers fm with kernels of the size
2 × 2 and stride 2. The outputs of each non-final layer
are passed through the Sigmoid Linear Unit (SiLU [11])
activation function. The mask prediction head is built on
top of the last layer of the SD decoder, and it produces
outputs in the spatial resolution of the input image I . The
predicted mask is further used to define the target region for
the body outpainting module and to blend hands and body
in a harmonious way.

The network is trained using the combined objective:

L = LLDM + λ
1

N

N∑
i=0

(Mi −mθ)
2, (8)

LLDM = Eϵ∼N (0,1),t∼[1,T ]

[
∥ϵ− ϵ̂θ∥22

]
, (9)

where Mi is the ground truth segmentation mask for the i-
th sample, λ is a hyperparameter that defines the weight of
the segmentation loss, ϵ̂θ, mθ are the outputs of the hand
generator, as shown in (7). Apart from the practical use of
the predicted segmentation mask in the next stage, including
an extra objective provides an additional regularization to the
training process, thus making the generator more robust [10,
16, 20].

C. Body Outpainting

Given the generated hand image and its predicted seg-
mentation mask, the image background is removed. Both
the resulting foreground image and the mask are further
downscaled and aligned with the full body skeleton to form
the canvas for outpainting Ic and its corresponding mask.
Ic is then encoded into a latent space using the encoder
xc = E(Ic), and the mask mθc is downsized to match the
spatial dimensions of the latent representation:

mθc ∈ RH×W → mlatent ∈ R
H
8 ×W

8 . (10)

The final generated image is obtained by painting the body
around the hand region with a ControlNet model ΩW . The
objective of the model is to predict the unknown latent pixels
(1 − mlatent) ⊙ xc of the input canvas while leaving the
masked area mlatent ⊙ xc unchanged, guided by the body
pose in the form of a skeleton image and a mask of the
target region. Even though the ControlNet receives the mask
as a condition, a diffusion process is performed over the full
area of the latent and therefore corrupting the hand region. To
preserve the hand details, the latents at each step are obtained
by blending the input canvas and the denoised latents at the

current step, similarly to [1, 2]:

xt = mlatent ⊙ xc + (1−mlatent)⊙ xt. (11)

The pre-trained skeleton-conditioned ControlNet model
can naturally solve the inpainting task by noising, and subse-
quently restoring, the masked region of the input. However,
in the case of body outpainting, it tends to hallucinate
objects and unnatural backgrounds around the hand region
as the model learned to associate non-neutral hand shapes
to holding objects during the generic training. Furthermore,
a pre-trained model often tries to complete the hand outside
the bounds of the mask, thus making it anatomically incor-
rect. To mitigate these issues, we fine-tune ControlNet for
body outpainting by providing an initial canvas with hands,
segmented from the original image, and tasking the model
to complete the image by predicting the outside region. We
provide the skeleton image as a condition into the model’s
encoder and blend the noisy and hand latents as described
in (11). The masked L2 reconstruction loss is used for the
training.

D. Sequential Mask Expansion

When outpainting the body around the previously gener-
ated hands, it is crucial to ensure hand detail preservation
as well as a seamless transition and natural connectivity
between the two regions. While the naive blending strategy
described in (11) enforces the hand region stays the same
throughout the diffusion process, it often leads to anomalies
around the region border in the case of non-uniform back-
ground. Although tuning the ControlNet for body outpainting
helps to alleviate this issue, the model still tends to expand
the hand outside the masked region, add extra fingers or
introduce erroneous textures for complex hand shapes.

To address the irregularities around the mask border, we
propose to gradually dilate the input hand mask for T
iterations, where T is the number of diffusion steps, and
then use the expanded masks as mlatent in (11) starting
from the largest and arriving at the original at step T . At
the same time, the underlying denoising UNet of the body
outpainter receives a precise hand mask at every iteration of
the diffusion process. The intuition behind this process is that
the possible distortions that the model may manifest around
the hand region will be replaced by the latent pixels from the
uniform background of the initial canvas. At the same time,
the replaced region will be harmonized and blended with
the rest of the latent during the next step of diffusion. Using
smaller masks for each diffusion step allows washing out the
hard border of the expanded region and avoids visible edge
artifacts. The last two iterations of diffusion are performed
on the full latent without masking to further unify the two
regions in terms of transition smoothness, colour distribution
and shadows.

In Blended Latent Diffusion [1] progressive mask shrink-
ing was employed to enable text-guided image editing in
a thin masked region. However, our mask expansion ap-
proach is solving a conceptually different task of harmonious
blending of two regions of the latent representation with no



constraints on the size of the inpainted region. In our case,
the diffused region typically spans most of the image and we
are forcing it to envelop the generated hands in a coherent
and artifact-free way by progressively expanding the mask.

After the diffusion process in completed, the denoised
latents are mapped back to the pixel space using the decoder
D, i.e Îc = D(x̂0). We then blend the resulting image with
the input hand region using the initial mask mc following
the naive strategy from (11). This allows us to reintroduce
sharpness to the hands that might have been reduced during
the unmasked diffusion steps with no detrimental effects on
the blending consistency.

IV. EXPERIMENTS AND RESULTS
A. Datasets

A combination of InterHand2.6M [25], Re:InterHand [24]
and HaGRID [15] datasets is used for training the hand gen-
erator. The datasets are combined to ensure overall sample
quality and diversity. InterHand2.6M is restricted to a studio
environment with distinct lighting and a limited number of
participants, whereas Re:InterHand provides synthetic 3D
renders of real images. HaGRID is the most diverse of
the three datasets as it was captured “in the wild” but
it includes images of varying quality and only bounding
boxes as annotation. Both InterHand2.6M and Re:InterHand
provide precise hand keypoints and for HaGRID keypoints
are extracted using the Mediapipe holistic model [22]. The
hand segmentation masks for InterHand2.6M and HaGRID
are obtained with SAM ViT-H [17] by using keypoints
as queries for the model, while Re:InterHand includes the
masks as a part of the dataset. The masks extracted with
SAM often include checkerboard artifacts and discontinuities
on the edges, so they were processed with a 5 × 5 dilation
kernel to mitigate this issue. Fig. 3 shows examples of masks
with artifacts and their post-processed versions. We also use
the LLaVA-v1.5-7b [19] model to produce image captions for
HaGRID. Sequence-level captions for InterHand2.6M and
Re:InterHand are created manually to include gender, skin
tone and the details of the hand appearance.

To train the hand generator, we crop the square hand
regions from the original images and resized them to the
resolution 512 × 512 to accommodate the pre-trained SD
architecture. For cases where hands are interacting and their
bounding boxes intersect, both hands are included in the
same crop, otherwise one hand is cropped at random during
training. We also apply RGB value shifting and random
brightness and contrast changes to augment the training
samples. The total training dataset size for the hand generator
is 193, 300 samples, where 60, 000 are randomly sampled
from InterHand2.6M, 56, 500 from Re:InterHand and 76, 800
from HaGRID training subsets while keeping the original
gesture distribution of HaGRID.

To construct the dataset for training the oupainting model,
we utilize LAION-Human (from HumanSD [14]). Similarly
to how we process HaGRID, the keypoints are extracted with
Mediapipe and the hand segmentation masks with SAM ViT-
H. Although LAION-Human includes text prompts and pose

keypoints, the former are extremely noisy due to the auto-
matic way in which the original dataset was constructed, and
the latter are too sparse. Therefore, we replace the original
text prompts with ones obtained from LLaVA-v1.5-7b, and
use Mediapipe estimates as the ground-truth keypoints. The
images are filtered to keep only those with a single human
present in the frame. We further discard images for which
SAM did not produce a hand segmentation mask of at least
2500 pixels. In this way we extract a total of 36, 500 images
that are used for model training.

B. Implementation Details

The hand generator is initialized from the official SD v1.5
checkpoint and further tuned for 5 epochs (30, 000 iterations)
on the combination of InterHand2.6M, Re:InterHand and
HaGRID, as described in Section IV-A. The segmentation
mask loss weight λ from (8) is set to 0.5. The ControlNet
model for the body outpainting stage is initialized from
the official Openpose-pretrained checkpoint and tuned for 5
epochs (6000 iterations) on our filtered version of LAION-
Human. Both models are trained on the Nvidia A1000 GPU
with the batch size 32 and learning rate 1e− 5.

C. Evaluation Metrics

To evaluate the performance of the proposed approach
we measure three aspects of the generation: pose accuracy
including isolated evaluation of the hand poses, text-image
consistency, and image quality. Pose accuracy is measured by
Distance-based Average Precision (DAP) [18] and Mean Per
Joint Position Error (MPJPE), calculated between the ground
truth keypoints and the ones predicted with Mediapipe from
the generated images. The core idea behind DAP is to mimic
the evaluation metrics for object detection, namely Average
Precision (AP) and Average Recall (AR). Originally, AP and
AR use the Intersection over Union (IoU) measure for bound-
ing boxes, thresholded at different levels, to match the ground
truth and predicted objects. In the case of keypoints, IoU is
replaced with a distance-based Object Keypoint Similarity
(OKS) measure. In addition, MPJPE evaluates the average

Fig. 3: Segmentation masks extracted with SAM (left),
masks after applying a dilation kernel (middle), pixel-wise
difference between the two (right).



Fig. 4: Visualization of the InceptionV3 convolutional fea-
tures from the layer with feature dimension 192.

Euclidean distance between the predicted and ground truth
joint positions.

Fréchet Inception Distance (FID [12]) and Kernel Incep-
tion Distance (KID [5]) are well established metrics that
show the overall quality of the synthesis by comparing
the distributions of Inception [41] features extracted from
ground-truth and generated images. The FID and KID can
be calculated over the features from different layers of the
Inception network, with the choice of a layer impacting the
sensitivity of the metrics to various aspects of image quality
and diversity. As this work aims to improve hand generation
in diffusion models, we are particularly interested in the
quality of hand structure and patters associated with fingers.
With this in mind, we explore the Inception features from
different layers and identify the feature dimension 192 as the
most suitable for our evaluation. We use the Torchmetrics
[6] implementation of FID and KID and report the results
for the chosen feature dimensionality. The features from a
feature dimension 192 are visualized in Fig. 4.

Finally, we use the CLIP [30] similarity score (CLIPSIM)
to measure the consistency between the input text prompt
and generated images by projecting both into a shared latent
space and calculating the distance between the embeddings.

D. Results

The proposed approach is compared to the recent state-
of-the-art diffusion-based models, namely SD [33], Han-
dRefiner [21], HumanSD [14], T2I-Adapter [26] and Con-
trolNet [42]. Following the HandRefiner evaluation setting,
we randomly sample 12, 000 images from the HaGRID test
set, keeping the original gesture distribution, and use them
for the comparison. The quantitative results are summarized
in Table I.

Firstly, we evaluate the precision of the produced poses
for all the approaches by extracting the keypoints from the
generated images with Mediapipe and comparing them to
the ground truth. We report DAP and MPJPE across all
133 keypoints of the full body (17 for body, 68 for face,
21 for each hand, 6 for feet), as well as separately for 42
hand keypoints. The superiority of the proposed approach in
pose controllability is demonstrated by a 30.5% improvement
from the baselines for the full body and 92.3% improvement
for the hand DAP. We also outperform the baselines in terms

of MPJPE by 50% for the full body and 40% for the hand
keypints. It is worth noting that SD and HandRefiner do not
allow for pose conditioning and only base the generation
on the text prompt. Text prompt conditioning, being an
extremely weak guidance for the pose, results in 0.0 DAP.
This is because the predicted keypoints are too far from the
corresponding ground-truth points for them to be associated
with the same body parts by the algorithm.

Initial experiments measuring the image quality showed
poor performance despite excellent qualitative results. After
investigation, it became apparent that samples from HaGRID
often suffer from severe background clutter (see Fig. 5). In
the same way the Inception convolutional features, used for
FID and KID computation, are sensitive to hand structure,
they are also sensitive to clutter in the background. This
sensitivity introduces noise to the evaluation metrics. With
this in mind, we segment the background out using SAM
to ensure a more fair and targeted evaluation of human
generation quality. “FID fg” and “KID fg” in Table I report
the results on the images with background removed. In this
human-centric setting, the proposed approach outperforms
the baselines with a 22% improvement. Similarly, our model
shows higher results in text-to-image consistency.

E. Ablation Study

It is crucial to employ a reliable blending strategy to
combine the results of the hand generator and body out-
painter in a harmonious and coherent way. To demonstrate
the efficiency of the sequential mask expansion strategy,
proposed in Section III-D, we compare it to two alterna-
tive approaches: (1) bounding box blending and (2) naive
blending. (1) defines the area outside the square hand region
on the canvas as the outpainting region, whereas (2) creates
the outpainting mask by simply inverting the segmentation
mask predicted by the hand generator. In all three cases,
the last two steps of the diffusion process are performed
with a full mask to smoothen the transitions between the
regions. To compare the blending approaches, we randomly
sample 500 images from the HaGRID test set, following
the original gesture distribution, and measure FID, DAP and
MPJPE between the generated images and the originals. It
can be seen from Fig. 6 that all three strategies are able to
blend the hand and the body coherently. However, (1) does
not allow to fully wash out the bounding box region and
causes discolouration around the hands, corruption of the
head and face, if hands are located in close proximity, and
“boxy” background artifacts. At the same time, (2) tends

Fig. 5: Examples of images from the HaGRID dataset with
severe background clutter.



TABLE I: Quantitative evaluation results on HaGRID dataset.

Pose Accuracy Image Quality
Method DAP ↑ DAP hands ↑ MPJPE ↓ MPJPE hands ↓ CLIPSIM ↑ FID fg ↓ KID fg ↓

Stable Diffusion [33] 0.00 0.00 0.381 0.469 32.94 2.40 1.28 ± 0.30
HandRefiner [21] 0.00 0.00 0.380 0.466 32.95 2.33 1.17 ± 0.28
T2I-Adapter [26] 0.06 0.11 0.179 0.216 33.09 2.39 1.29 ± 0.27
HumanSD [14] 0.31 0.04 0.121 0.236 32.80 2.82 1.58 ± 0.29
ControlNet [42] 0.59 0.39 0.094 0.135 32.86 2.34 1.46 ± 0.34
Ours 0.7730.5%↑ 0.7592.3%↑ 0.04750%↑ 0.08140%↑ 34.01 1.81 0.75± 0.045

TABLE II: Ablation on the blending strategy.

Method FID ↓ DAP ↑ MPJPE ↓

Bounding Box blending 16.46 0.49 0.087
Naive blending 13.03 0.58 0.062
Sequential Mask Expansion 12.13 0.59 0.057

to produce anomalies on the border of the hand region
that include erroneous extensions of the hands, handheld
objects and hallucinated textures. The proposed blending
strategy allows us to preserve the area around the hand and
eliminate artifacts on the border of the outpainted region. The
numerical evaluation results in Table II further demonstrate
the sequential mask expansion mechanism outperforming
the alternatives in terms of both quality and pose precision
metrics.

Fig. 6: Qualitative comparison of three blending methods:
bounding box (left), naive (middle) and sequential mask
expansion (right).

V. LIMITATIONS AND CONCLUSIONS

In this work we presented a novel approach to human
image generation that addresses the issue of low-quality hand
synthesis and lack of control over the resulting hand pose.
The experimental evaluations on HaGRID dataset showed the
increased performance of our approach in terms of both pose
precision and image quality, comparing to a number of state-
of-the-art diffusion-based approaches to image generation.

Although the proposed model produces impressive visual
results, there are some limitations to it. We rely on a
connectivity between arms and wrists in the input body
keypoints. In cases where the hand keypoints are present,
but the arm is missing from the skeleton, the model may
produce discontinuities in the generated image. This is due
to the fact that the hand will be generated in the first stage
of the process and the arm may not be present to connect to
it.

Furthermore, the presented approach concentrates on cases
where hands occupy a substantial area in the frame. This
is because the spatial dimensions 64 × 64 of the SD latent
space may be insufficient to accommodate the fine details of
small hand masks during the outpainting step. Therefore, in
the proposed setting, the quality of small hand regions may
decrease.

Currently, the results of the hand generator are decoded to
the pixel space to be further encoded into latents again for
the outpainting stage. As the VAE latent encoding-decoding
procedure is lossy, it may result in a decreased quality of the
hand region. It is also less efficient from the inference time
standpoint. We leave bringing both stages of the process to
a shared latent space for future work.

VI. ACKNOWLEDGEMENTS

This work was supported by the SNSF project ‘SMILE
II’ (CRSII5 193686), European Union’s Horizon2020 pro-
gramme (‘EASIER’ grant agreement 101016982) and the
Innosuisse IICT Flagship (PFFS-21-47). This work reflects
only the authors view and the Commission is not responsible
for any use that may be made of the information it contains.



REFERENCES

[1] O. Avrahami, O. Fried, and D. Lischinski. Blended latent diffusion.
ACM Trans. Graph., 42(4), jul 2023. 5

[2] O. Avrahami, D. Lischinski, and O. Fried. Blended diffusion for
text-driven editing of natural images. 2022 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 18187–
18197, 2021. 5

[3] A. Baldrati, D. Morelli, G. Cartella, M. Cornia, M. Bertini, and
R. Cucchiara. Multimodal garment designer: Human-centric latent
diffusion models for fashion image editing. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2023. 1, 3,
4

[4] A. K. Bhunia, S. Khan, H. Cholakkal, R. M. Anwer, J. Laaksonen,
M. Shah, and F. S. Khan. Person image synthesis via denoising
diffusion model. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 5968–5976, 2023. 3

[5] M. Binkowski, D. J. Sutherland, M. Arbel, and A. Gretton. Demys-
tifying MMD gans. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May
3, 2018, Conference Track Proceedings. OpenReview.net, 2018. 7

[6] N. S. Detlefsen, J. Borovec, J. Schock, A. H. Jha, T. Koker, L. D.
Liello, D. Stancl, C. Quan, M. Grechkin, and W. Falcon. Torchmetrics
- measuring reproducibility in pytorch. Journal of Open Source
Software, 7(70):4101, 2022. 7

[7] P. Dhariwal and A. Nichol. Diffusion models beat gans on image syn-
thesis. Advances in neural information processing systems, 34:8780–
8794, 2021. 1, 2
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