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Abstract— 3D hand pose estimation from images has seen
considerable interest from the literature, with new methods
improving overall 3D accuracy. One current challenge is to
address hand-to-hand interaction where self-occlusions and
finger articulation pose a significant problem to estimation.
Little work has applied physical constraints that minimize the
hand intersections that occur as a result of noisy estimation.
This work addresses the intersection of hands by exploiting
an occupancy network that represents the hand’s volume as a
continuous manifold. This allows us to model the probability
distribution of points being inside a hand. We designed an
intersection loss function to minimize the likelihood of hand-
to-point intersections. Moreover, we propose a new hand mesh
parameterization that is superior to the commonly used MANO
model in many respects including lower mesh complexity,
underlying 3D skeleton extraction, watertightness, etc. On the
benchmark INTERHAND2.6M dataset, the models trained using
our intersection loss achieve better results than the state-of-the-
art by significantly decreasing the number of hand intersections
while lowering the mean per-joint positional error. Additionally,
we demonstrate superior performance for 3D hand uplift
on RE:INTERHAND and SMILE datasets and show reduced
hand-to-hand intersections for complex domains such as sign-
language pose estimation.

I. INTRODUCTION

Hand pose estimation in 3D has seen lots of interest
across a broad range of applications. For instance, 3D hand
estimation can be used for sign language recognition, human-
computer interaction, animation, virtual/augmented reality,
etc. 3D hand estimation is an extremely challenging problem
due to factors including motion blur, self-occlusion of the
fingers, and interaction with body and face. The literature
contains many works on single 3D hand pose estimation
(e.g., [6, 29, 30, 34, 37, 38]) that tackle this problem by either
direct hand prediction from an image or by decomposing
estimation into an image-to-2D, then 2D-to-3D uplift.

The interaction of two hands in 3D space presents even
greater complexity due to mutual occlusions and intersec-
tions. A naive approach is to apply a single-hand model
twice to an image but this leads to poor estimation that lacks
realism, especially in subtle cases such as interlocking fin-
gers. Furthermore, interacting hands may provide additional
information on mutual hand position, and this can prove
beneficial in decreasing the search space of solutions.

A. Related Work

Early works on 3D pose estimation for interacting hands
tried to solve the problem using classic optimization ap-
proaches. Ballan et al. [3] proposed tackling the problem

by exploiting salient points and formulating a differentiable
objective function that incorporates edges, optical flow, and
collisions extracted from an image. Oikonomidis et al. [23]
tracked interacting hands by using a stochastic optimization
method with the objective of finding the two-hand configura-
tion that best explains observations from an RGB-D sensor.

With the rise of deep learning, hand interaction was
approached by Taylor et al. [31] who parameterized hands
and exploited an articulated signed distance function to fit
their model to multiview depth data. Mueller et al. [22]
proposed a method that uses a single depth camera along
with an angular hand parameterization. A multiview setup for
interacting hand estimation from RGB images was employed
by Smith et al. [28] where a physically based deformable
model constrains a vision-based tracking algorithm to tackle
self-occlusions and self-intersections.

More recent methods apply hand estimation to a single
RGB image exploiting various techniques including image
segmentation, mesh rendering, relative depth regression, etc.
A common approach is to parameterize the hand using the
MANO [25] model, which represents the hand skeleton via
joint orientations, and the hand’s volume is parameterized
by a shape vector. Moreover, the MANO library provides
an efficient model that converts angular and shape hand
parameterization into a 3D mesh surface. MANO delivers
many benefits that help to enforce a realistic hand, work with
volumetric hand shapes, and render a mesh onto an image.
But as will be seen, it also has shortcomings.

RGB2Hands [32] by Wang et al. tackles 3D pose esti-
mation and tracking of interacting hands from a monocular
input by leveraging a segmentation mask, 2D detection, and
dense matching to regress MANO hand parameters. Zhang et
al. [4] address the hand interaction problem by applying
a hand pose-aware attention module to retrieve features
corresponding to each hand.

The decomposition of interacting hands was tackled by
Meng et al. [18] who utilize de-occlusion and removal
modules to recover the appearance content of the occluded
part of one hand and remove the distracting hand. On the
contrary, Fan et al. [8] process an image using a per-pixel
semantic part segmentation mask and a visual feature volume
to leverage the per-pixel probabilities directly during pose
estimation without decoupling the segmentation stage or
individual hands in the pipeline. Rong et al. [26] introduce a
two-stage approach where at the first stage the CNN module
makes a coarse prediction of interacting hands, and the
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Fig. 1: The figure demonstrates the pipeline for accurate 3D interacting hands estimation. The input image is processed via
a CNN model (e.g., ResNet [10], MediaPipe, etc.) that enables the extraction of image features or 2D keypoints necessary to
uplift hands into 3D. Note our approach is invariant to the backbone used. Afterward, a pre-trained occupancy network with
frozen weights is conditioned via the right hand, and the intersections are tested with the left hand, and optionally vice-versa
with the hands flipped as illustrated. The red and green edges highlight the right and left hands, respectively. Light green
and light orange points visualize the density of hands determined by the occupancy network and their size emphasizes the
likelihood of intersection. Since both hands are fully differentiable with respect to the occupancy and CNN networks, it
provides efficient backpropagation of the intersection loss. The source image is taken from the INTERHAND2.6M dataset.

second step progressively ameliorates the hands’ collisions
through a series of factorized refinements.

INTERHAND2.6M [21] is a benchmark dataset for single
and interacting hand pose estimation released by Moon et
al.. It was released together with a baseline approach that
exploits a ResNet image model to regress 2.5D keypoints
(image points with relative depth) that, via back-projection,
are uplifted to 3D space. This dataset has become widely
used for hand pose evaluation and comparison. The most re-
cent state-of-the-art methods achieve excellent performance,
setting a high bar for interacting hand estimation on the
INTERHAND2.6M dataset. One of those methods is Intag-
Hand [15] by Li et al. which uses a graph convolutional
neural network to solve occlusions and interactions. This
is achieved by adding attention-based modules to implicitly
obtain vertex-to-image alignment that encode the coher-
ence of interacting hands. Jiang et al. present the A2J-
Transformer [12] that extends the A2J framework [33],
which uses anchor points to capture global-local spatial
context. The A2J-Transformer includes several advantages
such as leveraging self-attention across local anchor points
for spatial context awareness and utilizing anchor points
as learnable queries with adaptive feature learning in 3D.
Yu et al. [35] introduce the ACR framework that explicitly
mitigates interdependencies between hands by leveraging
center and part-based attention for feature extraction and
learns the corresponding cross-hand prior.

A similar work that tackles hand-to-object interactions is
HALO [13] by Karunratanakul et al. who present an occu-
pancy network for continuous hand representation. HALO
employs a 3D sparse point cloud as input to the network to
predict hand surface and utilizes hand-to-object occupancies
to minimize the number of intersections. However, it did not
explore resolving hand-to-hand intersections.

B. Motivation & Contributions
Our primary focus is to improve 3D hand pose esti-

mation from a single image by leveraging the physical

constraints of hand-to-hand interaction. Importantly, our
framework can be applied to any state-of-the-art 3D hand
estimation approach to improve performance. We demon-
strate a reduction in hand intersections for 5 state-of-the-
art approaches. Through extensive evaluation on INTER-
HAND2.6M [21], RE:INTERHAND [20], and SMILE [7]
sign-language datasets, we show significant reduction in the
number of intersections and 3D per-joint error.

To do this we employ an occupancy network to exclude
mutual intersections. The occupancy model provides a con-
tinuous volumetric representation of the hand conditioned
on a sparse skeletal model. We propose a new hand mesh
parameterization that exploits a kinematic hand model which
is more robust than the MANO framework. But this is only
used to train the occupancy network.

By leveraging the hand occupancy, we can resolve volu-
metric intersections without the use of a mesh. We structure
our approach around an end-to-end differentiable pipeline
and employ an intersection loss that, in combination with a
CNN, allows the reduction of hand intersections which im-
proves 3D estimation. In contrast to HALO, which minimizes
hand-to-object intersections, we model intersections for two
dynamic and interacting hands. This is a more significant
challenge than hand-to-object, as it involves the simultaneous
prediction of both articulated hands, while in hand-to-object,
the object usually remains constant.

II. METHODOLOGY
We propose an intersection loss for 3D interacting hand

estimation that enforces physical constraints and visual re-
alism. The pipeline of our approach is outlined in Fig. 1.
The method relies on a CNN-based 3D pose estimator to lift
initial 2D hand skeletons to 3D. By exploiting a pre-trained
occupancy network [19] conditioned with a 3D skeleton, we
apply an unsupervised intersection loss on both predicted
hands. The occupancy network is pre-trained on hand meshes
extracted with a custom hand mesh parameterization.



A. Hand Mesh Representation

The MANO library is extensively used in the literature as
a hand mesh representation. It provides essential attributes
such as differentiability, angular and shape mesh parame-
terization, facilitates retrieval of a 3D skeleton via linear
blend skinning, and a heightened level of visual realism.
Unfortunately, despite all the advantages, it has certain
limitations. Firstly, it has a reliance on a pre-trained statistical
hand model computed with principal component analysis.
Secondly, the 3D skeleton can only be obtained after mesh
regression. Finally, the generated mesh is not watertight.

The primary challenge lies in the complexity of fitting
MANO meshes to pre-existing 3D skeletons, i.e., when 3D
hand skeletons are known, but the goal is to obtain the
volumetric shape. This optimization could be done over the
shape and angular MANO parameters. However, the pre-
computed MANO weights may not match the target skeleton
distribution, which can result in strange mesh deformations.

Therefore, we present a new hand-mesh parameterization
that is more practical for use with hand-to-hand interaction.
The core of the proposed mesh model is a 3D hand skeleton
generated with forward kinematics combining joint angles
and bone lengths. We add vertices along the fingers that
span the envelope of the hand, providing a volumetric shape.
Through an awareness of the arrangement of nodes, we
are able to triangulate the hand’s surface and construct a
watertight mesh (i.e., no holes) using triangular faces. The
full process of adding new nodes is fully automatic, and more
vertices can be added to give a more complex hand shape.
The proposed custom mesh has multiple advantages over the
MANO mesh:

1) It is watertight.
2) It has less than half the vertices (307 vs. 778).
3) The volumetric shape is added on top of the skeleton

(as opposed to MANO that generates the mesh and
then skeleton), which enables lazy evaluation if only a
skeleton is needed.

4) No dependency on the pre-trained weights.
The mesh watertightness plays a crucial role in training the
occupancy network since it allows us to determine whether
a 3D point is inside the mesh (using ray casting [27]). Both
MANO and the proposed meshes are differentiable, and the
proposed model has more parameters to differentiate, which
gives more user control over subtle details.

To provide a good trade-off between visual quality and
complexity, we designed a refined version of the proposed
mesh model that has more points (699) and triangles, for
the purpose of visualization. Fig. 2 demonstrates a visual
comparison of two meshes. MANO versus the proposed
custom mesh comparison is illustrated in Fig. 4.

B. Occupancy Network

The occupancy network serves as the primary compo-
nent in the proposed pipeline. Its purpose is to model the
volumetric shape of the hands and resolve intersections
at the physical level, since it determines whether a point

Fig. 2: Comparison of plain (left) and complex (right) wa-
tertight hand meshes generated with our parameterized mesh
model. The green pose (underneath the orange envelope) is
found using forward kinematics (FK) that combine angles
and bone length. The yellow points are also obtained via FK
with pre-determined offsets from the underlying skeleton, the
red triangles span the entire hand surface.

occupies the same space as a hand. The benefit of utilizing
an occupancy network is to obtain a continuous manifold of
the hand that can be used in a lazy evaluation. To obtain
such a representation, the occupancy network is conditioned
with a feature vector that corresponds to the desired shape.

Mathematically, let O : R3 × F → [0, 1] be an occupancy
network that given a point in 3D space x ∈ R3, and feature
vector f ∈ F, returns a probability p ∈ [0, 1] of the point x
being occupied in the target space conditioned by vector f .

Implementation-wise, the occupancy network consists of
an encoder and a decoder. The encoder processes 3D obser-
vations to produce a feature vector and acquires knowledge
about the mean and standard deviation of the Gaussian
distribution within the latent space. At inference, the model
samples the learned latent space, and the decoder transforms
the latent space into occupancy logits, which can be con-
verted to probabilities using the Bernoulli two-class model.

C. Intersection Loss

The pipeline in Fig. 1 shows hand intersections as dense
point clouds estimated using the occupancy network. How-
ever, this representation would be inefficient. In practice,
a different technique is used. For interacting hands, let
X ∈ R3×N be a matrix of 3D hand joints stacked in a
column, where the most common hand representation defines
N = 21 points. We distinguish joints of right and left hands
by the corresponding underscore letters, i.e., XR and XL.
Without loss of generality, the point set of the right hand
is utilized to condition the occupancy network, and the left
hand’s set is employed to check point-wise intersections. For
neural networks, it is essential to work in a high-dimensional
space as it enables them to capture subtle data patterns, learn
features faster, and thus have better convergence. Therefore,
we exploit an encoder F : R3×N → F that converts the point
set XR to a feature representation.
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Fig. 3: Comparison of applying different point sets to check
intersections: a) sparse skeleton, b) skeleton with additional
points along the edges, c) skeleton with mesh surface points.
The yellow points show the density of the right hand, and
the black points highlight intersections.

The goal of the intersection loss is to minimize the
probabilities of the left hand’s points when the occupancy
network is conditioned on the right hand. The corresponding
objective is the following:

N∑
i=1

[
O
(
XLi,F(XR)

)2
+ αO

(
X̄Ri,F(X̄L)

)2]
, (1)

where X{L,R}i denotes indexing the i-th point of the matrix.
The parameter α ∈ {0, 1} is a constant that determines
whether flipped hands are tested for intersection. Corre-
spondingly, X̄Ri and X̄Li denote a point set flipped along
the x-axis (i.e., multiplied by -1). The square loss function
is particularly effective at emphasizing points with a higher
likelihood of intersection, as it progressively diminishes the
impact of lower values within the range of zero to one. Along
with the squared loss, a truncated loss can also be employed,
i.e., probabilities >50%. The motivation being to focus on
points more likely to intersect. However, we empirically
found that a non-truncated loss resolves more intersections
for the same hyperparameter settings (e.g., learning rate).

In practice, the batched calculations are performed within
the Pytorch [24] library, which makes the intersection loss
extremely efficient, as only 21 points need to be tested.
Nevertheless, 21 joints do not span the whole hand nor its
volume, and gaps between points result in a slightly less
accurate intersection test. This can be mitigated by adding
virtual points along the hand edges, which introduces an ad-
ditional 100 points, e.g., the hand skeleton contains 20 edges
where 5 new points are added to each edge. Alternatively,
the whole hand mesh surface can be used for intersection
verification. However, this slows model training as the total
number of points to test rises significantly. In total, there
are six options for checking hand intersections, i.e., testing
sparse, dense, and mesh surface vertices for a single (left)
hand, or additionally flipping both hands to repeat the test.
In the experiments, we provide results for each of these
options. The comparison of skeletons used for testing is
demonstrated in Fig. 3, where larger point sets reveal areas
where intersections could happen.

III. EXPERIMENTS

To evaluate the effect of the intersection loss and oc-
cupancy network on the pose estimation of interacting 3D
hands, we perform several sets of experiments. Firstly, on
the INTERHAND2.6M dataset, we compare against state-
of-the-art methods. Secondly, on RE:INTERHAND dataset of
interacting hands. Finally, we train the hand pose estimation
model on the SMILE dataset [7], and evaluate the accuracy
on “in the wild” videos where the ground truth is not known.

The standard metric for 3D accuracy is the mean per-joint
position error (MJPJE). However, to measure the number of
intersections from the occupancy network, we additionally
exploit a ray-casting algorithm to precisely check whether
points are inside a mesh to confirm the results.

As mentioned previously, the proposed mesh is watertight,
which enables us to test if an arbitrary point is inside the
mesh. We create a mesh grid of uniformly distributed 3D
points that span the size of meshes. In total, 125 thousand
points are tested using the ray-casting algorithm to find mesh
occupancies and mask points inside meshes for each hand.

A. Training the Occupancy Network

The occupancy network is conditioned with a single-hand
skeleton that has 21 joints. Surprisingly, conditioning the
occupancy network with a mesh surface instead of a sparse
skeleton does not significantly increase the accuracy of the
model, however, it does make training times much longer.

Random samples of points (8192 per hand) and corre-
sponding occupancy masks are used to train the occupancy
network. During validation, all 125 thousand points are
employed to compute the intersection over union rate of
the ground truth and predicted occupancies, which is the
primary metric for the occupancy network evaluation. During
training, additional augmentations on the input and sampled
points are employed. We randomly rotate input skeletons
and corresponding meshes by ±180 degrees, and random
Gaussian noise is added to the sampled mesh points.

B. Results on INTERHAND2.6M dataset

The INTERHAND2.6M dataset [21] contains 2.6 million
images of single and interacting hands, with ground truth
poses found from the triangulation of 80-140 views. The
2D hand detections were obtained by either manual human
labeling or an automatic annotation tool. The accuracy of
INTERHAND2.6M is notably high, as the reconstruction
process leveraged a large number of different camera views.

The dataset also contains MANO meshes that were fitted
to the triangulated skeletons with about a 5 mm error1. By
exploiting the custom mesh parameterization and an inverse
kinematics solver [11] we fit our new mesh with less than
0.5 mm error. Having significantly more accurate meshes is
needed for the occupancy network and is vital for the hand
intersection test, where a small finger’s shift is crucial.

Where pre-trained models were available, we applied
the intersection loss to the top performing methods with

1https://mks0601.github.io/InterHand2.6M/



Fig. 4: This figure shows a comparison of the failed MANO (red) and our (green) meshes fitted to the INTERHAND2.6 3D
hand joints. The black circles on the MANO meshes highlight specific problems of the MANO hand’s appearance, such as
twisted fingers, unrealistic shape, incorrect finger orientation, etc.
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Fig. 5: Correlation trend of per-point intersection probability
found via occupancy network and ray-casting algorithm.

respect to the lowest MPJPE error on the INTERHAND2.6M
dataset. Since not all of them provide the training code,
we trained a simple linear network (MLP) that takes as
input 3D interacting hand skeletons from a state-of-the-art
model and generates the same 3D skeletons. The accuracy
of this network matches the accuracy of the state-of-the-art
methods. We then took the subset of the data containing two
interacting hands, and fine-tuned the 3D-to-3D model with
the intersection loss.

The main parameter that influences both MPJPE and
intersection accuracy is the weight of the intersection loss
function. If the weight is too high, the model tries to push
hands away from each other to prevent any intersections,
which increases the 3D error. Conversely, a small weight
does not have any impact on the model. We found that the
optimal weight that balances lower MPJPE while minimizing
the intersections is within the range 10−5 to 10−8 depending
on the size of the points tested (e.g., sparse or mesh).

In our experiments, the fine-tuned models trained with the
intersection loss consistently have a lower number of inter-
sections and improved MPJPE over state-of-the-art methods.
When comparing to the state-of-the-art, we specifically se-
lected models that achieve a similar mean per-joint position
error while minimizing the overall number of intersections.

The number of intersections is found in two ways. First,
using the occupancy network with skeleton conditioning.
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Fig. 6: Comparison of 3D hand poses estimated by state-of-
the-art methods (IntagHand [15] and A2J-Transformer [12])
before (left) and after (middle) training with the hand inter-
section loss on INTERHAND2.6M. The ground truth hands
are shown in the right column. Red skeletons show right
hands, blue skeletons left hands. Orange points around the
right hand highlight volumetric hand density found via the
occupancy network. Large black points show point-to-hand
intersections. Note: there are no intersections in either the
model trained with intersection loss or the ground truth.

However, to achieve a fair comparison, with less reliance
on the occupancy network, we find intersections by fitting
custom meshes to skeletons returned by the state-of-the-art.
The skeletons of new models are trained with the intersection
loss; the same way we converted the INTERHAND2.6M
3D hands to meshes. The mean fitting error is lower than
0.4 mm, which provides highly precise meshes. We have
conservatively chosen a thinner volumetric shape for meshes,
particularly the finger thickness, to ensure a high level of
confidence in intersection detection.



TABLE I: Comparison of state-of-the-art models and their
updated versions (“+Ours”) trained with intersection loss
in terms of a number of intersections. The second column
indicates the amount of intersections found via the ray-
casting algorithm (“Ray-C.”), and the last column shows
the quantity of intersections determined by the occupancy
network (“Occ.”). The “%” row reports a percentage decrease
in the amount of intersections for the proposed models. The
total number of tested hand pairs is around 220000. CNN
stands for our baseline model.

Method Ray-C. Occ. Method Ray-C. Occ.
Xiong [33] 376111 20771 Moon [21] 418079 22233
Xiong+Ours 306478 17835 Moon+Ours 295261 16269
% 18.51 14.13 % 29.38 26.82
Li [33] 583062 32253 Zhang [36] 592685 32240
Li+Ours 372534 20286 Zhang+Ours 336591 18843
% 36.11 37.10 % 43.21 41.55
Hampali [9] 452408 25765 CNN 490212 25904
Hampali+Ours 325803 19827 CNN+Ours 394345 22184
% 27.98 23.05 % 19.56 14.36

Table I reports the number of intersections, found via
the ray-casting algorithm and the occupancy network, for
both state-of-the-art and versions with the proposed inter-
section loss. We found that the best intersection loss used
for fine-tuning all models employs a sparse set of points of
a single hand with a non-truncated kernel. In the experiments,
these settings resulted in the best reduction of intersections
and MPJPE. The proposed CNN model provides excellent
MPJPE accuracy having an 11.4 mm error compared to the
A2J [33] method (11.2 mm), or the third place Keypoint
Transformer [9] (14.7 mm). In Table I, the percentage
decrease in the number of intersections found via the ray-
casting algorithm correlates with intersections detected with
the occupancy network, see Fig. 5. Therefore, it additionally
confirms the accuracy of the occupancy model.

Models including the intersection loss achieve significantly
fewer hand-to-hand intersections than state-of-the-art. For
example, Fig. 3 shows a comparison of interacting hands
of IntagHand and A2J-Transformer models against their
versions trained with the intersection loss.

Removing all intersections is challenging for several rea-
sons: Firstly, a higher weight for the intersection loss may
lead to significant deterioration in 3D accuracy of hand
estimator model. Secondly, there is not enough data for hands
in close interaction where possible intersections could occur.
Such situations correspond to approximately 17% percent
of the INTERHAND2.6M data. Thirdly, error propagation
from the occupancy network, which in experiments on the
validation set has around 80% of intersection over the union
(IoU) accuracy. Finally, imprecision of the ground truth data
that also contains intersections, as the 3D ground skeletons
are often extracted with triangulation algorithms.

For the same reasons, lowering the mean per-joint position
error is difficult. Since we use an unsupervised intersection
loss, there is no guidance to the model on how it should fix
the intersections, i.e., the intersection loss function only tells
the model where it cannot position the hand joints. During
training, the best model was selected using the minimum

error on the validation set in terms of mean per-joint accuracy
(not the minimum amount of intersections).

C. Results on the RE:INTERHAND dataset
The RE:INTERHAND dataset [20] of Moon et al. provides

a large collection of synthetically generated realistic images
of interacting hands. In our experiments, we used egocen-
tric viewpoints where 8 captures are reserved for training
(402200 frames) and the remaining 2 captures for testing
(90380 frames). Since the dataset is recent, we have not
found any released competitor models. Therefore, we used
a CNN model to predict the two 3D hands directly from
the image. Then, we fine-tuned the corresponding model
with intersection loss (testing dense points of a single hand).
A 10−4 weight on intersection loss decreased the error by
0.15% and intersections (found via ray-casting) by 27%
compared to the model trained without intersection loss.
Similarly, a 10−5 weight decreased the error by 3.1% and
the intersections by 6.9%, and a 10−6 weight by 3.8% and
3.6% (respectively). Therefore, experiments on this dataset
confirm that the weight of the intersection loss provides a
good trade-off that minimizes error and hand intersections.

D. In The Wild Evaluation
It is important to evaluate the hand pose estimator and its

performance “in the wild”. This means randomly selected
videos where the quality of interacting hands is crucial for
understanding, e.g., sign language. However, such videos do
not have the corresponding 3D ground truth reconstruction.
Therefore, the evaluation metrics consist of qualitative results
as well as the number of intersections determined via the
ray-casting algorithm, as shown on INTERHAND2.6M.

We designed a multi-layer perception (MLP) to uplift right
and left 3D hands with hand-to-hand offset from 2D keypoint
detections (obtained with MediaPipe [17]). The MLP has
three submodules that separately predict joint angles of the
hands, the bone lengths for both hands, and the relative
offset between the two hands, as in [11]. The total size
of the network is 9.5 million parameters. Without loss of
generality, the MLP predicts two right hands and flips the
left hand in the x-axis. The prediction of angles enables it
to directly find the corresponding meshes with the proposed
mesh parameterization.

For training the MLP, we used a version of the SMILE [7]
dataset that has the 3D hands triangulated from three cali-
brated cameras. This makes the ground truth reconstruction
significantly less reliable (in terms of interacting hands accu-
racy) compared to the INTERHAND2.6M dataset. However,
it provides a greater challenge to remove intersections and
lower the MPJPE error. We opted for the SMILE dataset for
several key reasons. Firstly, it enables us to show the versa-
tility of the intersection loss when applied to an alternative
dataset. Secondly, we can evaluate the effectiveness of the
intersection loss in scenarios where ground truth accuracy for
interacting hands is less than ideal. Lastly, as a sign language
dataset, it provides a significantly larger and diverse set of
real-world interacting hand data, enhancing the depth and
practicality of the evaluation.



Fig. 7: Comparison of 3D hand estimation models after applying the intersections loss (bottom) and without (top) on images
taken from various sign language datasets not used in training (left to right): RWTH-Phoenix Weather 2014 [14], German
sign language DSGS [16], BBC-Oxford British Sign Language [1, 2], and SMILE Swiss sign language dataset [7]. The
black points highlight point-wise intersections. The model trained with intersection loss produced 3D hands completely free
of intersections. Consequently, the bottom meshes are the refined version of the custom mesh parameterization.

We first train a baseline network that is supervised with
the ground truth 3D skeletons. Following the training of the
baseline model, it was fine-tuned using interacting hands,
and the cloned models were fine-tuned with different types
of the intersection loss, i.e., testing single/both hands or a
sparse/dense/mesh surface point sets. All models were given
the same number of epochs to converge.

TABLE II: Percentage decrease in intersections (found with
an occupancy network) for the baseline model vs models
trained with intersection loss. The rows show whether single
or both hands were employed. The columns indicate the
density of points. The results correspond to the test set (in
total 734120 pairs) of the SMILE dataset.

Number of intersections decrease in %
sparse dense mesh

single 8.189 16.346 9.444
both 5.361 18.727 7.167

TABLE III: Percentage decrease in the number of inter-
sections found via the ray-casting algorithm comparing the
baseline network and models trained with different types of
intersection loss on four sign-language datasets. The rows
indicate whether single or both hands were tested, and the
columns show the density of the point sets.

BOBSL [1, 2]
S D M

single 3.94 16.30 8.88
both 5.18 16.59 9.67

DSGS [16]
S D M

single 4.04 11.47 7.46
both 3.97 14.97 5.41

Phoenix [14]
S D M

single 2.53 3.59 2.76
both 0.63 7.87 2.06

SMILE [7]
S D M

single 8.78 20.16 12.74
both 10.84 31.20 15.52

Average over datasets
S D M

single 4.82 12.88 7.96
both 5.15 17.66 8.16

Table II compares the number of hand intersections
(found via occupancy network) for the baseline and models
trained with intersection loss. Similarly to the experiments
on the INTERHAND2.6M dataset, we selected models that
have around the same error as the baseline, but the least
number of intersections. Table III shows the number of
intersections found with the ray-casting algorithm on four “in

the wild” sign-language datasets. In each dataset, we selected
250000 random interacting hand pairs, except for the Phoenix
dataset [14], which has around 120000 pairs; and is the only
dataset where models with the intersection loss do not fully
outperform the baseline model. The smaller quantity of test
data could be the reason for this. From Table II and III the
results suggest that models with the intersection loss resolve
a substantial amount of intersections. Moreover, the decrease
in the number of intersections found via the occupancy
network and ray-casting algorithm (averaged over datasets)
correlates, similar to the results on the INTERHAND2.6M
dataset, which again confirms the accuracy of the occupancy
network. In the majority of cases, the model trained using the
dense points intersection loss yields the fewest intersections.
Testing mesh surface vertices results in a greater reduction of
intersections compared to a sparse points set. Nevertheless,
with a significantly larger distribution of points in space,
the model’s performance unexpectedly declines. Testing both
hands shows (on average) a further reduction in intersections
compared to a single hand. The qualitative evaluation of the
baseline and models with intersection loss is shown in Fig. 7,
where hands returned by the network with the intersection
loss are more physically plausible.

TABLE IV: Comparison of training times across models with
varying types of intersection loss. Rows specify the test type
and rows the number of hands tested. The model without
intersection loss is in the bottom row.

Iterations per second
sparse dense mesh

single 13.23 11.72 6.62
both 9.88 8.22 4.19

no intersection loss 20.85

E. Time complexity

To investigate the impact of testing different point sets in
the intersection loss against the model training time, e.g.,
sparse/dense/surface or the number of hands, we measured
the amount of iterations executed per second (i.e., model for-
ward pass, loss computation, backpropagation, and parameter
update) for a batch size of 256 interacting hands. Table IV
shows the time comparison for each setting, where testing



both hands in the intersection loss accounts for around 50%
of computational time. The computational complexity of the
intersection loss increases with the number of points tested.
The fastest option (sparse, single hand) is more than three
times faster than the slowest (surface points with two hands),
and around 36% slower than training a model without an
intersection loss. Note, the values in table IV are obtained
by running occupancy on all interacting hands. However, the
additional speed-up is gained by filtering the hand pairs with
a 3D bounding box intersection test. The measurements were
done on the 11th Gen Intel Core i9 Ubuntu machine with an
NVIDIA GeForce RTX 3090 GPU.

Considering that the 3D ground truth of the SMILE dataset
is not very accurate, it is noteworthy that the models with in-
tersection loss have managed to decrease intersections while
lowering or maintaining the MPJPE accuracy. Testing dense
points of a single hand provides a good trade-off maintaining
training speed while ensuring minimal intersections.

F. Noise Influence on Intersection Loss
The intersection can provide additional cues to the 3D

uplift model by providing information where hand joints
cannot be located to avoid hand intersection. To confirm this
hypothesis, we designed an experiment, where during train-
ing, the ground truth 3D points of highly accurate hands from
the INTERHAND2.6M dataset were artificially noised (both
hands slightly rotated) with a range of probabilities from 0
to 1. The objective is to demonstrate that the model with
intersection loss performs better than its version without,
as the model with intersection loss can avoid intersections
and thus should be closer to the ground truth. Fig. 8 shows
that with a higher probability of noise, the model with
intersection loss linearly outperforms the baseline model (the
number of intersections and is slightly better in MPJPE for
noise probability higher than 0.8). This empirically proves
the initial assumption, since the figure suggests that the
baseline model has no perception of hand intersections, and
higher noise leads to a less accurate estimate. The model
with intersection loss results in better prediction.

G. Implementation details

The intersection loss requires a pre-trained occupancy
network which consists of a PointNet encoder [5] with
residual blocks that encode input 3D skeletons into a feature
space and a decoder with conditional batch normalization
that transforms the latent space into logits. In total, the
occupancy network has 7 million parameters.

A CNN network for predicting the hands consists of a
ResNet-50 [10] model that returns image features, and an
MLP with a couple of fully connected linear layers (in total
around 2m parameters) that regresses a 3D hand pose. The
predicted hands from the MLP are used in the intersection
loss with the occupancy network.

H. Limitations

As was mentioned in the section III-B describing the
results on the INTERHAND2.6M dataset, the main limitation
of our approach is that not all intersections are resolved.
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Fig. 8: The plots show the impact of artificially noising 3D
training data on mean per-joint position error (MJPJE) and
the number of intersections found with the occupancy net-
work. For each noise probability, we compared two models
– with and without intersection loss. The top graph demon-
strates a decrease in the intersections. The bottom shows an
increase in 3D accuracy for the model with intersection loss.

Primarily, this is caused by the weight of intersection loss
in the model training, where a high weight leads to solv-
ing more intersections but deteriorates the 3D accuracy. A
smaller weight, on the other hand, fixes fewer intersections
but lowers the 3D error.

IV. CONCLUSIONS
This paper presents an intersection loss function for inter-

acting 3D hand estimation to introduce physical constraints
on hand estimation. By exploiting an occupancy network
conditioned on a 3D skeleton, the hand volume is repre-
sented as a continuous manifold, where for an arbitrary
3D point, the occupancy model represents the likelihood of
a hand intersection. With an extensive ablation study, we
investigated the impact of testing different point sets for
hand intersection on the model’s accuracy and training speed.
Additionally, we propose a custom hand mesh parameteriza-
tion that overcomes some of the limitations of the MANO
model, such as lower complexity, access to underlying 3D
skeleton, watertightness, etc. The custom mesh serves a
versatile purpose, enabling fast mesh generation essential for
our occupancy network or mesh rendering, while providing
a refined version tailored for mesh visualization.

The experiments on the benchmark INTERHAND2.6M
dataset improve state-of-the-art models in both mean per-
joint position error and significantly decrease the number of
intersections. The cross-validation on the RE:INTERHAND
and “in the wild” videos of sign language confirms a reduc-
tion of hand intersections both quantitatively and qualita-
tively, while maintaining the same 3D accuracy even though
the hand estimator was trained on a very noisy dataset.
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